
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–18

Ruben Recabarren* and Bogdan Carbunar

Hardening Stratum, the Bitcoin Pool Mining
Protocol
Abstract: Stratum, the de-facto mining communication

protocol used by blockchain based cryptocurrency sys-

tems, enables miners to reliably and efficiently fetch jobs

from mining pool servers. In this paper we exploit Stra-

tum’s lack of encryption to develop passive and active

attacks on Bitcoin’s mining protocol, with important

implications on the privacy, security and even safety of

mining equipment owners. We introduce StraTap and

ISP Log attacks, that infer miner earnings if given ac-

cess to miner communications, or even their logs. We

develop BiteCoin, an active attack that hijacks shares

submitted by miners, and their associated payouts. We

build BiteCoin on WireGhost, a tool we developed to hi-

jack and surreptitiously maintain Stratum connections.

Our attacks reveal that securing Stratum through per-

vasive encryption is not only undesirable (due to large

overheads), but also ineffective: an adversary can pre-

dict miner earnings even when given access to only

packet timestamps. Instead, we devise Bedrock, a min-

imalistic Stratum extension that protects the privacy

and security of mining participants. We introduce and

leverage the mining cookie concept, a secret that each

miner shares with the pool and includes in its puzzle

computations, and that prevents attackers from recon-

structing or hijacking the puzzles.

We have implemented our attacks and collected 138MB

of Stratum protocol traffic from mining equipment in

the US and Venezuela. We show that Bedrock is re-

silient to active attacks even when an adversary breaks

the crypto constructs it uses. Bedrock imposes a daily

overhead of 12.03s on a single pool server that handles

mining traffic from 16,000 miners.

Keywords: Bitcoin and Stratum mining protocols, pas-

sive and active attacks, traffic analysis, mining cookies

DOI Editor to enter DOI

Received ..; revised ..; accepted ...

*Corresponding Author: Ruben Recabarren:

Florida Int’l University, Miami, FL 33199, E-mail: recabar-

ren@gmail.com

Bogdan Carbunar: Florida Int’l University, Miami, FL

33199, E-mail: carbunar@gmail.com

1 Introduction

The privacy and security of Bitcoin have been exten-

sively studied [1–7] and documented [8]. While the focus

of previous work has been on the architectural vulnera-

bilities of the cryptocurrency, no work has been done to

analyze implementation vulnerabilities of the Stratum

mining protocol, the main Bitcoin mining option.

However, mining activities have important privacy

implications [9]. Learning the payouts of miners can

make them targets of hacking and coin theft [10, 11],

kidnapping [12], and, in countries where Bitcoin is ille-

gal [13, 14], expose them to arrest and equipment confis-

cation [15, 16]. For instance, in countries like Venezuela,

intelligence police hunt Bitcoin miners to extort, steal

mining equipment or prosecute [17].

In this paper we study the vulnerabilities of the

Stratum protocol [18], the de facto mining standard for

pooled Bitcoin mining [19] as well as alternative coins

mining, e.g., Litecoin [20], Ethereum [21] and Mon-

ero [22]; currently the altcoins with the most market

capitalization [23]. Stratum replaced the original get-

work protocol of Bitcoin mining [24], to enable miners

to fetch jobs from mining pool servers more reliably and

efficiently. In Stratum, the miners solve assigned jobs

and send their results back in the form of shares. The

mining pool server then compensates the miner accord-

ing to the difficulty of the assigned jobs and the number

of shares accepted.

We show that the lack of cryptographic protection

of communications has made the Stratum protocol vul-

nerable to several exploitation possibilities, see Figure 1.

An attacker able to observe the traffic between a miner

and a pool server can accurately infer the earnings of

the miner. We show that this result holds even if the at-

tacker has only limited access to the transmitted pack-

ets, e.g., metadata stored in ISP logs. In addition, we

show that active attackers, able to interfere with the

Stratum traffic of miners, may steal computational re-

sources and bring forth financial loss to their victims.

These attacks, especially given the wide adoption of

the Stratum protocol, show that Bitcoin and altcoin so-

lutions fail to ensure the monetary privacy and security

of the vital miner community. Furthermore, the attacks



Hardening Stratum, the Bitcoin Pool Mining Protocol 2

Fig. 1. Model of system that consists of a pool, miners, and ad-

versary. The pool and the miners communicate over the Stratum

protocol, to assign jobs and submit results (shares). The adver-

sary can eavesdrop, recover ISP logs, inject and modify the Stra-

tum communications of victim miners.

reveal that even an exhaustive use of encryption will

fail to ensure miner privacy, as access to only the times-

tamp of mining protocol traffic can enable an attacker

to predict the payouts of a victim miner. In addition, the

significant overhead of encryption makes such a solution

unappealing to pools, that need to handle mining traf-

fic from thousands of miners simultaneously, e.g., more

than 16,000 for the F2Pool pool [25–27]. In § 9.4 we show

that complete encryption of all Stratum traffic imposes

a daily overhead of 1.36 hours on a pool server handling

16,000 miners, while TLS imposes a daily overhead of

1.01 hours.

Furthermore, Tor does not address the above vul-

nerabilities. In fact, sending Stratum traffic over Tor

would enable an adversary to launch the ISP Log at-

tack not only from the same network with the victim,

but also from adversary controlled Tor exit nodes, that

can inspect the cleartext Stratum traffic to the desti-

nation. Also, Bitcoin over Tor has been shown to be

vulnerable to several attacks [28], and, even without an

adversary, Tor may introduce delays that can lead to

miners losing blocks.

Our Contributions. In this paper we introduce the

following contributions:

– Passive attacks. We show that F2Pool’s Stratum

implementation leaks sensitive miner information

not only through cleartext communications but also

indirectly, through hashrate dependent inter-packet

timing. We introduce StraTap and ISP Log, passive

attacks where adversaries accurately infer the earn-

ings of victim miners, given either captured trans-

missions of those miners, or only their log metadata.

– Active attack. We propose BiteCoin, a payout hi-

jack attack that enables an adversary able to access

the communications of a victim miner, to steal its

resources and mining payouts. To implement Bite-

Coin, we have developed WireGhost, a TCP hijack-

ing tool that surreptitiously modifies TCP packets,

without imposing disconnections or session resets.

– Bedrock. We develop Bedrock, a Stratum exten-

sion that addresses the proposed attacks. Bedrock

seeks to assuage the efficiency concerns of Bitcoin,

by imposing minimal modifications and encryption

overhead to the Stratum protocol. We introduce the

concept of mining cookies, secret values that min-

ers need to include in the computed puzzles. Mining

cookies prevent both passive and active attacks on

share submission packets, without encrypting the

vast majority of the pool communications.

– Results. We have collected 138MB of Stratum traf-

fic traces from mining equipment in the US and

Venezuela, and release it for public use [29]. We

have implemented the developed attacks and re-

port results from their deployment on AntMiner

mining equipment. We show that StraTap and IS-

PLog achieve low payout prediction errors, and that

BiteCoin can efficiently hijack job assignments and

share submissions from a victim miner. We show

that Bedrock prevents these attacks, and is resilient

to active attacks even when the adversary breaks its

crypto tools. Bedrock imposes a 12.03s daily over-

head on a single pool server that handles 16,000

miners simultaneously.

The attacks and defenses introduced in this paper apply

to the Stratum protocol, thus to most of the large min-

ing pools [30–34]. These attacks work even on miners

that are behind a NAT, or that are firewalled. Further-

more, while we focus our experiments on the popular

AntMiner mining equipment, our attacks are general

and apply to other manufacturers as well. We have no-

tified F2Pool about these vulnerabilities.

2 Model and Background

The Bitcoin mining ecosystem consists of miners and

pools, see Figure 1. The communication between pools

and miners takes place almost exclusively over the Stra-

tum, that we study in the next section. The main task

of Bitcoin miners (or mining nodes) is to permanently

insert new consistent data into the network. Miners col-

lect transaction data from other nodes, validate it and



Hardening Stratum, the Bitcoin Pool Mining Protocol 3

insert it in a structure called block. The miners need

to solve a cryptographic puzzle based on the block, be-

fore the block is permanently inserted into the storing

structure of the network, called the blockchain.

2.1 Mining Pools

As specialized, more powerful miners were designed,

and the difficulty of mining blocks increased, it became

increasingly difficult for individual, solo miners to suc-

cessfully mine and receive timely payouts for their work.

The concept of mining pools has emerged in order to ad-

dress this problem: enable miners to combine their re-

sources, then split the reward according to the amount

of work they have performed. Pools and miners form a

master/slave paradigm, where pools parallelize the min-

ing work among multiple miners. Thus, instead of ran-

domly receiving a large reward only once several years,

pooled miners receive smaller rewards, on a regular basis

(e.g., once per day).

Popular mining pools today interact with thou-

sands of miners. For instance, F2Pool has more than

16,000 miners [25–27]. As per the Bitcoin specification,

about 150 blocks are to be mined every day, i.e., 1 block

every 10 minutes. Since each block is, at the time of writ-

ing, worth 12.5 BTC , at an exchange rate of ≈ $1,100

per BTC, about 2 million dollars are distributed each

day. The larger mining pool servers control about 20%

of these earnings [35].

The mining pool rewards a share to the miner who

reports a proof of a unit of solved work. Pools often offer

a variable share difficulty feature: adaptively assign the

share target to miners, according to their computation

ability. Pools perform this in order to ensure that (i) the

assigned work is not too difficult, thus enable miners to

prove computation progress and gain regular payouts,

and that (ii) the work is not too easy, thus reduce the

overhead on the pool, to process shares submitted by

thousands of miners.

Hashrate to BTC conversion. The pool will reward

the miner according to the number of shares submitted

and accepted. Each pool has a different payout policy.

One of the most popular policies is “Pay Per Share”

(PPS) which usually has a pool fee attached to it. Since

the final calculation for share payment is dependent on

the actual mining activity of the pool, it is difficult to

provide an exact estimate of each share payout. How-

ever, most pools publish a hashrate to BTC (Bitcoin)

rate of conversion for miner verification purposes. At

Fig. 2. Coinbase transaction format. The fields in the table

are the underlying Bitcoin transaction fields. Stratum overlays

the coinbase fields (coinbase1, extranonce1, extranonce2,

coinbase2) on top of the Bitcoin coinbase fields. Bedrock (see

§ 6) introduces the mining cookie concept, whose value will over-

write the currently unused “previous hash” field within coinbase1.

the time of writing this paper, the conversion rate on

the F2Pool was 0.00246248 BTC per TH/s [30].

2.2 The Coinbase Transaction

As mentioned above, each block collects a set of previ-

ous transactions in the Bitcoin network. The first such

transaction is special, called the coinbase transaction

(see Figure 2): it specifies that the pool will receive

the value of this block (currently 12.5 Bitcoins) when

this block is mined. The Stratum coinbase consists of

4 fields, coinbase1, extranonce1, extranonce2, coinbase2,

overlayed on top of the Bitcoin coinbase information.

coinbase1 covers the first 5 fields of the input trans-

action (version, input count, previous transaction hash,

previous transaction index and input scriptlen) and part

of the script, in the original coinbase transaction specifi-

cation. Except for the version number, these parameters

are meaningless to all clients and pools since the coin-

base transaction does not have an input transaction.

The extranonce1 and extranonce2 fields are also

overlayed on the unused script. extranonce1 needs to

be unique (pseudo-random) per stratum connection.

extranonce2 is used in the mining puzzle and needs to

be incremented by the miner once the nonce parameter

is exhausted (see next paragraph). The rest of the coin-

base transaction is packed in the coinbase2 parameter.



Hardening Stratum, the Bitcoin Pool Mining Protocol 4

Fig. 3. Bitcoin block puzzle. The root of the Merkle tree built

over the coinbase and the mined transactions is the third field of

the block puzzle. The miner iterates over the nonce (last field)

and over the extranonce2 value, part of the coinbase transaction.

Bedrock, our secure Stratum extension, leverages

the unused “previous transaction hash” field (Figure 2),

to include the value of the mining cookie, see § 6.

2.3 The Bitcoin Puzzle

The goal of the mining process is to make it difficult for

a minority of malicious nodes to insert bogus data in-

side invalid blocks. It achieves this by transforming each

block (collection of transactions in the Bitcoin network)

into a cryptographic “puzzle”. The puzzle is designed

such that the probability of finding a solution by a min-

ing node is proportional to its computational power. A

Bitcoin puzzle consists of a target value and a tuple

F = (block version number || hash of previous block ||

RMT || timestamp || Nbits ), || denotes concatenation,

see Figure 3 for an illustration.

Specifically, F contains the block version number,

the hash of the previous block in the blockchain, the root

of a Merkle tree (RMT) described next, a timestamp,

and the final target value in the form of the number

of leading bits that need to be 0 for the block to be

considered “mined”. The Merkle tree is built over the

transactions that are being mined into the current block,

including the coinbase transaction, see Figure 3. Given

the F value, and the above mentioned target, the miner

iterates over the nonce and extranonce2 (see coinbase

transaction) values until it identifies a pair such that

H2(nonce||F ) < target (1)

where H2 denotes the double (SHA-256) hash. The

block is said to be “mined” when H2(nonce||F ) is less

than the target corresponding to the above Nbits value.

The target and the difficulty. While the Nbits value

specifies when the block is mined, pools set the above

target parameter to a larger value (fewer leading bits 0)

to enable miners to prove and be rewarded for progress.

The target of difficulty 1, denoted target_1, is defined

Fig. 4. Stratum protocol timeline over 24 hours captured between

an AntMiner S7 and the F2Pool pool. While we observe sev-

eral difficulty change packets (orange bars) throughout the day,

most are concentrated after the initial subscription protocol (tall

blue bar). The majority of share submissions are accepted (green

bars); only a few are rejected (red bars) or ignored (black bars).

by pools as the number 2224 − 1, i.e. a 256 bit number

with 32 bits of leading zeros followed by 224 bits of ones.

The difficulty value is a measure of how hard it is to

solve a puzzle for a given target value. Accordingly, the

relationship between the difficulty and target values

is given by the formula:

difficulty =
target_1

target
=

2224 − 1

target
(2)

2.4 Stratum

Stratum is a clear text communication protocol between

the pool and the miners [18], built over TCP/IP and us-

ing the JSON-RPC format. The official Stratum pro-

tocol documentation is not detailed and is often out-

dated [18]. In this section we describe the F2Pool [30]

implementation of the Stratum protocol, as observed

from Stratum packets we captured over 13 days be-

tween an AntMiner S7 device and the F2Pool mining

pool (see § 8.1). Figure 4 illustrates the timeline of cap-

tured Stratum protocol packets over a 24 hour interval.

The ability to capture, understand, modify and inject

these messages into a communication stream will be in-

strumental for the passive and active attacks described

in § 4 and § 5.

Miner subscription. To register with the pool, the

miner first subscribes through a connection subscrip-

tion message

mining.subscribe, params,

that describes the miner capabilities. The server re-

sponds with a subscription response message,

result,{methods}, extranonce1, extranonce2.size,

where the first field is a list method names used by

the server pool, the second field (see § 2.3), should be



Hardening Stratum, the Bitcoin Pool Mining Protocol 5

Fig. 5. Timeline of miner operating at 250MHz. We emphasize

the effect of successive share difficulty notification messages:

the miner’s share submission rate slows down. We also point the

multiple miner subscribe and authorization procedures (tall blue

bars) due to repeated miner disconnections.

random and unique per connection, but F2Pool sets to

constant “\x30\x30”, and the third is the size of the

extranonce2 (4B in F2Pool).

Miner authorization. Following the subscription ex-

change, Stratum authenticates the miner with the pool,

through a miner authorization request message

mining.authorize, account.minerID, password,

whose first field, the username, consists of two fields,

that enable a user to register multiple miners with the

same account. While the password field is transferred

in cleartext, it is currently ignored by pools. The pool

responds with a status result that notifies the miner

of the result of the authorization request. In Figure 4

and 5, the miner subscription and authorization mes-

sages are shown as a single blue bar (the tallest), seen

at the beginning of the interval and each time the miner

reconnects to the pool, e.g., after an Internet disconnec-

tion or power outage.

Share difficulty notification. Following a successful

authorization, the pool sends a difficulty notification

message to the miner

set.difficulty, difficulty,

that specifies the minimum share difficulty that the

server will be willing to accept. Figure 4 and 5 show the

difficulty notification messages as orange bars. They can

occur throughout the day as the pool seeks to adjust the

miner’s rate of share submissions.

Job assignment. The pool assigns jobs (puzzles) to

the miner through mining job notification messages

mining.notify, job_id, params, clean_jobs

that specify the puzzle parameters, i.e., the fields of the

F value in Equation 1 (see § 2.3), and a boolean that

indicates if the miner should drop all previous jobs and

work exclusively on the one specified by this message.

Share submission. Once the miner finds a solution

that satisfies Equation 1, it sends a share submission

message to the pool for verification and credit:

mining.submit, account.minerID, job_id, time,

nonce, extranonce2

that specifies the miner’s username, the job id received

in the previous mining job notification, and the param-

eters of the puzzle solution: the nonce and extranonce2

parameters, see § 2.3. The pool uses these values to re-

construct the F value (see § 2.3), and verifies that Equa-

tion 1 is satisfied.

The pool responds with a status result message, il-

lustrated in Figure 4: green bars denote accepted shares,

red bars denote rejected shares, and black bars denote

ignored shares. Shares can be rejected due to stale work,

i.e., being submitted too late. The miner continues to

mine current jobs until it receives a job message from

the pool that requires it to invalidate previous jobs (see

the “clean jobs” flag in the job assignment message).

3 Adversary Model

We consider adversaries that can launch both passive

and active attacks against the Bitcoin network, see Fig-

ure 1. We assume that the pool and the miner are

honest. However, adversaries can target the communi-

cations of specific, victim miners. Adversaries can own

mining equipment, can eavesdrop and interfere with ex-

isting communications, and may even obtain data from

ISPs. We now detail each of these adversarial capabili-

ties.

Eavesdropping capabilities. We consider first an ad-

versary who can access the entire communication of a

victim miner. Such adversaries include over-controlling

governments, or attackers who gain control to equip-

ment on the same LAN as the victim. We assume that

such an adversary can capture and inspect all the pack-

ets sent and received by the victim miner.

ISP log capabilities. We also consider adversaries

with access to ISP logs, that include entries for the com-

munications of the miners in the ISP’s subnet and the

pool. This capability is more restrictive than the eaves-

dropping capability, in terms of the data that can be

extracted from the miner-to-pool communications. This

is because ISP logs usually contain only metadata [36],

in order to comply with law enforcement requests [37].

However, these capabilities may enable the adversary

to target more victims (i.e., all the miners whose traffic

was logged).



Hardening Stratum, the Bitcoin Pool Mining Protocol 6

Potential perpetrators include insiders (e.g., ISP

employees) and government organizations that can sub-

poena the logs. While law enforcement insiders have

been shown to abuse collected data [38], agencies have

also been hacked in the past. Stolen data may then be

sold, auctioned, or even made public, thus becoming ac-

cessible to a broader range of adversaries.

We assume that this adversary has access to packet

metadata that includes timestamps, source and destina-

tion IPs and ports, and connection flags. As we show in

§ 4.2, these values enable the attacker to identify mining

traffic via well known pool IP/port pairs, and identify

the start of mining sessions.

Active attack capabilities. We further consider an

adversary that can modify the communication stream

between the server pool and a mining client. Potential

such adversaries include attackers that are on the same

network as the victim miner, rogue employees at an in-

termediate ISP, or a government backed agency. In § 5,

we show that such an adversary can add jobs and re-

place submitted shares. While this may allow for trivial

denial of service attacks as well, in this paper we do

not consider DoS attacks. We note that DoS techniques

exist with lesser technical requirements [39, 40].

3.1 Relevance of Attacks

In the following section we introduce passive and active

attacks against miners that use the Stratum protocol,

whose goal ranges from inferring to stealing the payouts

of the victim miners. Inferring the payouts of miners ex-

poses their owners to a suite of attacks. Adversaries can

hack the computers or accounts of miner owners in order

to steal their payouts [10, 11]. Passive attacks can also

enable the adversary to identify miners worthy of being

targeted with resource hijacking attacks, e.g., Bitecoin,

see § 5. In addition, this knowledge enables adversaries

to target miner owners for equipment theft, arson [41],

kidnapping [12], and, in countries where Bitcoin is ille-

gal [13, 14], for extortion and prosecution [17].

4 Passive Attacks

In this section we show that an attacker that observes

even partial traffic of a victim miner, can infer the pay-

outs received by the miner. We introduce two passive

attacks, that make different assumptions on the adver-

sary’s capabilities. First, the StraTap attack assumes

an adversary able to capture and inspect entire packets

transmitted between a pool and a victim miner. Sec-

ond, the “ISP Log” attack assumes an adversary that is

able to inspect only packet metadata, i.e., IP addresses,

port numbers, and connection flags. In the following we

detail each attack.

4.1 The StraTap Attack

We consider first an eavesdropping adversary, see § 3.

Given access to all the packets sent and received by the

victim miner, the attacker counts the share submission

messages along with their associated difficulty (as de-

scribed in § 2.4). The attacker uses this data to estimate

the hashrate of the victim miner.

Specifically, the probability of randomly finding a

hash with the appropriate difficulty is given by the ra-

tio between the target (i.e. the number of hashes with

the appropriate number of leading zeros according to the

assigned job), and the total number of possible hashes.

Hence, the probability of a miner finding a share with

a single hash is p = target

2256
−1

. The expected number of

hashes, E, that the miner needs to calculate before find-

ing a valid share is then 1/p. Then, we derive the fol-

lowing for E:

E =
2256 − 1

target_1
×

target_1

target
=

=
2256 − 1

2224 − 1
× difficulty ≈ difficulty × 232

(3)

The second equality follows from Equation 2, and the

fact that the target of difficulty 1, target_1 is 2224 − 1,

see § 2.3. If we divide Equation 3 by the hashrate of the

miner, we obtain a formula that allows us to compute

the expected time to find a share at a given difficulty:

time =
E

hashrate
=

difficulty × 232

hashrate
(4)

Thus, hashrate = difficulty × 2
32

time
. The attacker ob-

tains the difficulty value by inspecting the share diffi-

culty notification messages (see § 2.4). In addition, the

attacker estimates the time value as the ratio of the

length of time between consecutive share difficulty no-

tification messages (orange bars in Figure 4) and the

number of shares submitted and accepted during that

interval:

time =
total time between difficulty changes

number of submitted (and approved) shares

The attacker obtains the accepted share count by in-

specting the share submission messages and their corre-

sponding status results, see § 2.4.



Hardening Stratum, the Bitcoin Pool Mining Protocol 7

Miner MITM Pool Server

SEQ:x, LEN:y

SEQ:x, LEN: y + z

ACK: x + y + z

ACK: x+ y + z - z

SEQ:x+y

SEQ:x+y+z

Fig. 6. WireGhost illustration: TCP hijacking with active re-

synchronization, when the man-in-the-middle (MITM) adversary

adds z bytes to an existing packet originating from the client.

WireGhost modifies the sequence numbers, to hide the difference

in packet sizes.

Given the inferred hashrate of the miner, the at-

tacker uses the hashrate to payout conversion (see the

corresponding paragraph in § 2.4) to predict the amount

of Bitcoins received by the victim. In § 9.1 we ex-

perimentally evaluate the accuracy prediction of the

StraTap attack.

4.2 The ISP Log Attack

We now consider an attacker with ISP log data capabil-

ities, see § 3. The ISP Log attack proceeds as follows.

First, the attacker identifies the beginning of the con-

nection between the victim miner and the pool. This is

the time when a 3-way handshake connection is estab-

lished, whose first step is a “connection subscription”

message as described in § 2.4. Then, the attacker pre-

dicts the hashrate of the miner based on statistics over

the inter-packet times logged for the miner.

In early experiments we have observed that predic-

tors that use statistics over long time intervals are in-

accurate. To address this problem, we have identified

and exploited a vulnerability of the Stratum protocol.

Specifically, we observed that the first share difficulty

notification message (see § 2.4) following a successful

miner subscription, sets the difficulty to the minimum

value acceptable by the pool (e.g., 1024 for F2Pool). In

addition, in § 9.2 we show that the pool sends its sec-

ond share difficulty notification after approximately 50

share submission messages (for difficulty 1024) received

from the miner.

Then, the attacker estimates the time taken by

share submissions for jobs of difficulty 1024, i.e., over

the first 50 packets sent by the miner following its sub-

scription and authorization process. It then uses the

process outlined in the above StraTap attack to pre-

dict the miner’s hashrate and payout. The attacker can

repeat this process when observing subsequent 3-way

handshake connection protocols of the victim miner,

e.g., when a disconnection occurs, in order to improve

its estimates of the miner hashrate. In § 9.2 we show

that even when the ISP Log attack performs a single

hashrate inference attack per day, its daily miner payout

prediction achieves a mean percentage error of -9.49%.

5 The BiteCoin Attack

We consider now an active attacker with the ability to

capture and modify the communication stream between

the pool and the victim miner, see § 3. In the following,

we first focus on the challenge to hijack and maintain

the TCP connection between the miner and the pool,

then introduce BiteCoin, an attack that hijacks pay-

ments from victim miners.

5.1 WireGhost: TCP Hijack with Re-Sync

Existing tools. Traditional TCP hijacking attack tools

seldom consider the need to preserve the status of the

communication parties. For instance, in tools like Shi-

jack [42] and Juggernaut [43], once the TCP sequence

mangling is performed, the generated ack storm is elim-

inated by resetting the connection with one of the peers.

The tool Hunt [44] does have a re-synchronization func-

tionality but it is limited to the Telnet protocol and re-

quires victim interaction in the form of a social engineer-

ing attack to be successful. Stratum active attacks re-

quire that the original mining connection is maintained

and that the re-synchronization needs to be done com-

pletely unattended. For instance, the extranonce1 pa-

rameter will be different for each connection, thus the

attacker should not force disconnections.

WireGhost. We have developed WireGhost, a TCP

hijack tool that maintains the status of the hijacked

connection, without having to reset the communication

streams. To address ack storms that would occur due

to communication changes (e.g., packet modification,

injection, removal), WireGhost modifies the TCP se-

quence of packets according to the payload modifica-

tion performed by the attacker, see Figure 6. Specifi-

cally, if the attacker inserts data into the TCP payload

(including injecting new packets), WireGhost subtracts

the appropriate number of bytes from the pool server’s



Hardening Stratum, the Bitcoin Pool Mining Protocol 8

Fig. 7. BiteCoin attack illustration. The attacker, a subscribed

miner, forwards job assignments received from the pool to the

victim miner. It then hijacks the victim’s share submissions and

sends them as its own to the pool, to get the credit.

ack sequence for all the packets that follow the modi-

fied (or inserted) one. It then adds the same amount of

bytes to the sequence number for all the following pack-

ets originating from the client. WireGhost performs the

opposite mathematical operations when the attacker re-

moves data from the TCP payload.

5.2 BiteCoin

We have used WireGhost to develop BiteCoin, an at-

tack tool that enables an active adversary to steal CPU

cycles and payouts from victim miners. We consider an

attacker who subscribes a device under his control as a

miner to the pool, see Figure 7 for an illustration.

Given access to the communication medium be-

tween the victim miner and the pool, BiteCoin first de-

tects the miner subscription protocol (the 3-way hand-

shake). It then uses WireGhost to hijack the TCP con-

nection between the miner and the pool. Then, when

the attacker device receives a job assignment message

from the pool, it directly injects it into the TCP con-

nection of the victim miner and the pool. The victim

miner receives this job assignment packet as if it was

coming from the pool.

Once the victim miner computes a share for this

job, it packs it into a share submission message and

sends it over its TCP connection to the pool. BiteCoin

intercepts this share submission packet of the victim,

and modifies it by changing the victim’s username to

its own. It then sends this modified share submission

over its own TCP connection to the pool. BiteCoin also

sends to the pool a mangled copy of the victim’s original

share submission, to ensure that it is rejected. In § 8.2

we detail our BiteCoin implementation, and in § 9.3 we

present results over its deployment.

6 Bedrock: Secure Stratum

We now study defenses against the proposed attacks. We

first describe the requirements of a private and secure

mining protocol, then introduce Bedrock, a Stratum ex-

tension, and discuss its defenses.

6.1 Solution Requirements

A private and secure Stratum protocol should satisfy

the following informal requirements:

– Security. The solution needs to protect both

against the Stratum attacks that we introduced in

§ 4 and § 5, and against attacks that target the so-

lution itself.

– Efficiency. Encryption of all the Stratum mes-

sages is not only inefficient, but also insecure: in

§ 9.2 we show that the ISP Log attack can predict

the miner’s profits while knowing only the miner’s

transmission timestamps.

– Adoptability. The solution should introduce mini-

mal modifications to the Stratum protocol, in order

to simplify its adoptability by pools and miners.

6.2 The Solution

We introduce Bedrock 1, a secure and efficient exten-

sion of the Stratum protocol. Bedrock seeks to prevent

adversaries from inferring the hashrates of miners, and

to efficiently authenticate Stratum messages.

Bedrock has 3 components, each addressing differ-

ent Stratum vulnerabilities. The first component au-

thenticates and obfuscates the job assignment and share

submission messages. The second component secures

the share difficulty notifications, and the third compo-

nent secures the pool’s inference of the miner’s capa-

bilities. In the following we detail each component. We

assume that the pool shares a unique secret symmetric

key KM with each miner M . The miner and the pool

create the key during the first authorization protocol

(see § 2.4), e.g., using authenticated Diffie-Hellman).

6.2.1 Mining Cookies

The share submission packets are particularly vulnera-

ble. First, they can reveal the target value, thus the diffi-

culty of the jobs on which the miner works and then the

1 In geology, the bedrock is a hard stratum.



Hardening Stratum, the Bitcoin Pool Mining Protocol 9

Algorithm 1 Bedrock pseudo-code for cookie gener-
ation and job verification (pool side), and job solving
(miner side).

1.Implementation PoolServer
2. generateCookie(Miner M){
3. RM := getRandom(256);
4. CM := H2(RM , M.uname);
5. KM := M.key;
6. store(M.uname, KM , RM , target);
7. sendEncrypted(M , EKM

(RM));
8. verifyJob(Miner M , nonce, extranonce2){
9. (KM , RM , target) := getMParams(M.uname);
10. CM := H2(RM , M.uname);
11. F := computeF(CM , extranonce2);
12. if (H2(nonce||F ) < target)
13. sendToMiner(M , result, “accept”);
14. else sendToMiner(M , result, “reject”);

15.Implementation Miner
16. KM : int[256] % key shared with pool
17. CM : int[256] % mining cookie;
18. solvePuzzle(target: int){
19. do
20. randPerm := newPseudoRandPerm(32);
21. extranonce2 := getRandom(32);
22. F := computeF(CM , extranonce2);
23. while (randPerm.isNext()){
24. nonce := randPerm.next();
25. if (H2(nonce||F ) < target)
26. sendToPool(uname, nonce, extranonce2);
27. while (clean_jobs != 1)

miner’s hashrate (see § 7.1). Second, share submissions

can be hijacked by an active adversary, see § 5. Encryp-

tion of share submissions will prevent these attacks, but

it will strain the pool’s resources.

To efficiently address these vulnerabilities, we intro-

duce the concept of mining cookie, a secret that each

miner shares with the pool, see Figure 8 and Algo-

rithm 1. The miner uses its mining cookie as an addi-

tional, secret field in the Bitcoin puzzle. Without knowl-

edge of the mining cookie, an adversary cannot infer the

progress made by the miner, thus its hashrate and pay-

out, thus cannot hijack shares submitted by the miner.

Specifically, let RM be a random cookie seed that

the pool generates for a miner M Algorithm 1, line

3). The pool associates RM with M , and stores it

along with M ’s symmetric key KM , and its current

target value (line 6). The pool computes M ’s cookie as

CM = H2(RM , M.uname) (line 4), where M.uname is

the username of the miner. It then sends RM to M , en-

crypted with the key KM (line 7), see § 6.2.2. The miner

similarly uses RM and its usernameM to compute CM .

To minimally modify Bitcoin, Bedrock stores the

cookie as part of the coinbase transaction (see Figure 2),

in the place of its unused previous hash field. This field

is unused since the coinbase transaction does not have

a need for a meaningful input address hash (see § 2.2).

Fig. 8. Bedrock puzzle illustration. The cookie CM is generated

on the pool, while the nonce and extranonce2 are generated

on the miner. The coinbase transaction contains both CM and

extranonce2, see Figure 2.

Thus, the puzzle remains the same: The miner iterates

over the nonce and extranonce2 values, and reports the

pairs that solve the puzzle, along with its username, in

share submission packets (lines 23-26).

To verify the shares, the pool retrieves the miner’s

key KM , random seed RM and target values (line 9).

It uses RM to reconstruct the cookie (line 10) and uses

target, and the reported nonce and extranonce2 values,

to reconstruct and verify the puzzle lines 11 ans 12).

Random iterators. In the Bitcoin protocol and the

Stratum implementation on F2Pool, the nonce and

extranonce2 values are incremented sequentially: once

the miner exhausts nonce, it increments extranonce2,

then continues to iterate over a reset nonce value. In

§ 7.1 we show that this further exposes the miner to

hashrate inference attacks. We address this problem by

requiring the miner to choose random values for nonce

and extranonce2 at each puzzle iteration. To prevent

the miner from recomputing an expensive Merkle tree

root at each iteration, we iterate through the nonce

space using a pseudo random permutation (lines 20, 24).

Cookie refresh. When a miner mines the current

block, i.e., when H2(nonce||F ||CM) is less than the tar-

get corresponding to the Nbits value, see § 2.3, the puz-

zle solution needs to be published in the blockchain. The

published block needs to include all the fields that de-

fined the puzzle (see § 2.3), including the miner’s cookie,

to be publicly verified.

To prevent an adversary who monitors the

blockchain to learn the mining cookie of a victim miner

and then launch a successful BiteCoin attack (see § 7.1),

Bedrock changes the mining cookie of the miner once the

miner mines the current block. This is an infrequent

event: for an AntMiner S7 mining equipment, with a



Hardening Stratum, the Bitcoin Pool Mining Protocol 10

hashrate of 4.73 TH/s, and the current Bitcoin network

difficulty (2.58522748405e+11), Equation 4 shows that

the expected time to mine a block is 7.44 years. This

is a very low lower bound since it assumes a constant

difficulty. In reality, the difficulty has increased expo-

nentially since the creation of Bitcoin. To change the

cookie, the pool invokes generateCookie (line 2).

6.2.2 Protect Communicated Secrets

Stratum’s share difficulty notification messages reveal

the difficulty assigned by the pool to the miner and

that the miner uses in the subsequent jobs. Knowledge

of the puzzle difficulty value coupled with the (regu-

lated) share submission rate, will enable the adversary

to infer the hashrate of the miner (see Equation 3), thus

its payout. In addition, Bedrock also needs to commu-

nicate secret values (e.g., the random RM , see § 6.2.1).

Bedrock addresses these problems by extending Stra-

tum’s set difficulty notifications to the following mining

encrypted message:

mining.encrypted, EKM(param_list)

where (param_list) is a list of values that need

protection, i.e., difficulty values and the se-

cret RM . Specifically, param_list can contain

any number of sensitive values in the format

[[“difficulty”,1024],[“secret”,RM]].

6.2.3 Secure Hashrate Computation

The hashrate inference protocol following a miner sub-

scription and authorization, as documented in § 4.2 and

§ 9.2 can be exploited also by an adversary to infer the

miner’s hashrate. To address this vulnerability, Bedrock

requires the miner to directly report its hashrate dur-

ing the initial subscription message, along with other

miner capabilities. The miner can locally estimate its

hashrate, e.g., by creating and executing random jobs

with a difficulty of 1024. The miner also needs to factor

in its communication latency to the pool, which it can

infer during the subscription protocol. The miner sends

its hashrate encrypted, using the “mining encrypted”

message defined above.

If subsequently, the pool receives share submissions

from the miner, outside the desired rate range, it can

then adjust the difficulty (through the above encrypted

share difficulty notifications) in order to reflect its more

accurate inference of the miner’s hashrate.

7 Discussion

7.1 Security Discussion

We now discuss attacks against Stratum and Bedrock,

and detail the defenses provided by Bedrock.

Target reconstruction attack. An attacker that

can inspect cleartext subscription response, job assign-

ment and share submission packets, can reconstruct the

job (i.e., puzzle) solved by the victim miner: Recover

extranonce1 from an early miner subscription message,

coinbase1, coinbase2 and the Merkle tree branches from

a job assignment, and nonce and extranonce2 from a

subsequent share submission packet. The attacker then

reconstructs the F field of the puzzle (see § 2.3) and

uses it to infer the miner’s hashrate, even without know-

ing the puzzle’s associated target value. Specifically, the

attacker computes the double hash of F concatenated

with nonce, then counts the number of leading zeroes

to obtain an upper bound on the job’s target. The at-

tacker then uses recorded inter-share submission time

stats and Equation 3 to estimate the miner hashrate.

Bedrock thwarts this attack through its use of the

cookie CM , a secret known only by the miner and the

pool. The cookie is part of the puzzle. Without its

knowledge, the attacker cannot reconstruct the entire

puzzle, thus infer the target.

Brute force the cookie. The attacker can try to brute

force the cookie value. To gain confidence, the attacker

uses the fields from multiple jobs assigned to the same

miner to try each candidate cookie value. A candidate

is considered “successful” if it produces a high target

value for all the considered jobs. However, in § 8 we

leverage the unused, 256-bit long “previous hash” field

of the coinbase transaction, to store the mining cookie.

Brute forcing this field is consider unfeasible.

Resilience to cryptographic failure. We assume

now an adversary that is able to break the encryption

employed by the pool and the miner, e.g., due to the use

of weak random values. Giechaskiel et al. [45] studied

the effect of broken cryptographic primitives on Bitcoin,

see § 10. While such an adversary can compromise the

privacy of the miner, by recovering the miner’s cookie,

he will be prevented from launching active attacks. This

is because the miner’s cookie is a function of both a ran-

dom number and the miner’s username.

Specifically, if the attacker hijacks a miner’s share

submission, the pool would use the attacker’s user-

name instead of the victim’s username to construct

the cookie, the coinbase transaction and eventually the

header block. The share will only validate if the attacker



Hardening Stratum, the Bitcoin Pool Mining Protocol 11

managed to find a username that produced a double

hash that was still smaller than the target corresponding

to the difficulty set by the pool. However, the attacker

will need to find such usernames for each hijacked share.

If the attacker was able to quickly find such partial col-

lisions, it would be much easier to simply compute the

shares without doing any interception and hijacking.

We further consider an attacker able to break the

hash function (invert and find collisions). Such an at-

tacker can recover a miner’s RM value, then find a user-

name that produces a collision with the miner’s cookie

CM . We observe however that such an attacker could

then be able to also mine blocks quickly, e.g., by invert-

ing hash values that are smaller than the target corre-

sponding to the Nbits value.

7.2 Limitations

Opportunistic cookie discovery. When the miner

mines the current block, i.e., the double hash of the puz-

zle is smaller than the target corresponding to Nbits,

the miner’s cookie is published in the blockchain. An

adversary who has captured job assignments and share

submissions from the miner, just before this takes place,

can use them, along with the published cookie, to recon-

struct the entire puzzle and infer the miner’s hashrate.

This opportunistic attack may take years (e.g., 7.44

years for an AntMiner S7, see § 6.2.1), while, from our

experience, mining equipment has a useful lifetime of

around 2 years. However, this attack may be more ef-

fective against an entity that owns many homogeneous

miners: an adversary may only need days to infer the

rate of a single miner.

However, to address this limitation, each miner

could, at random intervals, change its operation fre-

quency to a randomly chosen value within an “accept-

able” operation range. Assuming that the adversary

only captures a limited window of the victim miner’s

communications, he will only be able to (i) recover tem-

porary, past hashrate values of the miner, and (ii) recon-

struct the miner’s payouts over the monitored interval.

Since the miner changes its operation frequency, once a

new cookie is assigned, the adversary will not be able

to predict the miner’s future hashrates and payouts.

Verification scope. We have only investigated the im-

plementation of Stratum in the pool F2Pool. However,

the identified privacy issues also likely affect other pools,

as any obfuscation to the set difficulty messages would

break the compatibility with the Stratum protocol im-

plemented in current mining equipment.

8 Implementation and Testbed

In our experiments, we have used AntMiner S7, a spe-

cialized FPGA device for Bitcoin mining that achieves

a hashrate of 4.73 TH/s at 700MHz [46]. We have con-

figured the device for mining on the F2Pool pool, using

the Stratum protocol [30].

8.1 Passive Attacks

In order to collect experimental traffic for the passive

attacks, we have leveraged the ability of the AntMiner

S7 device to operate at different chip clock frequen-

cies in order to simulate miner devices with different

capabilities. Specifically, we carried out 24 hour long

mining experiments with the AntMiner S7 operating

at frequencies ranging from 100 MHz to 700MHz, with

50MHz granularity. We have used Tcpdump [47] to cap-

ture 138MB of Stratum traffic of AntMiner S7 devices in

the US (May 27 - June 8, 2016) and Venezuela (March 8

- April 2, 2016). We have sliced the resulting pcap files

into 24 hour intervals using editcap, then processed the

results using python scripts with the scapy library [48].

In addition to the mining traffic, for each of the 24

hour runs, we collected the empirical payout as reported

by the pool, as well as the device hashrate reported by

its internal functionality. We used 24 hour runs because

the pool uses 24 hour cycles for executing payouts. We

have manually synchronized the runs and payout cycles

so as to easily correlate the data collected with its cor-

responding payout.

StraTap attack. To implement the StraTap attack, we

have created a script that selects packets from the cap-

tured traces with the “set_difficulty” pattern (invoked

method of the share difficulty notification messages).

This pattern signals our script to perform a share sub-

mission count reset, as well as a new recording of the

new difficulty.

ISP Log attack. For the ISP Log attack, we used

packets sent after the 3-way handshake initiated by

the pool. In addition, to compute more accurate inter-

packet times, we only considered packets that had the

PUSH flag set (captured by most firewall logs, e.g.,

Snort IDS), thus with non-empty payloads (i.e., no ack

packets that originated on the miner). The PUSH flag is

used to mitigate the effects of delays on the processing of

share submissions, that may end up causing share rejec-

tions. By setting the PUSH flag, miners try to increase

the chance that their shares are quickly processed.



Hardening Stratum, the Bitcoin Pool Mining Protocol 12

Fig. 9. Architecture of BiteCoin attack implementation.

8.2 BiteCoin Attack Implementation

The BiteCoin attack system is illustrated in Figure 9.

We have built WireGhost using the iptables nfqueue

target, in order to pass packets into user space. Once

it receives network segments in the user space, it uses

the scapy python library to parse and modify packets.

Additionally, it uses the the python nfqueue bindings in

order to pass a verdict to the packets.

In order to test BiteCoin and WireGhost, we set up

the victim miner behind an attacker controlled server

that performed “source NAT” and packet forwarding

for it. This architecture allowed us to emulate an active

attacker intercepting the communication between the

miner and the pool. We have implemented the attacker

as a python script that connects to the F2Pool using

Stratum, then intercepts and modifies job assignments

and share submissions on the victim’s connection to the

pool. While the attacker script does not perform any

mining, in § 9.3 we show that it is able to steal the

victim’s hashing power.

8.3 Bedrock Implementation

One requirement of Bedrock is to minimally disrupt the

Stratum protocol, see § 6.1. Thus, instead of designing

the cookie to be an external field, we seek to leverage

unused fields of the coinbase transaction. An obvious

candidate for the cookie placement is the input script

where the extranonce1 and extranonce2 reside. How-

ever, most pools have already started using this space

for their own internal procedures, e.g., in F2Pool, to

store the miner’s name.

Instead, Bedrock uses the yet unused, 32 byte (256

bit) long “previous input address” field of the coinbase

transaction, see Figure 2. Since the coinbase transac-

tion rewards the pool with the value of the mined block

(if that event occurs), its input is not used. We have in-

Freq(MHz) Hashrate(GHz) StraTap Hashrate(GHz)

700 4720.55 4571.48

650 4371.85 4309.96

600 4040.49 4151.27

550 3693.90 3624.13

500 3365.38 3524.57

450 3030.01 3154.80

400 2689.34 2696.72

350 2364.61 2382.17

300 2023.65 2039.55

250 1687.17 1699.91

200 1347.14 1274.29

150 1010.19 1007.06

100 672.55 703.28

Table 1. Operation frequency, actual hashrate and StraTap in-

ferred hashrate. We observe the correlation between the actual

and the average hashrate, that allowed StraTap to achieve a good

payout estimate.

vestigated the Stratum implementation of several pools,

including F2Pool [30], GHash.io [32], SlushPool [33] and

have confirmed that none of them use this field. In ad-

dition, we note that the size of this field makes it ideal

to store the output of a double SHA-256 hash.

9 Evaluation

In this section we evaluate the StraTap, ISP Log and

BiteCoin attacks, as well as the performance of Bedrock.

We use the mean squared error (MSE) and the mean

percentage error (MPE) to evaluate the accuracy of the

predictions made by the passive attacks. Specifically,

let P = {P1, .., Pn} be a set of observed daily pay-

ments over n days, and let P̄ = {P̄1, .., P̄n} be the cor-

responding predicted daily payments for the same days.

Then, MSE(P̄ , P ) = 1

n

∑n

i
(P̄i − Pi)

2, and MPE(P̄ , P )

= 100%

n

∑n

i
Pi−P̄i

Pi

.

9.1 The StraTap Attack

We have used the StraTap script described in § 8.1 to

calculate the average time of share creation for each of

the detected intervals of constant difficulty. For each of

the 24 hour runs, we also calculated the weighted aver-

age difficulty as well as the weighted average hashrate

for the entire run. In addition, we have also used Equa-

tion 3, along with the computed average time and

recorded difficulty values, to compute a prediction of

the weighted average hashrate of the miner.

Table 1 shows the AntMiner’s frequency of opera-

tion, the output hashrate achieved at that frequency,

and the predicted hashrate. As expected, there is a lin-



Hardening Stratum, the Bitcoin Pool Mining Protocol 13

2

4

6

8

10

12

100 200 300 400 500 600
Frequency (Mhz)

P
a
y
o

u
t 

(m
B

T
C

)
Actual payout
Stratap prediction
ISP Log (average)

Fig. 10. Payout prediction by StraTap and ISP Log attacks, com-

pared to empirical payout, in mili Bitcoin (mBTC), as a function

of the miner’s frequency of operation (MHz). The actual payout

series (red diamonds) corresponds to daily payouts collected from

the F2Pool account records. The StraTap payout series (blue

disks) shows daily payout predictions based on entire Stratum

messages intercepted. The ISP Log series (green triangles) shows

the daily payout prediction when using the average inter-packet

times over 50 packets. StraTap’s prediction error ranges between

1.75-6.5% (MSE=0.062, MPE=3.46%). ISP Log has an error

between 0.53 - 34.4% (MSE = 2.02, MPE = -9.49%).

ear relationship between the frequency of operation and

the device’s hashrate achieved. As a consequence, this

relationship is preserved across the empirical payout re-

ported by the pool operators.

Specifically, we have used the pool’s hashrate to

BTC conversion (see § 2.4) to predict the miner’s result-

ing daily payout. Figure 10 shows the data series for the

empirical and predicted payouts, versus the operation

frequency of the miner. The StraTap attack achieves

a prediction error of between 1.75% and 6.5%, with a

mean square error (MSE) of 0.062 and mean percent-

age error (MPE) of -3.46%. Thus, StraTap’s predictions

tend to be slightly larger than the actual payout values.

9.2 The ISP Log Attack

We first present results of our analysis of F2Pool’s

hashrate inference protocol. We then show the ability

of the ISP Log attack to leverage these findings to infer

the miner’s daily payouts, given only metadata of the

miner’s packets.

Hashrate inference protocol. As mentioned in § 4.2,

immediately following the miner subscription and au-

thorization, the pool sets the difficulty to 1024, and

changes it only after receiving a sufficient number of

share submissions to infer the miner’s hashrate. For in-

stance, Figure 11(a) shows that when the miner operates

at 200MHz, the number of share submissions between

the first two share difficulty notification messages is sim-

(a)

(b)

Fig. 11. Timelines that focus on the interval between the first

two share difficulty notifications, following a miner subscrip-

tion and authorization protocol, when (a) the miner operates at

200MHz and (b) the miner operates at 600MHz. While the inter-

vals between the first two such notifications at both frequencies

contain approximately 50 share submission packets, this interval

is significantly shorter at 600MHz. This is because at 600MHz

the miner can solve the 1024 difficulty puzzles much faster than

at 200MHz. The “ISP Log” attack exploits this observation to

infer the hashrate of the miner, while only counting packets (i.e.,

without being able to inspect them).

ilar to the number of share submissions when the miner

operates at 600MHz (Figure 11(b)) (approximately 50).

However, the time interval between the first two share

difficulty notifications is much shorter at 600MHz: the

miner can compute 50 shares at the constant difficulty

1024 much faster than when operating at 200MHz.

More general, Table 2 shows the number of share

submission packets sent for this initial measurements

period for each of the frequencies analyzed. We observe

that the pool requires that this process generates at

least 50 share submissions, irrespective of the miner op-

eration frequency. The pool waits up to 288 seconds to

receive the required number of shares, before sending

the second share difficulty notification.

We conjecture that the pool uses this process in or-

der to infer the hashrate of the miner, which it needs in

order to assign jobs (puzzles) that a miner can solve at

a “desirable” rate. Specifically, large pools handle thou-



Hardening Stratum, the Bitcoin Pool Mining Protocol 14

Freq(MHz) # of Packets Time Interval

100 57 288.872897148

150 56 256.145660877

200 51 153.622557878

250 63 146.007184982

300 55 131.089562893

350 62 146.259056807

400 54 101.954112053

450 67 104.665092945

500 50 58.2229411602

550 62 76.0586118698

600 54 50.7432210445

650 56 45.6691811085

Table 2. Number of share submission packets for the initial 1024

difficulty period, as well as the length of the time interval when

the pool accepted those shares, for various miner frequencies of

operation. At any miner operation frequency, at least 50 share

submission packets are accepted, irrespective of wait time. This

process enables the pool and the ISP Log attack to infer the

miner’s hashrate.

100 200 300 400 500 600

0
2

4
6

8
1

0

Frequency (MHz)

In
te

r−
p

a
c
k
e

t 
ti
m

e
 (

s
e

c
) 1

0

Fig. 12. 1st, 2nd and 3rd quartile for the inter-packet times of

the first 50 packets during the initial difficulty setting procedure,

as a function of the miner’s operating frequency. We observe a

monotonically decreasing tendency of the inter-packet times, with

an increase in the miner capabilities. This suggests that inter-

packet time stats over the first 50 packets can provide a good

hashrate estimator for the ISP Log attack.

sands of miners simultaneously 2. In order to minimize

the time it takes to process share submissions received

from thousands of miners, the pool needs to regulate the

rate at which a miner submits shares, irrespective of the

miner’s computing capabilities. Figure 5 illustrates this

share submission rate control. In our experiments we

observed that for F2Pool, this rate ranges to between

1 to 4 share submissions per minute. A second reason

for this process stems from the need of miners to prove

computation progress and gain regular payouts.

ISP Log attack results. We have implemented the

ISP Log attack using statistics of the inter-packet ar-

rival time of the first 50 packets sent by the miner to the

2 The Bitcoin network currently has around 100,000 miners [25,

26], of which at least 16% work with F2Pool [27].

(a)

(b)

Fig. 13. Greedy BiteCoin attack timelines for (a) adversary and

(b) victim miner. In a 5h interval, the attacker hijacked 342 job

assignments and 72 corresponding share submissions of the victim

miner. 23 shares (the green clumps marked with red arrows) were

accepted by the pool.

pool, after a detected 3-way miner subscription and au-

thorization protocol. Figure 12 shows the 1st, 2nd (me-

dian) and 3rd quartiles of the inter-packet times, for the

first 50 packets, when the miner operates at frequencies

ranging from 100 to 650 MHz. The linearly decreasing

behavior of the median, 1st and 3rd quartiles indicates

that statistics over the inter-packet times of the first 50

packets, may make a good predictor.

To confirm this, we have used the mean inter-packet

time over the first 50 packets to predict the miner’s

hashrate and then its payout. Figure 10 compares the

ISP Log attack daily payout prediction with that of

StraTap and with the empirical payout. The ISP Log

has an error that ranges between 0.53% and 34.4%, with

an MSE of 2.02 and MPE of -9.49% . Thus, ISP Log over

predicts the daily payouts, and, as expected, it exceeds

the error of the StraTap attack.

9.3 BiteCoin: Proof of Concept

We have experimented with the BiteCoin implementa-

tion described in § 8.2. Specifically, the attacker greedily

injected all the jobs assigned by the pool into the victim

communication stream during the attack time and with-



Hardening Stratum, the Bitcoin Pool Mining Protocol 15

N/A
10

−2

10
0

10
2

10
4

AntMiner S7 Pool server

O
ve

rh
e

a
d

 (
s
e

c
s
)

Blanket encryption
TLS encryption
Bedrock

Fig. 14. Overhead comparison of Bedrock and a complete en-

cryption approach, for miner and pool. Bedrock imposes a small

daily overhead on both the pool (12.03s to handle 16,000 miners)

and miner (0.002s). However, a solution that encrypts all Stratum

packets imposes a daily overhead of 1.36 hours on the pool.

out any modification. Our implementation injected a to-

tal of 342 job assignments in a time interval of 5 hours,

from hour 21:25 to 02:24. The attacker monitored the

share submissions from the victim, and hijacked shares

corresponding to the injected jobs.

Figure 13 shows the results of this attack. The ad-

versary, whose timeline is shown in Figure 13(a), hi-

jacked 72 share submissions from the victim miner. 23

shares (the green clumps marked with red arrows) were

accepted by the pool, i.e., as if they were mined by the

attacker and not by the victim. 49 shares were rejected.

Figure 13(b) shows the timeline of the attack from the

perspective of the victim miner.

The gaps are likely due to the script trying to get

some constant work in. Every disconnection and recon-

nection of the attacker will trigger a subscribe protocol

where the first job has the true flag set. This would ex-

plain why there are no hijacked shares between around

22:00 and 1:00 in the attacker timeline and also the gap

of any activity in the victim timeline. These constant

reconnects may have constantly blanked the job pool of

the victim until the attacker was able to maintain its

connection to submit the shares.

9.4 The Bedrock Evaluation

We measured Bedrock’s encryption times when using

AES-256 in CBC mode on the AntMiner S7 and on a

server with 40 cores Intel(R) Xeon(R) CPU E5-2660 v2

@ 2.20GHz and 64 GB RAM. The AntMiner was able

to encrypt 1024-blocks at 32,231.09 Kb/sec while the

server was able to encrypt at 86,131.07 Kb/sec for the

same block size.

Based on the collected data, Stratum generates an

average of 31.63 set difficulty messages per day. Fig-

ure 14 shows that Bedrock imposes a 0.002s decryption

overhead per day on an AntMiner S7, while on a pool

using the above server to handle 16,000 miners, it im-

poses an encryption overhead of 12.03 seconds per day.

In contrast, a solution that encrypts each Stratum

packet imposes an overhead of 0.13 seconds per day on

the AntMiner, and an unacceptable 1.36 hours per day

on the pool server, to handle 16,000 miners.

9.4.1 TLS Overheads

We also compare Bedrock against Stratum protected

with TLS. We have used a replay of a 24 hour subset

of our Stratum traffic dataset (§ 8.1), sent over TLS

between a laptop used as miner (AntMiner does not

support TLS) and the server above, used as the pool.

Computation overheads. To measure the TLS com-

putation overheads, we have used Tcpdump [47] to cap-

ture the times when Stratum/TLS packets leave from

and arrive at the pool application, and also captured

the time when the packets are sent from/received by

the pool TLS socket. We have computed the total daily

pool side TLS overhead of sending and receiving Stra-

tum packets (job assignment, share submission, notifi-

cations, set difficulty change, etc). Figure 14 shows the

difference between this overhead and the same overhead

but when using bare TCP. It shows that the daily com-

putation overhead imposed by TLS on the pool, through

the traffic of 16,000 miners, is 1.01 hours. This amounts

to a computational overhead percentage of at least 4.3%.

Bandwidth overhead. In addition, we have mea-

sured the bandwidth overhead imposed by TLS. The

total miner-to-pool payload (single miner) for cleart-

ext Stratum/TCP traffic is 465,875 bytes and for Stra-

tum/TLS is 738,873 bytes. The total pool-to-miner pay-

load of Stratum/TCP is 3,852,795 bytes while for Stra-

tum/TLS is 4,062,956 bytes. Thus, TLS imposes a 58%

overhead on the miner-to-pool bandwidth, for a total of

4.05GB daily overhead on the pool from 16,000 miners.

This uplink overhead is significant, especially for miners

in countries with poor Internet connectivity.

TLS imposes a 5% overhead on the pool-to-miner

bandwidth, for a total of 3.13GB daily overhead on the

pool. The TLS overhead is much larger in miner-to-pool

communications, even though there are more pool-to-

miner packets. This is because the miner-to-pool share

submission packets are much smaller than the pool-to-

miner job assignments, thus the TLS overhead (125 to

160 bytes) becomes a significant factor for them. In con-

trast, the percentage bandwidth overhead for Bedrock

is only 0.04%.



Hardening Stratum, the Bitcoin Pool Mining Protocol 16

Conclusions. Bedrock is more efficient than blanket

encryption and TLS. While the pool could use more

equipment to handle encryption more efficiently, blan-

ket encryption and TLS do not address the hashrate

inference vulnerability. In addition, TLS imposes a sig-

nificant uplink bandwidth overhead on miners.

10 Related Work

Bitcoin mining attacks. Decker and Wattenhofer [49]

study Bitcoin’s use of a multi-hop broadcast to propa-

gate transactions and blocks through the network to

update the ledger replicas, then study how the net-

work can delay or prevent block propagation. Heilman

et al. [50] propose eclipse attacks on the Bitcoin net-

work, where an attacker leverages the reference client’s

policy for updating peers to monopolize all the connec-

tions of a victim node, by forcing it to accept only fraud-

ulent peers. The victim can then be exploited to attack

the mining and consensus systems of Bitcoin. Bissas et

al. [51] present and validate a novel mathematical model

of the blockchain mining process and use it to conduct

an economic evaluation of double-spend attacks, both

with and without a concurrent eclipse attack.

Courtois and Bahack [52] propose a practical block

withholding attack, in which dishonest miners seek to

obtain a higher reward than their relative contribution

to the network. They also provide an excellent back-

ground description of the motivation and functionality

of mining pools and the mining process.

Bitcoin anonymity. Significant work has focused on

breaking the anonymity of Bitcoin clients [1–4]. For

instance, Biryukov et al. [1] proposed a method to

deanonymize Bitcoin users, which allows to link user

pseudonyms to the IP ad- dresses where the transactions

are generated. Koshy et al. [2] use statistical metrics for

mappings of Bitcoin to IP addresses, and identify pairs

that may represent ownership relations.

Several solutions arose to address this problem.

Miers et al. [5] proposed ZeroCoin, that extends Bit-

coin with a cryptographic accumulator and zero knowl-

edge proofs to provide fully anonymous currency trans-

actions. Ben-Sasson et al. [6] introduced Zerocash, a de-

centralized anonymous payment solution that hides all

information linking the source and destination of trans-

actions. Bonneau et al. [7] proposed Mixcoin, a currency

mix with accountability assurances and randomized fee

based incentives.

Our work is orthogonal to previous work on Bitcoin

anonymity, as it identifies vulnerabilities in Stratum, the

communication protocol employed by cryptocurrency

mining solutions. As such, our concern is for the pri-

vacy and security of the miners, as they generate coins.

Our attacks are also more general, as they apply not

only to Bitcoin, but to a suite of other popular altcoin

solutions, e.g., [20–22] that build on Stratum.

Effects of broken crypto on Bitcoin. Giechaskiel

et al. [45] systematically analyze the effects of broken

cryptographic primitives on Bitcoin. They reveal a wide

range of possible effects that range from minor privacy

violations to a complete breakdown of the currency. Our

attacks do not need broken crypto to succeed. However,

we show that Bedrock, our secure Stratum extension is

resilient to broken crypto primitives.

11 Conclusions

In this paper we have shown that the lack of security

in Stratum, Bitcoin’s mining communication protocol,

makes miners vulnerable to a suite of passive and ac-

tive attacks, that expose their owners to hacking, coin

and equipment theft, loss of revenue, and prosecution.

We have implemented and shown that the attacks that

we introduced are efficient. Our attacks reveal that en-

cryption is not only undesirable, due to its significant

overheads, but also ineffective: an adversary can pre-

dict miner earnings even when given access to only the

timestamps of miner communications. We have devel-

oped Bedrock, a minimal and efficient Stratum exten-

sion that protects the privacy and security of mining

protocol participants. We have shown that Bedrock im-

poses an almost negligible computation overhead on the

mining participants and is resilient to active attacks

even if the used cryptographic tools are compromised.

12 Acknowledgments

We thank the shepherds and the anonymous review-

ers for their excellent feedback. We thank Patrick

O’Callaghan for suggesting this problem and for insight-

ful discussions. This research was supported by NSF

grants 1526494 and 1527153.

References

[1] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.

Deanonymisation of clients in bitcoin p2p network. In Pro-

ceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, pages 15–29. ACM, 2014.



Hardening Stratum, the Bitcoin Pool Mining Protocol 17

[2] Philip Koshy, Diana Koshy, and Patrick McDaniel. An anal-

ysis of anonymity in bitcoin using p2p network traffic. In

International Conference on Financial Cryptography and

Data Security, pages 469–485. Springer, 2014.

[3] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill

Levchenko, Damon McCoy, Geoffrey M. Voelker, and Ste-

fan Savage. A fistful of bitcoins: Characterizing payments

among men with no names. In Proceedings of the 2013

Conference on Internet Measurement Conference, pages

127–140, 2013.

[4] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias

Scherer, and Srdjan Capkun. Evaluating user privacy in

bitcoin. In Proceedings of the Financial Cryptography and

Data Security, pages 34–51, 2013.

[5] Ian Miers, Christina Garman, Matthew Green, and Aviel D.

Rubin. Zerocoin: Anonymous distributed e-cash from bit-

coin. In Proceedings of the 2013 IEEE Symposium on Secu-

rity and Privacy, pages 397–411, 2013.

[6] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,

Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.

Zerocash: Decentralized anonymous payments from bitcoin.

In Proceedings of the Symposium on Security and Privacy,

pages 459–474, 2014.

[7] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy

Clark, Joshua A Kroll, and Edward W Felten. Mixcoin:

Anonymity for bitcoin with accountable mixes. In Proceed-

ings of the International Conference on Financial Cryptogra-

phy and Data Security, pages 486–504, 2014.

[8] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind

Narayanan, Joshua A. Kroll, and Edward W. Felten. Sok:

Research perspectives and challenges for bitcoin and cryp-

tocurrencies. In Proceedings of the IEEE Symposium on

Security and Privacy, 2015.

[9] BBC. We Looked Inside a Secret Chinese Bitcoin Mine.

http://www.bbc.com/future/story/20160504-we-looked-

inside-a-secret-chinese-bitcoin-mine, May 2016.

[10] allinvain. I just got hacked - any help is welcome! (25,000

BTC stolen). https://bitcointalk.org/index.php?topic=

16457.msg214423#msg214423, June 2011.

[11] dree12. List of Major Bitcoin Heists, Thefts, Hacks, Scams,

and Losses [Old]. https://bitcointalk.org/index.php?topic=

83794.0#post_mybitcoin_theft, May 2012.

[12] Ed Williams. Kidnappings in Venezuela. American Diplo-

macy, 2011.

[13] Wikipedia. Legality of Bitcoin by Country. https://en.

wikipedia.org/wiki/Legality_of_bitcoin_by_country.

[14] Cryptocoins News. Top 10 Countries in Which Bitcoin

is Banned. https://www.cryptocoinsnews.com/top-10-

countries-bitcoin-banned/, May 2015.

[15] Cryptocoins News. Report: Two Venezuelan Men Arrested

for Mining Bitcoin. https://www.cryptocoinsnews.com/

report-two-venezuelans-arrested-mining-bitcoin/, March

2016.

[16] Bitcoin Magazine. Venezuela Seems to Be Cracking Down

on Bitcoin. https://bitcoinmagazine.com/articles/venezuela-

seems-be-cracking-down-bitcoin/, February 2017.

[17] Jim Epstein. The Secret, Dangerous World of Venezuelan

Bitcoin Mining. http://reason.com/archives/2016/11/28/

the-secret-dangerous-world-of, 2017.

[18] Stratum mining protocol specification. https://slushpool.

com/help/#!/manual/stratum-protocol, Last accessed in

July 2016.

[19] Stratum mining protocol - Displacing GBT. https://en.

bitcoin.it/wiki/Stratum_mining_protocol#Displacing_GBT,

Last accessed in July 2016.

[20] Litecoin pool mining. https://www.litecoinpool.org/help,

Last accessed in Oct 2016.

[21] Ethereum pool mining. https://forum.ethereum.org/

discussion/7091/stratum-mining-protocol-for-ethereum,

Last accessed in Oct 2016.

[22] Monero pool mining. https://dwarfpool.com/xmr, Last

accessed in Oct 2016.

[23] Cryptocoins Market Capitalization. https://coinmarketcap.

com/, Last accessed in Oct 2016.

[24] Stratum mining protocol description. https://en.bitcoin.it/

wiki/Stratum_mining_protocol, Last accessed in July 2016.

[25] Number of Bitcoin Miners Far Higher Than Popular Esti-

mates. http://bravenewcoin.com/news/number-of-bitcoin-

miners-far-higher-than-popular-estimates/, May 2015.

[26] Neighbourhood Pool Watch. http://organofcorti.blogspot.

com.au/.

[27] An estimation of hashrate distribution amongst the largest

mining pools. https://blockchain.info/pools.

[28] Alex Biryukov and Ivan Pustogarov. Bitcoin over Tor isn’t

a Good Idea. In Proceedings of the IEEE Symposium on

Security and Privacy, pages 122–134, 2015.

[29] Collected Stratum Traffic Data. https://mega.

nz/#!FRVn0ZQT!00yzShFT5Rg5T1yVOzYOoVFxbz-

uibnzRqGJ7spSmac.

[30] F2Pool Help Page. https://www.f2pool.com/help, Last

accessed in July 2016.

[31] Antpool. https://www.antpool.com/.

[32] Ghash.io. http://ghash.io/.

[33] Slush pool. https://slushpool.com/home/.

[34] Btcc pool. https://pool.btcc.com/.

[35] Bitcoin pools hashrate distribution. https://blockchain.info/

pools, Last accessed in July 2016.

[36] Wikipedia. Telecommunications data retention, 2011.

[37] Christian DeSimmone. Pitting karlsruhe against luxembourg-

german data protection and the contested implementation of

the eu data retention directive. German LJ, 11:291, 2010.

[38] Dialy News: NSA analysts spied on spouses, girlfriends:

documents. http://www.nydailynews.com/news/politics/

nsa-analysts-spied-spouses-girlfriends-documents-article-1.

2058282, Last accessed in August 2016.

[39] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao,

Srikanth V Krishnamurthy, and Lisa M Marvel. Off-path

tcp exploits: Global rate limit considered dangerous.

[40] Zhiyun Qian and Z Morley Mao. Off-path tcp sequence

number inference attack-how firewall middleboxes reduce

security. In 2012 IEEE Symposium on Security and Privacy,

pages 347–361. IEEE, 2012.

[41] CoinDesk. Gallery: Fire Destroys Thai Bitcoin Mining Fa-

cility. http://www.coindesk.com/gallery-fire-destroys-thai-

bitcoin-mining-facility/, November 2014.

[42] Shijack - TCP session hijacking. https://www.exploit-db.

com/papers/13587/, Last accessed in July 2016.

[43] Juggernaut - TCP session hijacking. http://phrack.org/

issues/50/6.html, Last accessed in July 2016.

http://www.bbc.com/future/story/20160504-we-looked-inside-a-secret-chinese-bitcoin-mine
http://www.bbc.com/future/story/20160504-we-looked-inside-a-secret-chinese-bitcoin-mine
https://bitcointalk.org/index.php?topic=16457.msg214423#msg214423
https://bitcointalk.org/index.php?topic=16457.msg214423#msg214423
https://bitcointalk.org/index.php?topic=83794.0#post_mybitcoin_theft
https://bitcointalk.org/index.php?topic=83794.0#post_mybitcoin_theft
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country
https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country
https://www.cryptocoinsnews.com/top-10-countries-bitcoin-banned/
https://www.cryptocoinsnews.com/top-10-countries-bitcoin-banned/
https://www.cryptocoinsnews.com/report-two-venezuelans-arrested-mining-bitcoin/
https://www.cryptocoinsnews.com/report-two-venezuelans-arrested-mining-bitcoin/
https://bitcoinmagazine.com/articles/venezuela-seems-be-cracking-down-bitcoin/
https://bitcoinmagazine.com/articles/venezuela-seems-be-cracking-down-bitcoin/
http://reason.com/archives/2016/11/28/the-secret-dangerous-world-of
http://reason.com/archives/2016/11/28/the-secret-dangerous-world-of
https://slushpool.com/help/#!/manual/stratum-protocol
https://slushpool.com/help/#!/manual/stratum-protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol#Displacing_GBT
https://en.bitcoin.it/wiki/Stratum_mining_protocol#Displacing_GBT
https://www.litecoinpool.org/help
https://forum.ethereum.org/discussion/7091/stratum-mining-protocol-for-ethereum
https://forum.ethereum.org/discussion/7091/stratum-mining-protocol-for-ethereum
https://dwarfpool.com/xmr
https://coinmarketcap.com/
https://coinmarketcap.com/
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol
http://bravenewcoin.com/news/number-of-bitcoin-miners-far-higher-than-popular-estimates/
http://bravenewcoin.com/news/number-of-bitcoin-miners-far-higher-than-popular-estimates/
http://organofcorti.blogspot.com.au/
http://organofcorti.blogspot.com.au/
https://blockchain.info/pools
https://mega.nz/#!FRVn0ZQT!00yzShFT5Rg5T1yVOzYOoVFxbz-uibnzRqGJ7spSmac
https://mega.nz/#!FRVn0ZQT!00yzShFT5Rg5T1yVOzYOoVFxbz-uibnzRqGJ7spSmac
https://mega.nz/#!FRVn0ZQT!00yzShFT5Rg5T1yVOzYOoVFxbz-uibnzRqGJ7spSmac
https://www.f2pool.com/help
https://www.antpool.com/
http://ghash.io/
https://slushpool.com/home/
https://pool.btcc.com/
https://blockchain.info/pools
https://blockchain.info/pools
http://www.nydailynews.com/news/politics/nsa-analysts-spied-spouses-girlfriends-documents-article-1.2058282
http://www.nydailynews.com/news/politics/nsa-analysts-spied-spouses-girlfriends-documents-article-1.2058282
http://www.nydailynews.com/news/politics/nsa-analysts-spied-spouses-girlfriends-documents-article-1.2058282
http://www.coindesk.com/gallery-fire-destroys-thai-bitcoin-mining-facility/
http://www.coindesk.com/gallery-fire-destroys-thai-bitcoin-mining-facility/
https://www.exploit-db.com/papers/13587/
https://www.exploit-db.com/papers/13587/
http://phrack.org/issues/50/6.html
http://phrack.org/issues/50/6.html


Hardening Stratum, the Bitcoin Pool Mining Protocol 18

[44] Hunt - TCP session hijacking. http://linux.die.net/man/1/

hunt, Last accessed in July 2016.

[45] Ilias Giechaskiel, Cas Cremers, and Kasper Rasmussen. On

bitcoin security in the presence of broken crypto primitives.

eprint.iacr.org, 2016.

[46] AntMiner S7. https://bitmaintech.com/productDetail.htm?

pid=00020150827084021471OHYdwd9D06A0, Last accessed

in July 2016.

[47] Van Jacobson, Craig Leres, and Steven McCanne. Tcpdump

public repository. http://www.tcpdump.org, 2003.

[48] Philippe Biondi. Scapy. see http://www. secdev. org/pro-

jects/scapy, 2011.

[49] Christian Decker and Roger Wattenhofer. Information prop-

agation in the bitcoin network. In IEEE P2P 2013 Proceed-

ings, pages 1–10. IEEE, 2013.

[50] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon

Goldberg. Eclipse attacks on bitcoin’s peer-to-peer network.

In 24th USENIX Security Symposium (USENIX Security 15),

pages 129–144, 2015.

[51] George Bissas, Brian Neil Levine, A Pinar Ozisik, Gavin

Andresen, and Amir Houmansadr. An analysis of attacks on

blockchain consensus. preprint arXiv:1610.07985, 2016.

[52] Nicolas T Courtois and Lear Bahack. On subversive miner

strategies and block withholding attack in bitcoin digital

currency. arXiv preprint arXiv:1402.1718, 2014.

http://linux.die.net/man/1/hunt
http://linux.die.net/man/1/hunt
https://bitmaintech.com/productDetail.htm?pid=00020150827084021471OHYdwd9D06A0
https://bitmaintech.com/productDetail.htm?pid=00020150827084021471OHYdwd9D06A0
http://www. tcpdump. org

	Hardening Stratum, the Bitcoin Pool Mining Protocol
	1 Introduction
	2 Model and Background
	2.1 Mining Pools
	2.2 The Coinbase Transaction
	2.3 The Bitcoin Puzzle
	2.4 Stratum

	3 Adversary Model
	3.1 Relevance of Attacks

	4 Passive Attacks
	4.1 The StraTap Attack
	4.2 The ISP Log Attack

	5 The BiteCoin Attack
	5.1 WireGhost: TCP Hijack with Re-Sync
	5.2 BiteCoin

	6 Bedrock: Secure Stratum
	6.1 Solution Requirements
	6.2 The Solution
	6.2.1 Mining Cookies
	6.2.2 Protect Communicated Secrets
	6.2.3 Secure Hashrate Computation


	7 Discussion
	7.1 Security Discussion
	7.2 Limitations

	8 Implementation and Testbed
	8.1 Passive Attacks
	8.2 BiteCoin Attack Implementation
	8.3 Bedrock Implementation

	9 Evaluation
	9.1 The StraTap Attack
	9.2 The ISP Log Attack
	9.3 BiteCoin: Proof of Concept
	9.4 The Bedrock Evaluation
	9.4.1 TLS Overheads


	10 Related Work
	11 Conclusions
	12 Acknowledgments


