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ABSTRACT

Biometrics are widely used for authentication in consumer devices

and business se�ings as they provide su�ciently strong security,

instant veri�cation and convenience for users. However, biomet-

rics are hard to keep secret, stolen biometrics pose lifelong secu-

rity risks to users as they cannot be reset and re-issued, and trans-

actions authenticated by biometrics across di�erent systems are

linkable and traceable back to the individual identity. In addition,

their cost-bene�t analysis does not include personal implications

to users, who are least prepared for the imminent negative out-

comes, and are not o�en given equally convenient alternative au-

thentication options.

We introduce ai.lock, a secret image based authenticationmethod

for mobile devices which uses an imaging sensor to reliably extract

authentication credentials similar to biometrics. Despite lacking

the regularities of biometric image features, we show that ai.lock

consistently extracts features across authentication a�empts from

general user captured images, to reconstruct credentials that can

match and exceed the security of biometrics (EER = 0.71%). ai.lock

only stores a “hash” of the object’s image. Wemeasure the security

of ai.lock against brute force a�acks on more than 3.5 billion au-

thentication instances built from more than 250,000 images of real

objects, and 100,000 synthetically generated images using a gen-

erative adversarial network trained on object images. We show

that the ai.lock Shannon entropy is superior to a �ngerprint based

authentication built into popular mobile devices.
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1 INTRODUCTION

Existing solutions to the complex mobile authentication equation

have signi�cant problems. For instance, while biometric authen-

tication provides su�ciently strong security, instant veri�cation

and convenience for users, biometrics are also hard to keep se-

cret and pose lifelong security risks to users when stolen, as they

cannot be reset and re-issued, More importantly, as surrendering
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biometrics may become de facto mandatory [34, 43], existing vul-

nerabilities [5, 21, 51, 71], coupled with the compromise of large

scale biometrics databases [49], raise signi�cant long term secu-

rity concerns, especially as transactions authenticated by biomet-

rics across di�erent systems are linkable and traceable back to the

individual identity. Further, token-based authentication solutions,

e.g., SecurID [57], require an expensive infrastructure [1] (e.g. for

issuing, managing, synchronizing the token).

A secret image based authentication approach, where users au-

thenticate using arbitrary images they capturewith the device cam-

era, may address several of the above problems. For instance, the

authentication is not tied to a visual of the user’s body, but that of

a personal accessory, object, or scene. As illustrated in Figure 1, a

user sets her reference credential to be an image of a nearby object

or scene. To authenticate, the user captures a candidate image; the

authentication succeeds only if the candidate image contains the

same object or scene as the reference image. �is improves on (1)

biometrics, by freeing users from personal harm, providing plau-

sible deniability, allowing multiple keys, and making revocation

and change of secret simple and (2) token-based authentication, by

eliminating the need for an expensive infrastructure. Visual token-

based solutions (e.g., based on barcodes or QR codes) [24, 41] can

be seen as special cases of secret image based authentication.

However, this approach raises new challenges. First, an adver-

sary who captures or compromises the device that stores the user’s

reference credentials (e.g. mobile device, remote server) and has ac-

cess to its storage, should not be able to learn information about

the reference credentials or their features. Second, while biometric

features such as ridge �ow of �ngerprints or eye socket contours

of faces, can be captured with engineered features and are invari-

ant for a given user, images of objects and general scenes lack a

well de�ned set of features that can be accurately used for authen-

tication purposes. Improper features will generate (i) high false

accept rates (FAR), e.g., due to non-similar images with similar fea-

ture values, and (ii) high false reject rates (FRR) that occur due to

angle, distance and illumination changes between the capture cir-

cumstances of reference and candidate images.

In a �rst contribution, we introduce ai.lock, a practical, secure

and e�cient image based authentication system that converts gen-

eral mobile device captured images into biometric-like structures,

to be used in conjunction with secure sketch constructs and pro-

vide secure authentication and storage of credentials [§ 5].

To extract invariant features for image based authentication,

ai.lock leverages (1) the ability of Deep Neural Networks (DNNs)

to learn representations of the input space (i.e., embedding vectors

of images) that re�ect the salient underlying explanatory factors of

the data, (2) Principal Component Analysis (PCA) [20] to identify

more distinguishing components of the embedding vectors and (3)

Locality Sensitive Hashing (LSH) to map the resulting components



FAR EER Shannon Entropy Dataset
Solution (%) (%) (bits) size

ai.lock (MLMS) 0.0004 - 18.02 2 ×109

ai.lock (MLSS) 0.0015 0.17 16.02 6 ×106

iPhone TouchID [4] 0.0020 - 15.61 -

Deepface [65] (face) - 8.6 - > 0.5 ×109

SoundProof [33] (sound) 0.1 0.2 9.97 > 2 ×106

[62] (eye movement) 0.06 6.2 10.70 1, 602

RSA SecurID [57] - - 19.93 -

Text-based password [10] - - 10-20 7 ×107

Table 1: ai.lock variants vs. commercial and academic bio-

metric, token-based authentication solutions, and text pass-

words. ai.lockMLSS variant has no false rejects, as it is evalu-

atedunder attack samples only. Under large scale datasets of

powerful attacks, ai.lock achieves better entropy than state-

of-the-art biometric solutions.

to binary space, while preserving similarity properties in the in-

put space. We call the resulting binary values imageprints. ai.lock

builds on a secure sketch variant [17] to securely store reference

imageprints and match them to candidate imageprints.

In a second contribution, we propose the LSH-inspired notion

of locality sensitive image mapping functions (δ -LSIM), that con-

vert images to binary strings that preserve the “similarity” relation-

ships of the input space, for a desired similarity de�nition [§ 3]. A

δ -LSIM function can be used to e�ciently match images based on

their extracted binary imageprints.

Further, we develop brute force image based a�acks that aim to

defeat ai.lock. First, we perform real image a�acks, that use man-

ually collected and publicly available image datasets. To evaluate

ai.lock on large scale a�ack images, we develop synthetic image at-

tacks that use images produced by generative models [54]. To eval-

uate the resilience of stored credentials, we introduce synthetic cre-

dential a�acks, that use authentication credentials generated with

the same distribution of the credentials extracted from manually

collected images [§ 2.1]. We have captured, collected and gener-

ated datasets of 250,332 images, and generated 1 million synthetic

credentials [§ 6.1]. We have used these datasets to generate a�ack

datasets containing more than 3.5 billion (3,567,458,830) authenti-

cation instances [§ 6.2].

We have implemented an ai.lock in Android using Tensor�ow [3]

and show that it is resilient to a�acks. Its FAR on 140 million syn-

thetic image a�ack samples is 0.2×10−6%. ai.lock was unbreakable

when tested with 1.4 billion synthetic credential a�ack samples.

�e estimated Shannon entropy [60] of ai.lock on 2 billion image

pairs is 18.02 bits, comparing favorably with state-of-the-art bio-

metric solutions (see Table 1). Further, we show that ai.lock is a δ -

LSIM function, over images that we collected [§ 7.4]. ai.lock is fast,

imposing an overhead of under 1s on a Nexus 6P device. We have

release the code and data on h�ps://github.com/casprlab/ai.lock.

2 MODEL AND APPLICATIONS

We consider a user that has a camera equipped device, e.g., smart-

phone or tablet, a resource constrained device such as a smart

watch/glasses, or a complex cyber-physical system such as a car.

�e user needs to authenticate to the device or an application back-

end, or authenticate through the device to a remote service. For

Figure 1: ai.lock model and scenario. �e user captures the

image of an object or scene with the device camera. ai.lock

converts the image to a binary imageprint, and uses it as a

biometric, in conjunction with a secure sketch solution, to

securely store authentication information on the device or

on a remote server. �e user can authenticate only if she is

able to capture another image of the same object or scene.

this, we assume that the user can select and easily access a physical

object or scene. To set her password, the user captures the image

of an object/scene with the device camera, see Figure 1 for an illus-

tration. ai.lock extracts a set of features from the user’s captured

reference image, then stores this information (imageprint) securely

either on the device or on a remote server. We note that, in the

former case, the device can associate the reference image with the

user’s authentication credentials (e.g. OAuth [14]) for multiple re-

mote services. To authenticate, the user needs to capture another

image. �e user is able to authenticate only if the candidate image

is of the same object or scene as the reference image. Similar to e.g.,

text passwords, the user can choose to reuse objects across multi-

ple services, or use a unique object per service. Using a unique

object per service will a�ect memorability. However, due to the

image superiority e�ect [45], objects may be easier to remember

than text passwords. In the following, we describe a few applica-

tions of this model.

Alternative to biometric authentication. Instead of authenti-

cating with her sensitive and non-replaceable biometrics (face, �n-

gerprint), the user uses a unique nearby scene or object that she

carries, e.g., a trinket, Rubik’s cube with a unique pa�ern, printed

random art, etc. ai.lock moves the source of information from the

user to an externality, as it does not require a visual of the user’s

body, but that of a personal accessory, object, or scene that the user

can recreate at authentication time. ai.lock improves on biometrics

by freeing users from personal harm, providing plausible deniabil-

ity, allowing multiple keys, and making revocation and change of

secret simple.

Location based authentication. �e user chooses as password

an image of a unique scene at a frequented location (o�ce, home,

co�ee shop), e.g., section of book shelf, painting, desk clu�er. �is

approach can be generalized to enable location based access con-

trol, e.g., to provide restricted access to �les and networks in less

secure locations.

Cyber-physical system authentication. Our model supports

authentication to cyber-physical systems, including car and door



locks, thermostat and alarm systems, where key and PIN entry

hardware [58, 59] is replaced with a camera. To authenticate, the

user needs to present her unique but replaceable authentication

object to the camera.

2.1 Adversary Model

We assume an active adversary who can physically capture or com-

promise the device that stores the user credentials. Such an adver-

sary can not only access the stored credentials, but also any keying

material stored on the device, then use it to recover encrypted data

and use it to authenticate through the proper channels. However,

we assume that the adversary does not have control over the au-

thentication device while the user authenticates (e.g., by installing

malware). We also assume an adversary with incomplete surveil-

lance [19], i.e., who can physically observe the victim during au-

thentication but cannot capture the details of the secret object.

Furthermore, we assume that the adversary has “blackbox ac-

cess” to the authentication solution, thus can e�ciently feed it im-

ages of his choice and capture the corresponding imageprint. �e

adversary can use this output to learn information from the stored

credentials. More speci�cally, we consider the following a�acks:

• Real image attack. �e adversary collects large datasets of

images, e.g., manually using a mobile camera, and online. �en, in

a brute force approach, he matches each image as an authentica-

tion instance against the stored reference credentials until success.

• Synthetic image attack. �e adversary uses the previously

collected images to train a generative model, e.g. [23], that cap-

tures essential traits of the images, then uses the trained model to

generate a large dataset of synthetic images. Finally, the adversary

matches each such image against the reference credentials.

• Synthetic credential attack. Instead of images, the adver-

sary queries the authentication system with binary imageprints.

For this, the adversary extracts the imageprints generated by the

authentication solution on real images of his choice. He then gen-

erates a large dataset of synthetic credentials that follow the same

distribution as the extracted credentials. Finally, he matches each

synthetic credential exhaustively against the reference credentials.

• Object/scene guessing attack. While we do not consider

shoulder sur�ng a�acks which also apply to face based authenti-

cation [35, 71], we assume an adversary that is able to guess the

victim’s secret object/scene type. �e adversary then collects a

dataset of images containing the same object or scene type, then

uses them to brute force ai.lock (see Appendix B).

Finally, we assume the use of standard secure communication

channels for the remote authentication scenario where the user

credentials are stored on a server.

3 PROBLEM DEFINITION

Let I denote the space of images that can be captured by a user

with a camera. Let sim : I × I → {0, 1} be a function that returns

true when its input images have been taken with the same camera

and are of the same object or scene, and false otherwise.

Informally, the image based authenticationproblem seeks to iden-

tify a store function S : I→ {0, 1}k , and an authentication function

Auth : {0, 1}k ×{0, 1}∗ → {0, 1} (for a parameter k) that satisfy the

following properties. First, it is hard for any adversary with access

to only S(R), for a reference image R ∈ I, to learn information about

R. �at is, S imposes a small entropy reduction on its input image.

Second, for any candidate string C ∈ {0, 1}∗, Auth(S(R),C) = 1

only if C ∈ I and sim(R,C) = 1. �us, a candidate input to the

Auth function succeeds only if it is a camera captured image of the

same object or scene as the reference image.

We observe that the secure sketch of [17] solves this problem for

biometrics: given a biometric input, the secure sketch outputs a

value that reveals li�le about the input, but allows its reconstruc-

tion from another biometric input that is “similar”. �erefore, the

image based authentication problem can be reduced to the prob-

lem of transforming camera captured images of arbitrary objects

and scenes into biometric-like structures.

Hence, we introduce the LSH-related notion of locality sensitive

imagemapping functions. Speci�cally, letd : {0, 1}λ×{0, 1}λ → R

be a distance function (e.g., Hamming), where λ is a system param-

eter. �en, for a given δ ∈ [0, 1], a δ -Locality Sensitive Image

Mapping (LSIM) function h satis�es the following properties:

De�nition 3.1. h : I→ {0, 1}λ is a δ -LSIM function if there exist

probabilities P1 and P2, P1 > P2, s.t.:

(1) For any two images I1, I2 ∈ I, if sim(I1, I2) = true , then
d (h(I1),h(I2))

λ
< δ with probability P1.

(2) For any two images I1, I2 ∈ I, if sim(I1, I2) = f alse , then
d (h(I1),h(I2))

λ
> δ with probability P2.

4 BACKGROUND & RELATED WORK

To build ai.lock we leverage deep learning based feature extraction,

locality sensitive hashing and secure sketch constructs. In the fol-

lowing, we brie�y describe these concepts.

4.1 Biometric Protection

Our work is related to the problem of protecting biometric tem-

plates. We summarize biometric protection solutions, that can be

classi�ed into fuzzy biometric protection and feature transforma-

tion approaches [29].

Fuzzy biometric template protection. �is approach leverages

error correcting codes to verify biometric data. Techniques include

secure sketch and fuzzy extractor [17], fuzzy vault [31] and fuzzy

commitment [32], and have been applied to di�erent biometric

data, e.g. palm and hand [37].

In this paper, we extend the secure sketch under the Hamming

distance solution from [17]: reconstruct the biometric credential,

then compare its hash against a stored value. We brie�y describe

here the password set and authentication procedures that we use

based on ai.lock generated imageprints (see § 5). Let ECC be a bi-

nary error correcting code, with the corresponding decoding func-

tion D, and let H be a cryptographic hash function.

• Image password set. Let R be the reference image captured

by the user and let πR = π (R) be its ai.lock computed imageprint.

Generate a random vector x , then compute and store the authenti-

cation credentials, SS(R,x) = 〈SS1, SS2〉, where SS1 = πR ⊕ECC(x)

and SS2 = H (x).



• Images based authentication. Let C be the user captured

candidate image, and let πC = π (C) be its ai.lock computed im-

ageprint (§ 5). Retrieve the stored SS value and compute x ′ =

D(πC ⊕ SS1). �e authentication succeeds if H (x ′) = SS2.

Transformationbased biometric templateprotection. A trans-

formation is applied both to the biometric template and the biomet-

ric candidate, and the matching process is performed on the trans-

formed data. In an invertible transformation (a.k.a., salting [29]),

a key, e.g., a password, is used as a parameter to de�ne the trans-

formation function [68]. �e security of this approach depends

on the ability to protect the key. In contrast, in non-invertible

schemes [40, 56] a one-way transformation functions is used to pro-

tect the biometric template, making the inversion of a transformed

template computationally hard even when the key is revealed.

Hybrid approaches. Hybrid transformation and fuzzy protection

approaches have also been proposed. Nandakumar et al. [44] intro-

duced an approach to make the �ngerprint fuzzy value stronger

using a password as salt. Song et al. [47] used discrete hashing

to transform the �ngerprint biometric, which is then encoded and

veri�ed using error correcting codes.

4.2 Deep Neural Networks (DNNs)

Empirical results have shown the e�ectiveness of representations

learned by DNNs for image classi�cation [18, 52, 72], and for the

veri�cation of di�erent biometric information [13, 42, 48]. How-

ever, ai.lock di�ers in its need to ensure that two object images

contain the exact same object, for the purpose of authentication.

ai.lock exploits the ability ofDNNs to learn features of the input im-

age space that capture the important underlying explanatory fac-

tors. We conjecture that these features will have small variations

among images of the same object or scene, captured in di�erent

circumstances.

Pretrained Inception.v3. Training a DNN with millions of pa-

rameters is computationally expensive and requires a large train-

ing dataset of labeled data, rarely available in practice. Instead, we

employed a transfer learning [61] approach: obtain a trained DNN

and use it for a similar task. For image feature extraction, we use

Inception.v3 [64] network pretrained on ImageNet dataset [16], of

1.2 million images of 1,000 di�erent object categories, for image

classi�cation.

4.3 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) seeks to reduce the dimension-

ality of data, while probabilistically preserving the distance prop-

erties of the input space. It was initially used to solve the near

neighbor search problem in high dimensional spaces [28]. While

seemingly the ideal candidate to provide the ai.lock functionality,

LSH does not work well on images: images of the same scene or

object, captured in di�erent conditions, e.g., angle, distance, illu-

mination, will have dramatically di�erent pixel values, leading to

a high distance between the images and thus also between their

LSH values.

We use however Charikar’s [12] LSH as a building block in ai.lock.

Charikar’s [12] LSH de�nes a family of hash functions in the space

Rd . Speci�cally, the LSH function hr is based on a randomly cho-

sen d-dimensional Gaussian vector with independent components

Figure 2: ai.lock architecture. ai.lock processes the input im-

age through a deep neural network (i.e., Inception.v3), se-

lects relevant features, then uses locality sensitive hashing

to map them to a binary imageprint. ai.lock uses a classi�er

to identify the ideal error tolerance threshold (τ ), used by the

secure sketch block to lock and match imageprints.

r ∈ Rd , where hr (u) = 1 if r · u ≥ 0 and hr (u) = 0 if r · u < 0,

where · denotes the inner product. �is function provides the prop-

erty that Pr [hr (u) = hr (v)] = 1 −
θ (u,v)

π , for any vectors u and v ,

where θ(u,v) denotes the angle between the input vectors.

4.4 Privacy Preserving Image Matching

Traditional approaches to object matching and object recognition,

e.g., SIFT [39] and SURF [8], rely on extracting identifying features

or (robust/invariant) keypoints and their descriptors at speci�c lo-

cations on the image. Several solutions have been proposed for

the secure image matching problem that could be applied to the

image based authentication task. SecSIFT [53] employed order-

preserving encryption and distributes the SIFT computation among

di�erent servers. Hsu et al. [27] proposed a privacy preserving

SIFT based on homomorphic encryption, while Bai et al. [7] per-

formed SURF feature extraction in encrypted domain using Pail-

lier’s homomorphic cryptosystem. Wang et al. [70] improve the

SURF algorithm in encrypted domain by designing protocols for

secure multiplication and comparison, that employ a “somewhat”

homomorphic encryption. �ese approaches are not practical on

mobile devices, due to the high cost of homomorphic encryption

and the large number of keypoints (up to thousands per image).

4.5 Token-Based Authentication

In previous work [6]we have evaluated the usability of Pixie, a trin-

ket based authentication solution that employs slightly outdated

image processing techniques to extract features (i.e., “keypoints”)

and match user captured images. Pixie has an important drawback

when deployed on mobile devices: the image keypoints that it ex-

tracts need to be stored and matched in cleartext on vulnerable de-

vices. In contrast, ai.lock uses state of the art, deep neural network

based image feature extraction along with LSH to extract binary

imageprints that are robust to changes in image capture conditions.



Symbol Description

λ Length of the imageprint for a single image segment

τ Error tolerance threshold

c Correctable number of bits

s Number of image segments in multi segment schema

t Segment-based secret sharing threshold

Table 2: ai.lock notations.

�e imageprints can be securely stored and matched using secure

sketches. �ismakes ai.lock resilient to device capture a�acks. Fur-

thermore, on larger and more complex a�ack datasets, the use of

DNNs enabled ai.lock to achieve false accept rates that are at least

2 orders of magnitude smaller than those of Pixie (≤ 0.0015% vs.

0.2 − 0.8%), for similar FRRs (4%).

ai.lock’s secret physical object is similar to token-based authen-

tication, either hardware or so�ware. For instance, SecurID [57]

generates pseudo-random, 6 digit authentication codes. ai.lock’s

Shannon entropy is slightly lower than SecurID’s 19.93 bits (see

Table 1 for comparison). Several authentication solutions use vi-

sual tokens (e.g., barcodes or QR codes). For instance, McCune,

et al. [41] proposed Seeing-is-Believing, a schema that relies on a

visual authentication channel that is realized through scanning a

barcode. Hayashi et al. [24] introduced WebTicket, a web account

management system that asks the user to print or store a 2D bar-

code on a secondary device and present it to the authentication de-

vice’s webcam in order to authenticate to a remote service. Token-

based authentication requires an expensive infrastructure [1] (e.g.

for issuing, managing, synchronizing the token). ai.lock provides

a “hash-like” construct for arbitrary object images, making objects

usable as passwords, with the existing infrastructure.

Other approaches exist that seek to transform biometrics into

tokens that the user needs to carry, with important implications on

biometric privacy and revocation capabilities. For instance, TAPS [2]

is a glove sticker with a unique �ngerprint intended for TouchID.

5 THE AI.LOCK SOLUTION

We introduce ai.lock, the �rst locality sensitive image mapping

function, and a practical image based authentication system. In

the following, we describe the basic solution, then introduce two

performance enhancing extensions.

5.1 ai.lock: �e Basic (SLSS) Solution

ai.lock consists of 3 main modules (see Figure 2): (1) deep image-to-

embedding (DI2E) conversion module (2) feature selection module,

and (3) LSH based binary mapping module. We now describe each

module and its interface with the secure sketch module (see § 4.1).

Table 2 summarizes the important ai.lock parameter notations.

Deep image to embedding (DI2E) module. Let I be the �xed

size input image. Let Emb : I → Re be a function that converts

images into feature vectors of size e . We call Emb(I ) the embedding

vector, an abstract representation of I . To extract Emb(I ), ai.lock

uses the activations of a certain layer of Inception.v3 DNN [64]

when I is the input to the network. Let e denote the size of the

output of the layer of the DNN used by ai.lock. �us, Emb(I ) ∈ Re .

Feature selection module. We have observed that not all the

components in the embedding feature vectors are relevant to our

task (see § 7.1). �erefore, we reduce the dimensionality of the fea-

ture vectors to improve the performance and decrease the process-

ing burden of ai.lock. Let P : Re → Rp , where p < e be a function

that reduces the features of an embedding to the ones that are most

important. ai.lock uses PCAwith component range selection as the

P function, and applies it to Emb(I ) to �nd a set of components that

can re�ect the distinguishing features of images. �us, the vector

produced by feature selection module is P(Emb(I )) ∈ Rp .

LSH based binary mapping module. In a third step, ai.lock

seeks to map P(Emb(I )) to a binary space of size λ that preserves

the similarity properties of the input space. To address this prob-

lem, we use the LSH scheme proposed by Charikar [12]. Let L :

Rp → {0, 1}λ be such a mapping function. ai.lock uses as L, a

random binary projection LSH as follows. Let M be a matrix of

size p × λ, i.e. λ randomly chosen p-dimensional Gaussian vectors

with independent components. Calculate b as the dot product of

P(Emb(I )) and M . For each coordinate of b , output either 0 or 1,

based on the sign of the value of the coordinate. We call this bi-

nary representation of the input image I , i.e. π (I ) = L(P(Emb(I ))),

its imageprint. We denote the length of a single imageprint by λ.

Note that, the hash value for the Charikar’s method is a single bit

(λ = 1). �erefore, L can be viewed as a function that returns a

concatenation of λ such random projection bits.

In § 7.4 we provide empirical evidence that the function h =

L ◦P ◦Emb is a (τ )-LSIM transform (see § 7.1), for speci�c τ values.

Secure sketch. ai.lock extends the secure sketch under the Ham-

ming distance of [17] to securely store the binary imageprint cre-

dentials and perform image password set and image based authen-

tication as described in § 4.1.

In the following, we introduce two ai.lock extensions, intended

to increase the entropy provided by ai.lock’s output. First, we mod-

ify ai.lock to use the embedding vectors obtained frommultiple lay-

ers of Inception.v3 network. Second, we extend ai.lock to split the

input image into multiple overlapping segments and concatenate

their resulting binary representations.

5.2 ai.lock with Multiple DNN Layers

Representations learned by a DNN are distributed in di�erent lay-

ers of these networks. �e lower (initial) layers of convolutional

neural networks learn low level �lters (e.g. lines, edges), while

deeper layers learn more abstract representations [73]. �e use of

a single DNN layer prevents the basic ai.lock solution from taking

advantage of both �lters.

To address this issue, we propose an ai.lock extension that col-

lects the embedding vectors frommultiple (l ) layers of Inception.v3

network. In addition, we modify the basic ai.lock feature extractor

module as follows. �e Principal Components (PCs) of activations

for each layer are computed separately and are mapped to a sepa-

rate binary string of length λ. �en, the binary strings constructed

from di�erent layers are concatenated to create a single imageprint

for the input image. �us, the length of the imageprint increases

linearly with the number of layers used in this schema.



Figure 3: (a) 3 overlapping segments of an image. (b) Top:

sample images generated by DCGAN, Bottom: visually simi-

lar images in Nexus Dataset to images generated by DCGAN.

5.3 ai.lock with Multiple Image Segments

We divide the original image into s overlapping segments (see Fig-

ure 3(a)). We then run the basic ai.lock over each segment sepa-

rately to produce s di�erent imageprints of length λ. However, we

identify the PCs for the embedding vectors of each segment based

on the whole size images. �e intuition for this choice is that ran-

dom image segments are not good samples of real objects and may

confuse the PCA. We then generate the imageprint of the original,

whole size image, as the concatenation of the imageprints of its

segments.

Secure sketch sharing. We extend the secure sketch solution

with a (t , s)-secret sharing scheme. Speci�cally, let x1, .., xs be

(t , s)-shares of the random x , i.e., given any t shares, one can recon-

struct x . Given a reference image R, let R(1), ..R(s) be its segments,

and let π
(i )
R
= π (R(i )), i = 1..s be their imageprints. �en, we store

SS(R,x) = 〈SS
(1)
1 , .., SS

(s)
1 , SS2〉, where SS

(i )
1 = π

(i )
R

⊕ ECC(xi ) and

SS2 = H (x). To authenticate, the user needs to provide a candi-

date image C , whose segments C(i )
, i = 1..s produce imageprints

π
(i )
C
= π (C(i )) that are able to recover at least t of x’s shares xi .

6 IMPLEMENTATION & DATA

We build ai.lock on top of the Tensor�ow implementation for In-

ception.v3 network [67]. For the error correcting code of secure

sketches, we use a BCH [11, 26] open source library [30], for syn-

drome computation and syndrome decodingwith correction capac-

ity of up to c bits. �e value for c is calculated empirically using

the training dataset (see § 7.1)

Basic (SLSS) ai.lock. In the basic ai.lock solution, we use the out-

put of the last hidden layer of Inception.v3 network, before the

so�max classi�er, consisting of 2, 048 �oat values. Our intuition is

that this layer provides a compact representation (set of features)

for the input image objects, that is e�ciently separable by the so�-

max classi�er.

Multi layer ai.lock. For the multi DNN layer ai.lock variants, we

have used 2 layers (l = 2). �e �rst layer is the “Mixed 8/Pool 0”

layer and the second layer is the last hidden layer in Inception.v3.

�e embedding vector for the “Mixed 8/Pool 0” consists of 49, 152

�oat values. As described in § 5.3, the embedding vectors of each

layer are separately processed by the feature selection and LSH

modules; the resulting binary strings are concatenated to form the

imageprint of size 2λ.

Multi segment ai.lock. For the multi segment ai.lock variant, we

split the image into multiple segments that we process indepen-

dently. Particularly, we consider 5 overlapping segments, cropped

from the top-le�, bo�om-le�, top-right, bo�om-right and the cen-

ter of the image. We generate segments whose width and height

is equal to the width and height of the initial image divided by 2,

plus 50 pixels to ensure overlap. �e extra 50 pixels are added to

the interior sides for the side segments. For the middle segment,

25 pixels are added to each of its sides. Each segment is then inde-

pendently processed with the basic ai.lock (i.e., last hidden layer

of Inception.v3, PCA, LSH).

Multi layer multi segment ai.lock. �is is a hybrid of the above

variants: split the image into 5 overlapping parts, then process

each part through Inception.v3 network, and extract the activation

vectors for each of the two layers of Inception.v3 (the last hidden

layer and Mixed 8/Pool 0 layer). �e output of each layer for each

segment is separately processed as in the basic ai.lock. �us, the

resulting imageprint of the image has 10λ bits.

6.1 Primary Data Sets

6.1.1 Real Images.

Nexus dataset. We have used a Nexus 4 device to capture 1,400

photos of 350 objects, belonging to 33 object categories. Example

of object categories in this dataset includes watches, shoes, jewelry,

shirt pa�erns, and credit cards. We have captured 4 images of each

object, that di�er in background and lighting conditions.

ALOI dataset. We have used the “illumination direction” subset of

the Amsterdam Library of Object Images (ALOI) [22] dataset. �is

dataset includes 24 di�erent images of 1000 unique objects (24,000

in total) that are taken under di�erent illumination angles.

Google dataset. We have used Google’s image search to retrieve

at least 200 images from each of the 33 object categories of the

Nexus image dataset, for a total of 7,853 images. �is dataset forms

the basis of a “targeted” a�ack.

YFCC100M toy dataset. We have extracted a subset of the Yahoo

Flickr Creative Commons 100M (YFCC100M) [69] image dataset

(100 million Flickr images), of 126,600 Flickr images tagged with

the “toy” keyword, and not with “human” or “animal” keywords.

6.1.2 Synthetic Data.

Synthetic image dataset. Manually capturing the Nexus dataset

was a di�cult and time consuming process. In order to e�ciently

generate a large dataset of similar images, we have leveraged the

ability of generative models to discover an abstract representation

that captures the essence of the training samples. Generative mod-

els, including Generative Adversarial Networks (GAN) [23], are

trained to generate samples that are similar to the data they have

been trained on. Such models have been shown to be suitable for

representation learning tasks, e.g., [54].

We have used a DCGAN network [54] to generate a large set

of synthetic images that are similar to the images in the Nexus

dataset. Speci�cally, we have trained a DCGAN network [54] us-

ing the images of the Nexus dataset for 100 training epochs. Im-

age augmentation, e.g., rotation, enhancement, and zoom, is per-

formed to arti�cially increase the number of Nexus image dataset

samples to include 20 variants per image. We then used the trained

network to generate synthetic images: generate a random vector



(z) drawn from the uniform distribution, then feed z to DCGAN’s

generator network to construct an image. We repeated this process

to generate 200,000 images, that form our synthetic image dataset.

Figure 3(b) shows sample images generated by this network, along-

side similar images from the Nexus dataset.

Synthetic credential dataset. We have generated the binary im-

ageprints for the images in Nexus dataset based on the best param-

eters of ai.lock (see § 7.1). For each considered λ value, we consider

the value at each position of the binary imageprint as an indepen-

dent Bernoulli random variable. We then calculate the probability

of observing a 1 in each position based on the imageprints of the

Nexus dataset. We use these probabilities to draw 100,000 random

samples (of length λ) from the corresponding Bernoulli distribu-

tion for each position. �e resulting random binary imageprints

form our synthetic credential dataset. We have experimented with

10 values of λ ranging from 50 to 500, thus, this dataset contains 1

million synthetic imageprints.

6.2 Evaluation Datasets

We use the above image datasets to generate authentication sam-

ples that consist of one candidate image and one reference image.

ai.lock attack dataset. We use roughly 85% of the images from

the Nexus, ALOI and Google datasets as a training set to train and

estimate the performance of ai.lock. We use the remaining 15%

of images in each dataset (i.e., 220 Nexus, 3,600 ALOI and 1,178

Google images) as a holdout set. We use the holdout dataset to

assess the generalization error of the �nal model, and as a real

image a�ack dataset (see § 7.3).

We generate the samples in holdout dataset using each subset

of Nexus, ALOI and Google separately as follows. Each image of

the Nexus holdout dataset is chosen as a reference image once,

then coupled once with all the other images in the Nexus, ALOI

and Google sets, used as candidate images. �erefore, there are
220×219

2 = 24, 090 combinations of samples for the images in the

Nexus set. For each 55 unique objects in this set, there are 6 (
(4
2

)

)

possible valid samples that compare one image of this object to an-

other image of the same object. �us, there are 55 × 6 = 330 valid

samples in the Nexus set. We then generate 220 × 3, 600 = 792K

and 220× 1, 178 = 259, 160 invalid samples from comparing Nexus

images to images in ALOI and Google sets respectively. �erefore,

the ai.lock holdout set contains a total of 1, 075, 250 samples.

In addition, the training set is further divided into 5 folds, for

cross validation. Each training fold contains 236, 4, 080 and 1, 335

images of Nexus, ALOI and Google datasets respectively. �ere-

fore, there are 236×235
2 = 27, 730 samples for the fold’s 59 unique

Nexus set objects, of which 59 × 6 = 354 pairs are valid. Similarly,

we generate 236 × 4, 080 = 962, 880 and 236 × 1, 335 = 315, 060

invalid samples, that consist of Nexus images coupled with ALOI

and Google images, respectively. �us, each training fold has a

total of 1, 305, 670 samples, of which 354 are valid.

Synthetic image attack datasets. We divide the synthetic image

dataset of § 6.1 into 2 equal sets, each containing 100,000 images.

�en, we build two synthetic image a�ack datasets (DS1 and DS2)

by repeating the following process for each subset of the synthetic

image dataset: combine each Nexus dataset image, used as a ref-

erence image, with each image from the subset of the synthetic

image dataset, used as a candidate image. �erefore, in total we

have 140 million samples in each of DS1 and DS2.

Synthetic credential attack dataset. We use the synthetic cre-

dential dataset described in § 6.1 to build a synthetic credential at-

tack dataset: for each value of λ, combine the imageprint of each

Nexus dataset image, used as a reference imageprint, with each

imageprint in synthetic credential dataset, used as the candidate

imageprint. Hence, we have 140 million authentication samples

in this dataset for each value of λ. We repeat this process for 10

values of λ, ranging from 50 to 500. �erefore, in total this dataset

contains 10 × 140 M = 1.4 billion samples.

Illumination robustness evaluation dataset. To evaluate the

performance of ai.lock under illumination changes, we use theALOI

holdout set (3, 600 images) that includes up to 11 images of each

object captured under a di�erent illumination condition. Speci�-

cally, we pair each image in the ALOI holdout set (i.e., not used

during training) with all the other images in this set. �erefore,

we have a total of 3600×3599
2 = 6, 478, 200 authentication samples

in the illumination robustness evaluation dataset, of which 6, 306

samples are valid.

Entropy evaluationdataset. We randomly selected 2 billion unique

pairs of images from the YFCC100M toy dataset. In each pair, an

image is considered to be the reference, the other is the candidate.

7 EXPERIMENTAL EVALUATION

We evaluate ai.lock and its variants. First, we describe the process

we used to identify the best ai.lock parameters. We use these pa-

rameters to evaluate the performance of ai.lock under the a�ack

datasets of § 6.2. We also show that ai.lock is a δ -LSIM function,

empirically estimate its entropy, andmeasure its speed on a mobile

device.

7.1 ai.lock: Parameter Choice

We identify the best parameters for the ai.lock variants using 5 fold

cross validation on the ai.lock training dataset (see § 6.2).

Best principal component range. To identify the best PC range,

we use 5 fold cross validation as follows. First, we retrieve the

embedding vector (output of the last hidden layer of Inception.v3)

for each image in the ai.lock training dataset. �en, for each cross

validation experiments, we use 4 training folds to �nd the principal

components of the embedding vectors. �en, we transform the

embedding vectors of the test fold into the newly identi�ed feature

space. Finally, we project them into several randomly generated

vectors (LSH) to construct the binary imageprint of the images.

We have experimentedwith di�erent subsets of the transformed

feature space of various size including the �rst and second consec-

utive principal component sets of size 50, 100, 150, and 200, as well

as, the �rst 400 PCs.

Figure 4 shows the cross validation performance achieved by

ai.lock when using di�erent subsets of PC features for di�erent λ

values. We observe that the PCs ranked 200-400 perform consis-

tently the best. �is might seem surprising, as higher ranked PCs

have higher variability and thus we expected that they would have

more impact in di�erentiating between valid and invalid samples.

We conjecture that some of the lower rank coordinates of these

transformed vectors are more e�cient in capturing the lower level
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Figure 4: Comparison of ai.lock performance (F1 score)

when using di�erent subset of principal component feature

ranks for di�erent imageprint length (λ) values. PCs ranked

200-400 constantly outperform other tested subsets.

λ 50 100 150 200 250 300 350 400 450 500

τ × 10 7.80 7.30 7.07 6.95 6.80 6.87 6.80 6.85 6.87 6.82

Table 3: Error tolerance threshold (τ ) values for the basic

ai.lock obtained through cross validation over the ai.lock

dataset, when using PCs with feature ranked 200-400.

t (matching segment counts out of 5) 3 4 5

F1 score (%) for SLMS 93.13 90.95 85.84

F1 score (%) for MLMS 95.53 94.64 92.42

Table 4: Cross validation performance (F1 score) for di�er-

ent values of t (number of segments that need to match out

of 5) when using PCs with feature rank 200-400 and λ = 500

for SLMS and MLMS variants of ai.lock. t = 3 consistently

achieves the best performance.

details of the input object images that di�erentiate them from other

object images.

Identify the best threshold. We identify the best threshold that

separates the valid from the invalid authentication samples using

the binary imageprints of the testing folds in each of the 5 cross

validation experiments using ai.lock training set. Particularly, we

normalize the Hamming distance of each pair of imageprints in the

test fold by the length of the imageprints. �en, we apply more

than 4K di�erent real values, between 0 and 1, as a threshold on

the normalized Hamming distances of the authentication pairs to

classify them. At the end of the 5th cross validation experiment, we

select the threshold that has the maximum average performance,

in terms of F1 score, as the best separating threshold. We call this

the Error Tolerance �reshold, which we denote by τ .

Table 3 reports the τ values for basic ai.lockwith di�erent values

of λ, when using PCs with feature rank 200-400. We observe that

as λ increases, the value for τ decreases: we posit that larger λ

values preserve more information about the input vectors (PCs of

the embedding vectors) in the LSH output.

We translate τ to the error correcting capacity required for ECC.

Speci�cally, for an imageprint of length λ, we choose an ECC that

is able to correct up to c = bλ × (1 − τ )c bits.

ai.lock MLSS variant. Similar to the basic ai.lock, we have exper-

imented with multiple ranges of PCs and λ values to identify the

τ values for MLSS ai.lock, using the 5 fold cross validation experi-

ment on the ai.lock training dataset.

λ 50 150 250 350 500

FAR×10+6 33.87 4.34 3.29 0.69 0.20

Table 5: SLSS ai.lock performance on synthetic attack DS1.

�e FAR decreases signi�cantly as λ grows from 50 to 500.

�e FAR when λ = 500 is only 0.2 × 10−6.

ai.lock: Multi segment variants. For this ai.lock variant, we

identify the τ values separately for each image segment, using the 5

cross validation experiment explained above. �erefore, we end up

having 5 di�erent τ values corresponding to each image segment.

�e τ corresponding to each segment can be used to identify if

there is a match between the piece of the candidate image to the

corresponding piece in the reference image. We say that the whole

candidate and reference images match, when t of their segments

match. We have tested with t ranging from 3 to 5 and observed

that t=3 achieved the best F1 score (see Table 4).

Cross validation performance. We now report the cross valida-

tion performance of ai.lock with the parameters identi�ed above,

for λ ranging from 50 to 500. Figures 5(a)-(c) compare the F1 score,

FAR and FRR values of the best version of the ai.lock variants (ba-

sic SLSS, SLMS, MLSS, and MLMS) over the 5-fold cross validation

experiments, using ai.lock training dataset. �e performance of

all ai.lock variants improves with increasing the value of λ. �e

MLMS ai.lock achieves the best performance, with an F1 score of

95.52% and FAR of 0.0009% when λ = 500. �e MLSS ai.lock also

consistently improves over the basic ai.lock, with a smaller FRR

and a smaller or at most equal FAR. Its FRR (4.18% for λ = 500) is

slightly smaller than that of MLMS variants (5.36%), but it exhibits

a slight increase in FAR. For large values of λ, the FRR of SLMS and

SLSS are almost equivalent.

�e average cross validation Equal Error Rate (EER, the rate at

which the FAR = FRR) of ai.lock for the SLSS and MLSS variants is

less than 0.67% and 0.17% respectively when using PCs with fea-

ture rank 200 − 400 and λ = 500.

�e purpose of the LSH-based transformation is to encode the

feature vector of an image extracted by a DNN into a binary string.

Our conjecture is that larger lambda values extract more high qual-

ity information about the feature vectors, which in turn leads to

lower FAR and FRR. �is is partly due to the random nature of the

LSH we used (see Figure 9), where roughly half of the bits among

di�erent images are di�erent, and images of the same object have a

smaller distance overall. Using more LSH bits reduces the variance

of the distance that was due to perturbations from using a random

projection, hence provides a be�er separation between TP and FP

image comparisons.

7.2 Resilience to Illumination Changes

We evaluate the resilience of ai.lock to illumination changes us-

ing the 6,478,200 authentication samples of the illumination robust-

ness evaluation dataset (§ 6.2). While the FAR of the MLMS vari-

ant of ai.lock (for λ = 500 and t = 3) remains very small (0.006%),

its FRR increases to 16.9%. Decreasing the required matching seg-

ments count (t ) to 2, reduces the FRR to 11.43%, which results in a

slightly higher FAR of 0.010%.
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Figure 5: (a-c) ai.lock cross validation performance, and (d-f) ai.lock holdout performance using di�erent ai.lock variants:

Single Layer Single Segment (SLSS), Multi Layer Single Segment (MLSS), Single Layer Multi Segment (SLMS),Multi Layer Multi

Segment (MLMS). Exploiting information frommultiple Inception.v3 DNN layers (multi layer variants) lowers the FRR, while

splitting images into smaller segments (multi segment variants) lowers the FAR. �e MLMS variant of ai.lock consistently

achieves the lowest FAR, that can be as low as 0% for the holdout dataset.

7.3 ai.lock Under Attack

Holdout dataset, real image attack. �e performance over the

ai.lock holdout set is reported in Figure 5(d)-(f). As before, the

performance of all the ai.lock variants improves with the increase

in λ. In agreement with the results of the cross validation experi-

ments, we conclude that exploiting information from multiple In-

ception.v3 layers decreases the FRR, while using information from

multiple image segments decreases the FAR. In addition, theMLMS

ai.lock variant achieves the highest F1 score (97.21% for λ = 500).

�e SLMS and MLMS schema consistently achieve the lowest FAR,

which is as low as 0% on the holdout dataset.

Synthetic image attack. We use the synthetic a�ack dataset DS1

of § 6.2 to evaluate the performance of SLSS ai.lock, using the

trained parameters of § 7.1. Table 5 shows the performance of

ai.lock in classifying these a�ack samples. �e FAR decreases sig-

ni�cantly with λ, and is as low as 0.00002% when λ = 500.

�e proportion of the reference images that have been broken

at least once decreases signi�cantly by increasing λ: from 16.86%

to 0.79% (11 Nexus images) when λ is 150 and 500 respectively. A

majority of the broken references are broken only by a small num-

ber of candidate images: when λ = 500, only 2 of the 11 broken

images have been broken 5 times by the synthetic images in DS1.

�e average number of trials until �nding the �rst matching syn-

thetic image, over the 11 broken reference images, is 31,800.

Vaccinated ai.lock. To further improve the ai.lock resistance to

synthetic image a�acks, we use the synthetic image a�ack dataset

DS2 (see § 6.2) along with the ai.lock training dataset, to train

ai.lock. Speci�cally, we divide the synthetic image a�ack dataset

DS2 into 5 folds and distribute them into the 5 training folds of the

ai.lock dataset. In other words, we train ai.lock on an additional

50 100 150 200 250 300 350 400 450 500
λ
(a)

−0.001
0.000
0.001
0.002
0.003
0.004

FA
R
 (%

)
C
ro
ss
 V
al
id
at
io
n

50 100 150 200 250 300 350 400 450 500
λ
(b)

0

20

40

60

FR
R
 (%

)

50 100 150 200 250 300 350 400 450 500
λ
(c)

−0.001
0.000
0.001
0.002
0.003
0.004

FA
R
 (%

)
H
ol
do

ut

ai.lock dataset
ai.lock + synthetic image attack DS2 (Not PCA)

ai.lock + synthetic image attack DS2

50 100 150 200 250 300 350 400 450 500
λ
(d)

0

20

40

60

FR
R
 (%

)

Figure 6: (a) Cross validation FAR, (b) Cross validation FRR ,

(c) Holdout FAR, and (d) Holdout FRR of SLSS ai.lock when

trained over the ai.lock and synthetic image attacks of DS2.

236 × 20,000 = 4,720,000 invalid authentication samples. �e hold-

out set remains untouched and is used to evaluate the e�ectiveness

of this approach. �en, we train ai.lock with SLSS as before using

the cross validation experiment (see § 7.1).

We experimented with two cases. First, the invalid synthetic im-

age a�ack samples in DS2 contribute to both the PCA based feature

selection and the error tolerant threshold (τ ) discovery processes.

Second, those samples are only used in the process of discovering

τ . Figure 6 shows the cross validation FAR and FRR (a, b) as well as

the performance over the holdout set (c, d). In both experiments,
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Figure 7: FAR of ai.lock on synthetic image attack, when

trained on the ai.lock dataset vs. when trained also on DS2.

�e “vaccinated” ai.lock improves its resistance to the syn-

thetic image attack: the FAR drops by more than 74%, 51%

and 59% when λ is 50, 150 and 350 respectively.

λ 50 150 250 350 500

FAR×10+6 11.89 0.09 0.03 0.000 0.000

Table 6: SLSS ai.lock performance on the synthetic creden-

tial attack. ai.lock is unbreakable under 1.4 billion samples

of the synthetic credential attack: its FAR is 0 when λ ≥ 300.

we observed a drop in the FAR of ai.lock, however, the FRR in-

creases. �e FAR improvement is higher for the second case. We

conjecture that the inclusion of synthetic, not camera captured im-

ages, is misleading the PCA based feature selection module into

capturing irrelevant information.

We used the ai.lock trained on the synthetic image a�ack dataset

DS2 to evaluate its performance over the synthetic image a�ack

DS1. Figure 7 compares the performance of ai.lock when trained

on the ai.lock dataset and when trained on the ai.lock and the syn-

thetic dataset DS2. Training also over synthetic image a�ack sam-

ples helps ai.lock to be more resilient to synthetic image a�ack,

especially for small values of λ.

Synthetic credential attack. Table 6 shows the FAR values for

ai.lock under the synthetic credential a�ack dataset described in

§ 6.2. For all values of λ greater than 300, the FAR of ai.lock is

equal to 0. Even for a λ of 50, the FAR is 11.89 × 10−4%. �is is an

important result: even a powerful adversary who can create and

test synthetic credentials on a large scale, is unable to break the

ai.lock authentication.

7.4 Is ai.lock δ -LSIM?

We now evaluate if the basic ai.lock (SLSS) variant, with the param-

eters identi�ed in § 7.1 preserves the similarity of the input space,

i.e., if it satis�es the LSIM properties (see De�nition 3.1). We use

the ai.lock holdout set to evaluate the probability of obtaining the

same hash value for valid and invalid samples.

Let πi and πj be the imageprints corresponding to two images

in the ai.lock holdout set. Let dH (πi ,πj ) denote the Hamming dis-

tance and SH (πi ,πj ) denote the normalized Hamming similarity of

these imageprints, i.e., SH (πi ,πj ) = 1 −
dH (πi ,πj )

λ
.

�e output of ai.lock can be considered either as a single bit or

a string of bits. In the former case, the imageprints consist of the

concatenation of the output of multiple hash functions, while in

the later case, the entire imageprint is assumed to be the ai.lock

hash value. In the following, we empirically evaluate the P1 and

P2 values (see De�nition §3.1), for the case where the entire ai.lock

λ 150 350 500

P1 8.6e-1 9.3e-1 9.1e-1
P2 2.8e-6 0.0 0.0

Table 7: Average probability of collision, for valid (P1) and in-

valid (P2) samples in the ai.lock holdout set, when the ai.lock

imageprint is considered as image hash value and at most

c = bλ × (1 − τ )c bits of error is allowed. In all cases, P1 > P2,

thus conclude that ai.lock is an LSIM function.

imageprint is considered as the hash value. In Appendix C, we

further show that ai.lock is also a δ -LSIM function when its hash

value is a single bit.

We set δ = τ , where τ is the error tolerance threshold obtained

from the ai.lock training process (see Table 3), for di�erent values

of λ. Table 7 shows the P1 and P2 values achieved by the basic

ai.lock over the holdout dataset. We perform Mann-Whitney one-

sided test with alternative hypothesis P1 > P2. Based on the ob-

served p − value = 0.00, (α = 0.05), for di�erent values of λ, we

conclude that the alternative hypothesis is true, hence, ai.lock is a

δ -LSIM function over the holdout dataset.

7.5 On the Entropy of Imageprints

We have used the entropy evaluation dataset (see § 6.2) to empir-

ically calculate the entropy of the imageprints generated by the

ai.lock variants. �e empirical entropy of an authentication solu-

tion is propositional to the size of the keyspace that the a�acker

needs to search to �nd a match for the authentication secret. For

biometric information, estimating this size is di�cult. In such cases,

the entropy can be estimated as −loд2(
1

FAR ) [46]. We performed

this study for di�erent values of λ and the best parameter choice

of ai.lock (see § 7.1), using the entropy evaluation dataset.

On the 2 billion image pairs in the entropy evaluation dataset,

the FAR of the SLSS ai.lock variant is 0.020% and 0.035% when λ

is 50 and 500 respectively, for an entropy of 12.28 bits and 11.48

bits. We have visually inspected several hundreds of image pairs

that resulted in false accepts and observed that a signi�cant propor-

tion were due to images that contained the same object type, e.g.

ribbons, helmets, etc. �is result is not unexpected: the SLSS vari-

ant uses only the last hidden layer of Inception.v3 network. Since

Inception.v3 is trained for image classi�cation task, it is expected

to have similar activations on the last hidden layer for images of

the same object type. We expect to eliminate this situation by re-

quiring the match between activations of multiple inception layers

(multi layer variant).

�e FAR of the MLMS ai.lock variant on the entropy evaluation

dataset, for λ values of 500 and 150, is 0.0007% and 0.0004% respec-

tively. �erefore, the estimated entropy of ai.lock imageprints is

17.14 and 18.02 bits respectively.

7.6 ai.lock Speed

We have implemented ai.lock using Android 7.1.1 and Tensor�ow

0.12.1 and have evaluated its speed using 1,000 images of the Nexus

dataset on a Nexus 6P smartphone (�alcomm Snapdragon 810

CPU and 3GB RAM). Table 8 shows the average processing time



λ 150 250 350 500

DI2E module (Inception v.1) 0.7 0.7 0.7 0.7

DI2E module (Inception v.3) 1.9 1.9 1.9 1.9

PCA + LSH module 0.044 0.049 0.051 0.066

Table 8: Processing time (in seconds) of SLSS ai.lock mod-

ules, for di�erent values of λ. When using Inception.h5, the

overall ai.lock speed is below 0.8s.

of the 3 main ai.lock modules for di�erent values of λ. Indepen-

dent of the value for λ, ai.lock’s DI2E module takes 1.9s to com-

pute the activations of all the layers of Inception.v3. When using

Inception.h5 [63] (a smaller network), DI2E module takes 0.7s. �e

combined PCA and LSH speed increases with the value of λ, but

is below 70ms for λ = 500. �e processing overhead of ai.lock is

below 2s and 1s using Inception.v3 and Inception.h5 respectively.

Tominimize its impact on user experience on a Nexus 6P, ai.lock

needs to use Inception.h5. �e most signi�cant processing over-

head of ai.lock is on computing the activation of the DNN, which

directly depends on the size of the network. Note that compress-

ing the network using the DNN distillation approach [25] can al-

leviate this overhead. Future device and Inception improvements

will likely improve the ai.lock performance and accuracy.

8 DISCUSSION AND LIMITATIONS

Default authentication, revocation and recovery. If the image

based authentication fails a number of times or the ai.lock secret

is not available, the authentication falls back to the default authen-

tication mechanism, e.g. text passwords.

Strong passwords. ai.lock bene�ts from users choosing strong,

high-entropy and unique objects for authentication. ai.lock can

use datasets of images of frequently occurring, thus low entropy,

objects and learn to reject similar objects during their registration

by the user. Further, the image classi�cation task can be adapted to

detect images belonging to classes of weak, low-entropy authenti-

cation objects. In addition, similar to text passwords, users could

be encouraged to pick an ordered combination of personal objects

for authentication.

Usability. Although usability is not the focus of this paper, we ex-

pect ai.lock to share several limitations with face based authentica-

tion mechanisms due to their similarities in the form factor. �ese

include susceptibility to inappropriate lighting conditions [9]. While

the FAR of ai.lock remains small under illumination changes, its

FRR increases, a�ecting its usability. However, DNNs are capable

of learning representations that are invariant to input changes, e.g.

lighting, translation, etc. �us, the DI2E module of ai.lock can be

further �ne-tuned to bemore resistant to illumination changes. We

leave the investigation of such improvement for future work.

In [6] we have evaluated the usability aspects of an image based

authentication approach, and have shown that (1) the user entry

time was signi�cantly shorter compared to text passwords on a

mobile device, (2) the participants were able to remember their au-

thentication objects 2 and 7 days a�er registering them, and (3) the

participants perceived object based authentication to be easier to

use than text passwords, and were willing to adopt it. Further stud-

ies are required to understand (1) the user choice of the secret ob-

jects or scenes and whether it impacts the secret key space, (2) the

ability of ai.lock to �lter out common or low-entropy images, (3)

the scenarios where users are willing to adopt ai.lock authentica-

tion and (4) other limitations associated to ai.lock authentication.

Shoulder sur�ng. Similar to face based authentication, ai.lock

is vulnerable to shoulder sur�ng a�acks where the adversary cap-

tures images of the objects or scenes used by victims. However,

ai.lock eliminates remote a�acks, e.g., [51], moves the target away

from sensitive body features, and enables users to trivially change

their image-passwords. Similar to biometrics, ai.lock can also ben-

e�t from liveness veri�cation techniques [55], that ensure that the

adversary has physical access to the authentication object or scene,

to prevent sophisticated image replay a�acks. In addition, in Ap-

pendix B we show that the knowledge of the authentication ob-

ject type does not provide the adversary with signi�cant advantage

when launching a brute force a�ack.

Multi-factor authentication. ai.lock can also be used in conjunc-

tion with other authentication solutions. For instance, the image

password set and authentication steps described in § 4.1 can take

advantage of a secondary secret (e.g. password, PIN), increasing

the number of authentication factors to improve security. To this

end, let r be a random salt. We modify x in the fuzzy biometric

protection solution outlined in § 4.1 to be the randomized hash of

the secondary secret computed using salt r . Randomized hashing

ensures the required forma�ing and bit length for x and can be

achieved using key derivation function (e.g. HKDF [36]), etc. �e

random salt r needs to be stored along with the other authentica-

tion credentials, i.e. SS(R,x).

Compromised device. Our model assumes an adversary that

physically captures a victim�s device and thus has black-box ac-

cess to the authentication function. ai.lock is not resilient to an

adversary who installs malware on the victim device. Such mal-

ware may for instance leverage PlaceRaider [66] to construct three

dimensional models of the environment surrounding the victim,

including of the authentication object.

Trusted hardware can secure ai.lock and even obviate the need

for secure sketches. However, it would reduce the number of de-

viceswhere ai.lock can be applied. Techniques similar toAuDroid [50]

could be employed to ensure that unauthorized processes or exter-

nal parties cannot access and misuse the device camera, however,

they may still leave ai.lock vulnerable to cache a�acks [38].

9 CONCLUSIONS

In this paper, we introduced ai.lock, the �rst secure and e�cient

image based authentication system. We have presented a suite of

practical yet powerful image based a�acks and built large scale

a�ack datasets. We have shown that even under our powerful at-

tacks, ai.lock achieves be�er entropy than state-of-the-art biomet-

ric authentication solutions.
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A MOTIVATION FOR FEATURE SELECTION
USING PCA

Figure 8: PCA motivation: FRR vs. FAR of (i) ai.lock when

using PCA (with features ranked 200-400), (ii) ai.lock with

no feature selection (“Raw”), and (iii) 250 independent in-

stances of ai.lock when using a feature selection approach

that randomly selects 200 features. ai.lock with PCA consis-

tently achieves the lowest FRR and o�en the lowest FAR.

We now justify the need for the PCA step of ai.lock. For this,

we compare the best version of ai.lock running PCA (i.e., features

ranked 200-400), with two other versions. First, we consider a base-

line version (which we call “Raw”), that uses no feature selection

component. Speci�cally, Raw applies LSH to the raw embedding

vectors, then, identi�es the best threshold τ using the 5-fold cross

validation experiment described in § 7.1 for ai.lock. Second, we

compare against an ai.lock variant where we replace the PCA com-

ponent with a random choice of 200 features (of the embedding

vectors) produced by the last hidden layer of Inception.v3. Figure 8

shows the results of this comparison for λ values of 150, 250, 350

and 500, and 250 di�erent instances of ai.lock with random feature

selection. We observe that ai.lock with PCs of rank 200-400 consis-

tently achieves the signi�cantly lower FRR, and o�en the lowest

FAR. In addition, we observe that randomly choosing the features

is not ideal, as it o�en performs worse than when no feature selec-

tion is used at all.
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# of words in image search query 1 2 3 4

Dataset size (dsize ) 12, 413 24, 882 26, 418 26, 766
Avg # of trials before FA (random order) 12, 078 23, 205 24, 641 25, 028
Avg # of trials before FA (guessing a�ack) 12, 034 22, 755 23, 921 24, 488

Portion of broken references (%) 5.0 9.0 10.9 9.0

Table 9: ai.lock under the object guessing attack. �e aver-

age number of trials before the �rst false accept (FA) drops

only slightly in the object guessing attack scenario when

compared to a random ordering of attack images. �us,

knowledge of the authenticationobject type provides the ad-

versary only nominal guessing advantage.

B OBJECT/SCENE GUESSING ATTACK

Data. We have asked a graduate student to tag each of the 55

unique object images in the Nexus holdout set with 1 to 4 words.

For each value of the number of tags per image (i.e., 1 to 4), and

each object image, we collected 300-500 images provided byGoogle’s

image search engine. �us, we generated 4 Google image datasets,

one for images found when searching with 1 tag, another when

searching with 2 tags, etc. In total, we have collected 90,479 im-

ages.

ai.lock performance under object guessing attack. We use

the 4 collected image datasets from Google to generate a total of

19, 905, 380 “guessing a�ack” authentication samples, and use them

to evaluate the guessing entropy [15] of ai.lock under an object/scene

guessing a�ack (see § 2).

Speci�cally, using each of the 4 Google image datasets we per-

form the following two brute force a�acks. �e �rst a�ack emu-

lates an object guessing a�ack: re-order the images in the Google

dataset to start the brute force a�ack with the images of the same

object type, then continue with images of other object categories

in a random order. Finally, count the number of trials before the

�rst match (false accept) occurs. �e second a�ack is a standard

brute force a�ack: randomly shu�e the images in the Google im-

age dataset and use them to brute force each image in the Nexus

holdout set. We use the second a�ack as a baseline, to determine if

knowledge of the object type impacts the trial count to success. In

both a�acks, we count each of the unbreakable reference images

as “success” at dsize trials, where dsize is the number of images in

the corresponding Google image dataset (see Table 9).

Table 9 summarizes the ai.lock performance under the object/scene

guessing a�ack scenario. We observe an increase in the portion of

the Nexus images that are broken when the simulated adversary

uses more words to describe the authentication objects for collect-

ing the a�ack image dataset. However, for all experiments, the

average number of trials before success drops only slightly in the

object guessing a�ack scenario compared to the baseline. �is is

due to the fact that the reference images were mostly broken with

images of di�erent object categories. We conclude that knowledge

of the secret object type does not provide the adversary with a sig-

ni�cant guessing advantage.

C IS AI.LOCK δ -LSIM FOR AI.LOCK WITH
SINGLE BIT HASH VALUE?

We now show that ai.lock with a single bit hash value is a δ -LSIM

(see De�nition 3.1).

Figure 9: Histograms of normalizedHamming similarity be-

tween imageprints of valid and invalid authentication sam-

ples in the ai.lock holdout set. �e red rectangles pinpoint

the focus areas: valid samples with Hamming similarity be-

low 0.6 and invalid samples withHamming similarity above

0.6. Higher values of λ provide more e�ective separation be-

tween valid and invalid samples: when λ = 500, no invalid

samples have similarity above 0.6.

λ 150 350 500

P1 0.799 0.797 0.796
P2 0.500 0.500 0.500

Table 10: Average probability of collision, for valid (P1) and

invalid (P2) samples in the ai.lock holdout set per imageprint

bit basis. In all cases, P1 > P2, thus conclude that ai.lock with

single bit hash value is an LSIM function.

ai.lock uses Charikar’s random projection LSH [12]. �erefore,

for any embedding vector (the input to LSH function) u and v ,

Pr [1 bit collision] = 1 −
θ (u,v)

π , where θ(u,v) denotes the angle

between u and v . We use the angle between the feature vectors of

images in the ai.lock holdout set to compute the average probabil-

ity of collision: 0.79 for valid samples and 0.50 for invalid authen-

tication samples.

Figure 9 shows the histogram of normalized Hamming similar-

ity between imageprints in the valid and invalid samples of the

ai.lock holdout set. Unsurprisingly, most invalid samples have a

Hamming similarity between 0.4 and 0.6: di�erent images have

imageprints that are similar in around half of their bits (see also

Table 10). We observe that the overlap between the Hamming simi-

larities of valid and invalid samples signi�cantly reduces for higher

values of λ.

In addition, we compute these probabilities empirically by count-

ing the number of times when the hash values collide for valid

and invalid samples, a�er the LSH transformation. We then use

this count to compute the average probability of collision for a

valid (P1) and invalid (P2) authentication samples (see Table 10).

We observe the remarkable similarity of these values, to the ones

above, computed analytically. As λ increases, the empirical P1 ap-

proaches the analytic lower bound (0.79). We perform a Mann-

Whitney one-sided test with alternative hypothesis P1 > P2. �is

test suggests that there is a signi�cant gap between P1 and P2
(p −value = 0.00,α = 0.05) for all cases, hence, ai.lock is a δ -LSIM

on the Nexus holdout dataset.

In addition, comparing the values for P1 and P2 with the ones

reported in § 7.4 for ai.lock with multi-bit hash value, we observe

that concatenating multiple hashes enlarges the gap between P1
and P2 values.
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