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ABSTRACT

We introduce a new practical mechanism for remote data
storage with efficient access pattern privacy and correct-
ness. A storage client can deploy this mechanism to issue
encrypted reads, writes, and inserts to a potentially curi-
ous and malicious storage service provider, without reveal-
ing information or access patterns. The provider is unable
to establish any correlation between successive accesses, or
even to distinguish between a read and a write. Moreover,
the client is provided with strong correctness assurances for
its operations – illicit provider behavior does not go unde-
tected. We built a first practical system – orders of magni-
tude faster than existing implementations – that can execute
over several queries per second on 1Tbyte+ databases with
full computational privacy and correctness.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software

General Terms

Security
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1. INTRODUCTION
As networked storage architectures become prevalent –

e.g., networked file systems and online relational databases
in sensitive infrastructures such as email and storage por-
tals, libraries, health and financial networks – protecting
the confidentiality and integrity of stored data is paramount
to ensure safe computing. Such data is often geographically
distributed, stored on potentially vulnerable remote servers
or transferred across untrusted networks; this adds security
vulnerabilities compared to direct-access storage.
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Moreover, today, the remote servers are increasingly main-
tained by third party storage vendors. This is because the
total cost of storage management is 5–10 times higher than
the initial acquisition costs [10]. However, most third party
storage vendors do not provide strong assurances of data
confidentiality and integrity. For example, personal emails
and confidential files are being stored on third party servers
such as Gmail [1] and Xdrive [2]. Privacy guarantees of such
services are at best declarative and often subject customers
to unreasonable fine-print clauses – e.g., allowing the server
operator (and thus malicious attackers gaining access to its
systems) to use customer behavior for commercial profiling,
or governmental surveillance purposes [9].

To protect data stored in such an untrusted server model,
security systems should offer users assurances of data con-
fidentiality and access privacy. As a first line of defense, to
ensure confidentiality, all data and associated meta-data can
be encrypted at the client side using non-malleable encryp-
tion, before being stored on the server. The data remains
encrypted throughout its lifetime on the server and is de-
crypted by the client upon retrieval.

Encryption provides important privacy guarantees at low
cost. It however, is only a first step as significant information
is still leaked through the access pattern of encrypted data.
For example, consider an adversarial storage provider that
determines a particular region of the encrypted database cor-
responds to an alphabetically sorted keyword index. This is
not unreasonable, especially if the adversary has any knowl-
edge of the client-side software. The adversary can then
correlate plaintext keywords, identified by their position in
the index, to documents, by observing which locations in the
encrypted index are updated when a new encrypted docu-
ment is uploaded. In general, it is difficult to bound the
amount of information leaked by access patterns.

In existing work, one proposed approach for ensuring client
access pattern privacy (and confidentiality) tackles the case
of a single-owner model. Specifically, a service provider hosts
information for a client, yet does not find out which items
are accessed. Note that in this setup the client has full
control and ownership over the data and other parties are
able to access the same data through this client only. One
prominent instance of such mechanisms is Oblivious RAM
(ORAM) [14]. For simplicity, in the following we will use the
term ORAM to refer to any such outsourced data technique.

One of the main drawbacks of existing ORAM techniques
is their overall time complexity. Specifically, in real-world
setups ORAM [14] yields execution times of hundreds to
thousands of seconds per single data access.



This Contribution. In this paper we propose to build
on the work of Williams et al.[19] to introduce an efficient
ORAM protocol with significantly reduced communication
and computation complexities. Our protocol uses the ORAM-
based [14] pyramid-shaped database layout and reshuffling
schedule employed in [19] which yielded a protocol with
a complexity of O(log2 n) in the presence of O(

√
n) client

working memory, for a database sized n. Here however, we
deploy a new construction and more sophisticated reshuf-
fling protocol, to significantly reduce both the computa-
tional complexity (to O(log n log log n)) and the server stor-
age overheads (to O(n)) – yielding a comparatively fast and
practical oblivious data access protocol.

Efficiency. One of the main intuitions is to store each
pyramid level as an encrypted hashtable and an encrypted
Bloom filter (indexing elements in the hashtable). The Bloom
filter allows the client to privately and efficiently – no lin-
ear scanning of O(log n) fake block buckets for each stored
block to hide the success of each level query as in previ-
ous ORAMs – identify the level where an item of interest
is stored, which is then retrieved from the corresponding
hashtable. Less server-side storage is required (O(n) instead
of O(n log n)), thus both increasing throughput and reduc-
ing required server-side storage by an order of magnitude.

Privacy. The approach guarantees client access pat-
tern privacy, since the same operations are performed at all
pyramid levels, in the same sequence for any item of inter-
est. The use of the encrypted Bloom filters allows the client
to query an item directly at each level without revealing the
success, instead of relying on a series of O(log n) fake blocks
for each stored block to hide the success of each level query.
Our contributions consist also of a new reshuffling algorithm
that obliviously builds and maintains the encrypted Bloom
filters and of a more efficient oblivious merge-and-scramble.

Correctness. Moreover, authenticated per-level integrity
constructs provide clients with correctness assurances at lit-
tle or no additional cost, specifically ensuring that illicit
server behavior (e.g., alterations) does not go undetected.

System. We built a system capable of executing several
queries per second on 1TByte+ databases with full compu-
tational access privacy and correctness assurances. To the
best of our knowledge, this is the first system in existence
that offers these assurances at a practical throughput.

Moreover, our ORAM protocol is well suited for deploy-
ment on constrained hardware such as SCPUs. We pro-
pose its deployment on existing secure hardware (IBM 4764
[3]) to implement Private Information Retrieval (Figure 1),
and show that the achievable throughputs are practical and
much higher than existing work. These results contribute
key insights towards making PIR assurances truly practical.

2. MODEL
Deployment. We consider the following concise yet rep-
resentative interaction model. Sensitive data is placed by
a client on a data server. Later, the client will access the
outsourced data through an online query interface exposed
by the server. Network layer confidentiality is assured by
mechanisms such as SSL/IPSec. Without sacrificing gener-
ality, we will assume that the data is composed of equal-sized
blocks (e.g., disk blocks, or database rows).

Clients need to read and write the stored data blocks with
correctness assurances, while revealing a minimal amount
of information (preferably none) to the (curious and possi-

bly malicious) server. We describe the protocols from the
perspective of the client, who will implement two privacy-
enhanced primitives: read(id), and write(id, newvalue). The
(un-trusted) server need not be aware of the protocol, but
rather just provide traditional store/retrieve primitives.
Adversary. The adversarial setting considered through
Section 4 assumes a storage provider that is curious and
possibly malicious. Not only does it desire to illicitly gain
information about the stored data, but it could also attempt
to cause data alterations while remaining undetected. We
prove that clients will detect any tampering performed by
the server, before the tampering can affect the client’s be-
havior or cause any data leaks. We do not consider timing
attacks, noting that any implementation can be turned into
a timing-attack free implementation without affecting the
running time complexity. We also do not address direct de-
nial of service behavior.
Cryptography. We require three cryptographic primitives
with all the associated semantic security [13] properties: (i)
a secure, collision-free hash function which builds a distribu-
tion from its input that is indistinguishable from a uniform
random distribution, (ii) an encryption function that gen-
erates unique ciphertexts over multiple encryptions of the
same item, such that a computationally bounded adversary
has no non-negligible advantage at determining whether a
pair of encrypted items of the same length represent the
same or unique items, and (iii) a pseudo random number
generator whose output is indistinguishable from a uniform
random distribution over the output space.

3. RELATED WORK

3.1 Oblivious RAM
Oblivious RAM [14] provides access pattern privacy to

clients (or software processes) accessing a remote database
(or RAM), requiring only logarithmic storage at the client.
The amortized communication and computational complex-
ities are O(log3n). Due to a large hidden constant factor,
the ORAM authors offer an alternate solution with compu-
tational complexity of O(log4n), that is more efficient for all
currently plausible database sizes.

In ORAM, the database is considered a set of n encrypted
blocks and supported operations are read(id), and write(id,
newvalue). The data is organized into log4(n) levels, as a
pyramid. Level i consists of up to 4i blocks; each block is
assigned to one of the 4i buckets at this level as determined
by a hash function. Due to hash collisions each bucket may
contain from 0 to log n blocks.
ORAM Reads. To obtain the value of block id, the client
must perform a read query in a manner that maintains two
invariants: (i) it never reveals which level the desired block
is at, and (ii) it never looks twice in the same spot for the
same block. To maintain (i), the client always scans a single
bucket in every level, starting at the top (Level 0, 1 bucket)
and working down. The hash function informs the client
of the candidate bucket at each level, which the client then
scans. Once the client has found the desired block, the client
still proceeds to each lower level, scanning random buckets
instead of those indicated by their hash function. For (ii),
once all levels have been queried, the client re-encrypts the
query result with a different nonce and places it in the top
level. This ensures that when it repeats a search for this
block, it will locate the block immediately (in a different



location), and the rest of the search pattern will be random-
ized. The top level quickly fills up; how to dump the top
level into the one below is described later.
ORAM Writes. Writes are performed identically to reads
in terms of the data traversal pattern, with the exception
that the new value is inserted into the top level at the end.
Inserts are performed identically to writes, since no old value
will be discovered in the query phase. Note that semantic
security properties of the re-encryption function ensure the
server is unable to distinguish between reads, writes, and
inserts, since the access patterns are indistinguishable.
Level Overflow. Once a level is full, it is emptied into the
level below. This second level is then re-encrypted and re-
ordered, according to a new hash function. Thus, accesses
to this new generation of the second level will hence-forth be
completely independent of any previous accesses. Each level
overflows once the level above it has been emptied 4 times.
Any re-ordering must be performed obliviously: once com-
plete, the adversary must be unable to make any correlation
between the old block locations and the new locations. A
sorting network is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must
contain the same number of blocks. For example, if the
bucket scanned at a particular level has no blocks in it, then
the adversary would be able to determine that the desired
block was not at that level. Therefore, each re-order process
fills all partially empty buckets to the top with fake blocks.
Recall that since every block is encrypted with a semanticly
secure encryption function, the adversary cannot distinguish
between fake and real blocks.
ORAM Costs. Each query requires a total online cost of
O(log2(n)) for scanning the log n-sized bucket on each of the
log n levels, plus an additional, amortized cost due to inter-
mittent level overflows. Using a logarithmic amount of client
storage, reshuffling levels in ORAM requires an amortized
cost of O(log3(n)) per query. In practice, implementations
have a computational cost of O(log4(n)) as discussed above.

In [19] Williams et al. introduced an ORAM-variant with
a cost of O(log2 n) when O(

√
n) client storage is available.

In their work, the assumed client storage is used to speed up
the reshuffle process by taking advantage of the predictable
nature of a merge sort on uniform random data. In this
work we build on their result.

3.2 Private Information Retrieval
Another set of existing mechanisms handle access pattern

privacy (but not data confidentiality) in the presence of mul-
tiple clients. Private Information Retrieval (PIR) [8] pro-
tocols aim to allow (arbitrary, multiple) clients to retrieve
information from public or private databases, without re-
vealing to the database servers which records are retrieved.

In initial results, Chor et al. [8] proved that in an infor-
mation theoretic setting, any single-server solution requires
Ω(n) bits of communication. PIR schemes with only sub-
linear communication overheads, such as [8], require multi-
ple non-communicating servers to hold replicated copies of
the data. When the information theoretic guarantee is re-
laxed single-server solutions with better complexities exist;
an excellent survey of PIR can be found online [11, 12].

Recently, Sion et al. showed [17] that due to computation
costs, use of existing non-trivial single-server PIR protocols
on current hardware is still orders of magnitude more time-
consuming than trivially transferring the entire database.
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Figure 1: (top) Simple ORAM Protocol between a
client and a server. (bottom) A trusted server-side
client proxy can be used to build a PIR interface on
top of ORAM assurances.

3.3 Secure Hardware-aided PIR
The recent advent of tamper-resistant, general-purpose

trustworthy hardware such as the IBM 4764 Secure Co-
Processor [3] has opened the door to efficiently deploying
ORAM privacy primitives for PIR purposes (i.e., for arbi-
trary public or private data, not necessarily originated by
the current client) by deploying such hardware as a trusted
server-side client proxy.

Asonov was the first to introduce [4] a PIR scheme that
uses a secure CPU to provide (an apparent) O(1) online
communication cost between the client and server. How-
ever, this requires the secure CPU on the server side to scan
portions of the database on every request, indicating a com-
putational complexity cost of O(n), where n is the size of
the database.

An ORAM-based PIR mechanism is introduced by Iliev
and Smith [15], who deploy secure hardware to achieve a
cost of O(

√
n log n). This is better than the poly-logarithmic

complexity granted by ORAM for the small database sizes
they consider. This work is notable as one of the first full
ORAM-based PIR setups. Figure 1 summarizes the inter-
action between the client and server in ORAM, and how to
turn an ORAM implementation into a PIR implementation
using a Secure CPU.

An improved ORAM-based PIR mechanism with O(n/k)
cost is introduced in [18], where n is the database size and
k is the amount of secure storage. The protocol is based
on a careful scrambling of a minimal set of server-hosted
items. A partial reshuffle costing O(n) is performed every
time the secure storage fills up, which occurs once every k



queries. While an improvement, this result is not always
practical since the total database size n often remains much
larger than the secure hardware size k. For k =

√
n (as

assumed in this paper), this mechanism yields an O(
√

n)
complexity (significantly greater than O(log log n log n) for
practical values of n).

4. A SOLUTION
In previous work [19] Williams et al. achieved a complex-

ity of O(log2 n) in a protocol offering access privacy but
no correctness assurances. Here we build on their result
by deploying a new construction and more sophisticated
reshuffling protocol, to significantly reduce both the com-
putational complexity and the storage overheads to only
O(log n log log n) (amortized per-query), under the same as-
sumption of O(

√
n) temporary client storage, while also en-

dowing the protocol with correctness assurances.

4.1 Overview
Similar to ORAM (see Section 3.1 for more details), data

is organized into log(n) levels, pyramid-like. Level i consists
of up to 4i items, stored on the server as label-value pairs.
These pairs can be stored and retrieved in O(1) time if the
storage provider implements a suitable hash table [16]. This
differs from ORAM, which stores an item at level i using a
keyed hash function to determine its storage bucket (of size
O(log n), to allow for hash collisions) within the level. The
use of fixed-sized hash buckets in ORAM instead of a simple
hash table adds a O(log n) storage overhead multiplier, and
slows down query processing, but the buckets are necessary;
otherwise queries to a hash table could reveal whether the
item was found at this level.

Here we avoid the overhead of using buckets to mask the
query result by using Bloom filters [7] (constructed to be
collision-free). Before attempting to query for an item that
might not be at the current level, a per-level Bloom filter is
queried first. The bits of the Bloom filter are encrypted, hid-
ing the result of the query. If the Bloom filter indicates that
the item is not at this level, we query the level for a unique
fake item instead and continue with the next level. Once we
eventually find the desired item (at a future level) – it will
be moved into the root tree node – above the levels where
it was searched for before (as in ORAM). This ensures that
the same item will never be queried for in that instantiation
of the Bloom filter again (as now it will be found higher in
the pyramid, or a reshuffle would have been triggered).
Insight One: Faster Lookup. Thus one key insight in
our mechanism is that we can construct an encrypted Bloom
filter to perform set membership tests, without revealing the
success of our query. Additionally, we design a novel con-
struction procedure that assembles the encrypted Bloom fil-
ter without revealing any correlation between scanned items
and associated Bloom filter positions. The final benefit of
using encrypted Bloom filters is that all unique queries are
computationally indistinguishable due to the nature of the
keyed hash function used to index the filter. This allows
us to modify ORAM with significant performance benefits,
since we can avoid handling hash collisions, which add a
log n factor in total database size as described above.

The notion of encrypting a Bloom filter has been studied
previously, e.g. in [6]. However, here we use a novel con-
struction that hides the construction process, the inputs,
and the results of the Bloom filter.

Insight Two: Correctness. Moreover, we deploy a set
of authenticated, per-level integrity constructs to provide
clients with correctness assurances at minimal additional
cost. We specifically ensure that illicit server behavior (e.g.,
alterations) does not go undetected.

We now detail these components.

4.2 Query Processing
A query consists of a read or write request for a data item.

These items are kept at the storage provider at a particular
level; part of the client’s job is to determine which level the
item is at without revealing this to the server. Algorithm 1
shows the pseudo-code of this operation.

To process a query, the client first downloads and scans
the server-stored item cache (line 10) then proceeds to search
each level, starting at the top (line 11). A labeling function
consisting of a hash of the item ID with several level param-
eters (fakeAccessCtr(level) and Gen(level)) generates the
unique label by which the client can find the item at a partic-
ular level, if the item is indeed there. fakeAccessCtr(level)
represents the number of accesses to level since the last
reshuffle, and Gen(level) represents the number of times
level has been reshuffled. The use of fakeAccessCtr (line
12) ensures that successive queries request unique fake items,
which the client knows are stored on the server. The use of
Gen(level) ensures that items on every subsequent reshuffle
of a level have unique labels. Both functions are computed
from the total number of accesses to the system thus far.

The search of any one level requires O(1) time. If at the
ith level the item has not already been found (in the cache
or a previous level) (line 14) the client first computes the
label under which the item would be stored in the ith level
Bloom filter (line 15). It then retrieves the encrypted bits
corresponding to that label from the server-stored Bloom
filter (line 16). If the decrypted bits are all 1 (line 17), the
client has found the item at the ith level. It then computes
the label under which the item is stored in the level (ref-
erenced by its hashtable) (line 18) and asks the server to
remove and return the corresponding item (line 19). If at
least one decrypted Bloom filter bit is 0 (line 21), the client
instead performs the same operation using a fake label (built
at line 13), known to be stored at the server (line 20).

Once the client has found the item (line 21), it proceeds by
seeking fake items on the subsequent levels. This avoids re-
vealing the level that answered the query, which would pro-
vide a correlation between queries. The client first searches
for a fake label (line 22) in the Bloom filter at the ith level
(line 23), then asks the server to retrieve and remove a fake
item from the level (line 24).

Note that the client queries the remotely-stored encrypted
Bloom filter by requesting the encrypted values of positions
indicated by the label function. While this reveals the re-
quested Bloom filter positions to the remote server, nothing
is lost as we prevent correlation by guaranteeing that any
Bloom filter is only ever queried for any particular item once.
Since the positions in the filter are each encrypted, the server
never learns the result of the Bloom filter query.

4.3 Access Privacy
The client achieves access pattern privacy by maintaining

two conditions. First, no item is ever queried twice using
the same label. This is achieved by removing the item, once
it is found, and placing it in the item cache. Thus, on fu-



Algorithm 1 Query answering overview.

1.query(x : id)
2. server : Server; #server stub

4. bits : int[]; #bit values in Bloom filter

5. label, fakeLabel : int[]; #search labels

6. fakeAccCtr : int[]; #per level access counter

7. found : bool;
8. K : int[]; # secret key

9. v : Object; # value for name x

10. found, v := scanServerItemCache(x);
11. for (i := 1; i < log

4
n; i + +) do

12. fakeAccCtr(i) + +;
13. fakeLabel := hash(i, ”data”, Gen(i), fakeAccCtr(i), K);
14. if(found = false) do
15. label := hash(i, ”BF”, Gen(i), ”x”, K);
16. bits := server.getBloomFilter(i, label);
17. if(decrypt(bits) = ”11..1”) do
18. label := hash(i, ”data”, Gen(i), ”x”, K);
19. v := server.getNRemove(label); found := true;
20. else server.getNRemove(fakeLabel) fi;
21. else
22. label := hash(i, ”BF”, Gen(i), fakeAccCtr(i), K);
23. server.getBloomFilter(i, label);
24. server.getNRemove(fakeLabel);
25. fi
26. itemCache.append(x, v);
27. return (x, v);
28.end.

ture queries the client will locate it in the item cache before
repeating a label request; fakes will be substituted on the
lower levels. As items propagate out of the item cache (de-
scribed in Section 4.4), the label functions are updated, so
that the item has a different label by the time it makes it
back down to a particular level.

Second, the access patterns must appear indistinguishable
from random no matter where the item is located. A set
of fake items is used to guarantee this: if the Bloom filter
returns negative, indicating that the item is not stored at
this level, a fake item from this level is retrieved instead.

On every single query, the server observes the same pat-
tern. The client first scans the item cache, then queries a
random value (chosen uniformly randomly, independently
from all other information available to the server) from the
level 1 encrypted Bloom filter – never queried by the client
before. The server can observe the positions in the Bloom
filter accessed, but it cannot observe whether each position
is set to 1 or 0. The server then observes the client retrieve
and delete one item from the level 1 hash table – never re-
trieved by the client before. This identical pattern of a ran-
dom Bloom filter lookup followed by a random label-value
retrieval and deletion continues through each level. Finally,
the client appends a (semantically secure) encrypted value
to the item cache.

Success or failure at each level is not revealed – the server
cannot distinguish queries to fake entries in the Bloom filter
from queries to real items in the filter, and the server cannot
distinguish either of those from real items that are not in the
filter. Additionally, the server cannot distinguish requests to
real items from requests to fake items from the hash table,
since the secure hash function used is non-invertible.

Since there are log4 n levels, and a constant amount of
data transfer and computation is exercised on each level by
every query, the online cost per query is O(log n) (measured
in computation or transfer of words). Level reshuffling, de-
scribed in the next section, will add an offline amortized cost
per query of O(log n log log n).

We now fill in the missing pieces: how to empty the item
cache when it becomes full, and how to build the levels
and the Bloom filters without revealing any information the
server can correlate to retrievals.

4.4 Handling Level Overflows: Reshuffle
The construction of the initial database structure is ex-

plained by the process of emptying the item cache: items
are inserted into the item cache, which then overflows into
the lower levels. Similar to ORAM, when the item cache is
emptied, the contents are poured into level 1. In that pro-
cess, level 1 and its new contents are reshuffled according
to new label functions, removing any correlations between
past and future lookups. When level 1 becomes full, it is
poured into level 2, and so forth. Thus, the reshuffle process
empties one level i−1 into the level i below it, which is four
times as large as level i − 1. Level i is then scrambled, hid-
ing the correlation with the items’ previous levels. A new
Bloom filter for the lower level is constructed – even items
which happened to be at level i anytime in the past are now
identified by a new unique label.

Let m be the size of the new level (m ≤ 4i). Let h be the
number of hash functions used to generate a Bloom filter.
Let k1, ..kh be the client’s secret keys used to generate the
Bloom filters. Let b denote the number of bits in the Bloom
filter BF at level i. Let W be a working set stored on the
server. Let L be a list of O(m) entries, stored on the server.
Let T be a

√
m integer array stored at the client. Let Bkt be

a server-hosted list of O(
√

m) buckets, of
√

m entries each.
Initially, W , L, T and Bkt are empty and all the bits in the
server-stored BF are set to 0.

In the next steps (steps 2 through 7 in the detailed de-
scription below, and illustrated in Figure 4.4) we build the
encrypted Bloom filter without revealing the positions set
in the Bloom filter. This is accomplished by scanning all
items in the level, creating a list of what positions must be
set in the Bloom filter to add each item, and storing this
list encrypted on the server (step 2). To turn the list into a
proper Bloom filter bit array, it will be sorted with a bucket
sort – with

√
m buckets of size

√
m, so that any bucket fits

in private storage. To keep the buckets indistinguishable,
we ensure they will all have the same size. Next (step 3)
we calculate the size of each bucket, by scanning the list of
Bloom filter positions, incrementing the appropriate bucket
size tally for each position. In step 4 we add fake positions
that will end up in those buckets that are lacking, accord-
ing to the above (step 3) tally. Each bucket corresponds
to a fixed range of positions in the final filter, so j

√
m is a

position that will wind up in bucket j. At this point the
server will be able to identify the fake positions, since they
are all at the end of the list. We then (step 5) scramble the
list of positions to destroy all correlation between items and
positions, and hide the fakes. In step 6 we move the scram-
bled positions into their buckets. Step 7 constructs the final
Bloom filter, building a piece from each bucket. Steps 8
and 9 place the items in the new level while eliminating any
correlation between the old and the new level structures.



Figure 2: Level reshuffle: Bloom filter construction (Steps 2 - 7)

The overflow process, performed by the client to pour level
i− 1 (or the item cache) into level i proceeds as follows (see
Figure 4.4 for an illustration).

1. Merge levels. Move all items from level i − 1 and
level i into W , a working buffer on the remote server.
Discard the Bloom filters attached to both levels.

2. Build a list representation of the new Bloom
filter. Increment the Gen(Li) value. Read each item
x ∈ W exactly once, and for each compute its h bit-
positions pj(x) = hash(Gen(Li)||x.id||i||kj ) mod b,
j = 1..h, in the new Bloom filter. Encrypt each pj(x)
separately and store all E(pj(x)) values on the server-
side list L. This step takes O(m) time, and O(1) pri-
vate (client-side) storage. Costs here and in the fol-
lowing steps are expressed in terms of m = 4i being
the size of the current level.

3. Tally Bloom filter positions to determine future
bucket sizes. Read each entry of L (the list of en-
crypted Bloom filter positions prepared in the previous
step) exactly once. At the client side, for each entry
E(p) ∈ L, let idx(p) be the log m/2 most significant
bits of p. Then, do T [idx(p)] + +. This step allows
the client to compute the number of bit-positions of L
that will later (Step 6) end up in the Bkt structure.
Effectively, the client builds a tally in local storage cal-
culating the future size of each of the

√
m buckets that

will be built on the server in the step 6 bucket sort.
We use

√
m buckets of size

√
m so that each bucket

will fit in private storage in step 7, and the tally built
here, with one counter per bucket, also fits in private
storage. The step requires O(m) time and O(

√
m) pri-

vate storage. (To avoid redundant scans, this step can
be merged with the previous).

4. Add fake bits to make the bucket sizes equiv-
alent. The local tally from step 2 indicates the size

of the largest bucket. We scan the tally, adding fake
encrypted positions to the server-side list of encrypted
positions as we go, so that all the buckets will have
the same size as the largest bucket after the step 5
bucket sort. To add a fake position that will corre-
spond to bucket j, the position j

√
m is added to the

list. (A simple balls and bins result predicts that the√
m-sized buckets all have similar sizes, already; the

number of fakes to add is small compared to the num-
ber of real items). Let max be the index of T such

that T [max] = max
√

m
j=1T [j]. For each j = 1..

√
m gen-

erate T [max]−T [j] fake values vl such that the log m/2
most significant bits of each vl are equal to j. Store the
encrypted, E(vl||“fake′′) value in L. This operation
ensures that all the buckets of Bkt will store the same
number of elements. The bucket size tally is discarded
after this step. This step requires O(m) time.

5. Obliviously scramble the list of Bloom filter po-
sitions. The encrypted indexes (the bit-positions of
L, including the fakes) are scrambled, according to our
Oblivious Merge Scramble Algorithm, which destroys
all correlation between the old positions and the re-
sulting positions, which are a new uniform random
permutation. The new list L stores the scrambled val-
ues. The algorithm requires O(m log log m) time and
O(

√
m) private storage.

6. Bucket-sort the list of Bloom filter positions.
For each E(p) ∈ L, let idx(p) be the log m/2 most
significant bits of p. Then, do Bkt[idx(p)].add(E(p)).
Here the Bloom filter’s scrambled, encrypted positions
are bucket-sorted. The client retrieves each bit index,
decrypts it to read it, and writes the encrypted value
back to the bucket on the server corresponding to the
log m

2
most significant bits of the position. The bucket

sort allows us to construct the encrypted Bloom filter
in the next step without revealing to the server which



bits are set: if we were to simply scan the entire list
of positions setting the corresponding bits to true, the
server would observe the bit flips in our encrypted ar-
ray and learn what positions are set. The bucket sort
groups related positions together so that we can build
the Bloom filter from left to right in a single pass. This
step requires O(m) time.

7. Construct Bloom filter. For each j = 1..Bkt.size,
download Bkt[j]. Note that the size of Bkt[j] is

√
m.

Let BF [j
√

m]..BF [(j + 1)
√

m] be the segment of the
Bloom filter corresponding to Bkt[j], where BF [idx]
denotes the idxth bit of BF . For each E(p) ∈ Bkt[j],
let x be the least significant log m/2 bits of p. Do
BF [j

√
m + x] = 1. Store E(BF [j

√
m]..E(BF [(j +

1)
√

m] on the server. Finally, store the oblivious Bloom
filter of the working set W on the server.

Here the client downloads each bucket (which conve-
niently fits into local storage). The bucket corresponds
to a

√
m-sized segment of the final Bloom filter – all

positions in this bucket refer to a bit in this segment
of the filter. The bits corresponding to listed positions
are set to true, with all other bits set to false, in the lo-
cal copy. The client encrypts this Bloom filter segment
and uploads it to the server. Observe that the server
has no indication of how many bits are true in this
segment (other than that it is limited by the bucket
size), nor which are true. The Bloom filter is finished
at the end of this step. This step requires O(m) time,
and O(

√
m) private storage.

8. Scramble the items. Finally, the client uses the
Oblivious Merge Scramble Algorithm to scramble the
actual items in the working buffer W . The Oblivi-
ous Merge Scramble requires O(m log log m) time and
O(

√
m) private storage.

9. Add items back to level i. Once scrambled, the
items inserted under their new labels, according to the
new labeling function for level i. For each item in x ∈
W let label(x) = hash(”LiData||Gen(Li)||k). Insert
the pair (x, label(x)) into the set of items stored at level
i. Add m fake items to level i, so that a query that
turns out not to be for this level will have an item to
retrieve instead (most of these m fakes will be deleted
by the query process before the next reshuffle).

Level i − 1 is now empty, and level i now contains all the
items that were in level i − 1. If level i is now full, this is
then repeated as level i is then dumped into level i + 1 etc.

This procedure shows how level i− 1 can be dumped into
level i at a cost of O(m log log m) = O(4i log i). Level i −
1 is emptied once every 4i−1 queries, thus resulting in an
amortized cost per query due to reshuffling of

log4n
X

i=0

O(
4i log i

4i−1
) =

log4n
X

i=0

O(log i) = O(log n log log n)

The Bloom filter bits retrieved to check an item will ap-
pear to be chosen uniformly random, and completely inde-
pendently of each other; therefore, any bit pattern indicates
nothing about the query or the success of the query. They
are independent of the bucket sort write pattern, which is

the only other piece that could be tied to it, since the bucket
sort write pattern is the only access pattern that varies dur-
ing the reshuffle. The bucket writes are all identical except
for the order of the writes, which is uniform random because
of the scramble. The scramble has no bearing on the Bloom
filter access pattern, which is dependent only on the query
and the current Bloom hash function. Therefore the Bloom
filter construction process yields no information about the
items to the server in the resulting Bloom filter.

The level reorder process results in a new level that has
no correlation to the old level, since the new permutation
is chosen uniformly randomly (Theorem 2). The scramble
process itself reveals no information about the new or old
permutations, since the scramble has the same access pat-
tern in all instantiations.

4.5 Oblivious Scramble Algorithm
To complete step 5 above, we now describe an algorithm

that performs an oblivious scramble on a array of size n, with
c
√

n local storage, in O(n log log n) time with high probabil-
ity. This is based on an algorithm by Williams et al. in [19],
which scrambles an array obliviously in time O(n log n) by
ways of a merge sort. Since our application only requires
a scramble, and not a complete sort, we can improve the
asymptotic complexity by merging multiple arrays at once.

Informally, the algorithm is still a merge sort, except a
random number generator is used in place of a comparison,
and multiple arrays are merged simultaneously. The array is
recursively divided into segments, which are then scrambled
together in groups. The time complexity of the algorithm is
better than merge sort since multiple segments are merged
together simultaneously. Randomly selecting from the re-
maining arrays avoids comparisons among the leading items
in each array, so it is not a comparison sort.

The Oblivious Scramble Algorithm proceeds recursively as
follows, starting with the remote array split into segments of
size s = 1, a security parameter c, and an array to scramble
of size n.

1. For segments sized s, allocate ⌈
p

n/s⌉ buffers of size
c
√

s, (requiring c
√

n space total)

2. Split the array into groups of
p

n/s segments.

3. For each of the n/s√
n/s

=
p

n/s groups:

• Obliviously merge the segments in this group to-
gether into one new segment of size (s)

p

n/s =√
ns, by performing the Oblivious Merge Step on

the allocated buffers. The Oblivious Merge Step
requires c

√
s local working memory for each of the

p

n/s buffers, for a total of c
√

n working memory,
and operates in O(

√
ns) time.

4. In the end there are
p

n/s segments of size
√

ns.

5. Repeat.

One recursion of this algorithm requires a single pass across
the level, costing O(4i) for level i. Each pass brings the total

number of segments from n/s to
p

n/s, and we repeat until
there is one segment left. After iteration p, the number of
segments remaining will be n1/2p

. There will be 2 segments
left when p = log log n. Since it takes log log n passes to go



from n to 2, and each pass involves a single read and write
of the entire array, the total running time / communication
complexity for running the oblivious scramble on level i is
O(4i(log log 4i + 1)) = O(4i log i) = O(n log log n).

We now describe the last remaining piece of the Oblivious
Merge Scramble Algorithm, the Merge Step.

4.6 Oblivious Merge Step
The Oblivious Merge Step, whose pseudo-code is shown

in Algorithm 2, takes r arrays of size n/r, and merges them
randomly into a single array of size n, preserving the order-
ing among the input arrays in the output arrays: if an item
a is before item b in original array i, it will also be before b
in the final array.

The permutation is chosen uniformly randomly out of all
permutations that preserve the ordering of the original input
items. To ensure this, we will take n steps, choosing an item
from the front of one of the r arrays at every step. The choice
is biased since we choose each item without replacement
randomly from the remaining items: if a particular array
has a items left at step j, it has a a

n−j
chance of being

chosen at this step.
The key to obliviousness is that we accomplish this ran-

dom selection without affecting the actual access pattern of
reading from the server. In [19] this is implemented for 2
arrays; we now extend this to merge r arrays. By simply
reading the input evenly at a fixed rate, and outputting the
items indicated by the random function, the uniform nature
of the random function will cause the output rates to be very
similar with high probability.

In other words, we maintain a series of caching queues that
are fed at a certain rate. According to a random function,
we remove items from the queues. By the nature of the
random selection, with high probability the queues will never
overflow from being dequeued too slowly, nor empty out
from being dequeued too quickly, as shown in Theorem 1.
Due to space requirements, the proofs are omitted from this
version of the paper.

Theorem 1. The Oblivious Merge Scramble succeeds, with
high probability: the chance that the queue buffers overflow
or underrun is negligible w.r.t. the security parameter c.

Theorem 2. The Oblivious Merge Scramble produces a
permutation selected uniformly randomly from the set of all
permutations.

Theorem 3. The server learns nothing about the access
pattern from a client running this protocol.

4.7 Bloom Filter Parameters
We discuss here suitable choices of Bloom filter parame-

ters. A Bloom filter containing z items has two parameters:
y, the number of hash functions used (the number of bits set
per item in the filter), and x, the number of bits in the Bloom
filter, yielding the false positive rate r =

`

1 −
`

1 − 1

x

´yz´y
.

Our Bloom filters are constrained by two important con-
siderations. First, we need to minimize y, since this cor-
responds to the number of disk seeks required per lookup.
Second, we need to guarantee that with high probability,
there will be no false positives; i.e., r must be negligible to
prevent a privacy leak.

Algorithm 2 Oblivious Merge Step

1.oblivious merge step(A1[], ...Ar[])
2. B : array[n]; #new remote destination buffer of size n

3. s := 2c
p

n/r;#size of local queues

4. for (i := 1; i ≤ r; i + +) do
5. qi := new queue[s];
6. for (x := 1; x ≤ s/2; x + +) do
7. qi.enqueue(decrypt(Ai .readNextItem()));
8. #at this point each queue has s/2 items

9. for (x := s/2; x ≤ n + s/2; x + +) do
10. if (x ≤ n) then
11. for (i := 1; i ≤ r; i + +) do
12. qi.enqueue(decrypt(Ai .readNextItem()));
13. fi
14. # now we have read r items; time to output r items

15. for (i := 1; i ≤ r; i + +) do
16. v := randomlyChooseWhichArray();
17. t := qv.dequeue();
18. B.writeNextItem(encryptWithNewNonce(t));
19.end.

Therefore, for any fixed acceptable error rate r, e.g., 2−64,
and for member count z = m (level size), the trade-off be-
tween the Bloom filter size x and the bits set per item y
must be optimized to balance online disk seeks for query
answering, server storage used, and Bloom filter construc-
tion time. For disk-based storage of large databases, we find
nearly optimal parameters by fixing y ≈ 5, yielding a large,
sparsely populated Bloom filter.

5. CORRECTNESS AND INTEGRITY
In this section we introduce a set of integrity constructs

that endow the above solution with correctness assurances.
Specifically, we would like to guarantee that any storage
provider tampering behavior is detected. All of these con-
structs can be implemented efficiently, with few or almost
no overheads: (i) Message Authentication Codes (MACs)
are added for all the stored items and Bloom filters; (ii)
unique version labels for each item in the data covered by the
MAC are added to prevent any replay-type attack in which
the server incorrectly replies with a previously MAC-signed
message; (iii) incremental, collision-resistant commutative
checksums are added to checksum the item sets contained
in each level, to prevent the server from hiding or duplicating
items during the level reshuffle process.

For (i) we require a MAC function, such that the compu-
tationally bounded adversary has no non-negligible ability
to construct any message, MAC pair (M, MAC(M)) for an
M that did not originate at the client. Every item uploaded
to the server is protected by such a MAC. (ii) is straightfor-
ward. For (iii), besides the requirement of being collision-
resistant, it should be easy for clients to maintain and update
a checksum of a set. In particular, when adding or deleting
items, it should be possible to to so incrementally, without
recomputing the entire checksum value.

The incremental hashing paradigm of Bellare and Miccian-
cio [5] can be used to construct exactly such a checksum. Fix
any cryptographic hash function h (viewed as random ora-
cle) and a large prime p. To hash a set B = {b1, . . . , bl}, we



compute the product

H(B) :=

l
Y

i=1

h(bi) mod p. (1)

Note that this hash construction allows both for easy addi-
tion of item b (multiplication with h(b)) and removal of any
bi (multiplication by (h(di))

−1) without needing to recom-
pute the hashes of all values b1, . . . , bl.

It can be shown (in the random oracle model [13], proof
is out of scope here) that it is computationally infeasible to
find two sets that have the same checksum; the hash function
(1) thus forms an easy and efficient way to authenticate the
set of items in a level:

Theorem 4. If the discrete logarithm problem in Z
∗
p is

hard it is computationally infeasible to find two sets A 6= B
with H(A) = H(B).

Theorem 5. A client interface correctly implementing the
above integrity constructs will detect all incorrect server re-
sponses before they reveal any part of the access pattern, or
return an incorrect answer to the user of the interface.

6. PERFORMANCE
We implemented a prototype of the mechanisms discussed

above. This allowed us a unique insight in the boundary
between theoretical complexity and runtimes. We faced nu-
merous challenges to allow TB(Terabyte) - level, multi-disk
data handling, including implementing efficient TB - sized
hashtables, multi-threading, fast packet queueing and data
request handling, tweaking TCP/IP sockets to handle ef-
ficiently without delays, as well as generally caring about
every spent microsecond.

We chose Java as an initial platform and compiled using
the Sun JDK 1.6.0 05. The testing environment included
a mix of 4 of the following drive types: Seagate Barracuda
7200.11 SATA 3Gb/s 1TB, 7200 RPM, 105 MB/s sustained
data rate, 4.16ms average seek latency and 32 MB cache, and
Western Digital Caviar SE16 3 Gb/s, 320GB, 7200 RPM,
122 MB/s sustained data rate, 4.2ms average latency and
16MB cache. The machines involved were running Intel(R)
Pentium(R) 4 CPUs at 3.00GHz, with 2MB of L2 cache,
2GB RAM, and Linux Redhat Fedora Core 8, kernel 2.6.23.1
with Ext4 file system support enabled. To evaluate the suit-
ability of the mechanisms for different network types we
modulated different network delays and also ran the suite
in a general purpose 100MBps CDMA ethernet network.
Growing Database. Figure 3 shows observed query re-
sponse times over a database growing in size (by write queries)
from 10 to 650 MBytes. A majority of queries require a few
hundred milliseconds to run. Points above the average repre-
sent reshuffles of large levels. Large levels require more time
to reshuffle, but are reshuffled less frequently. The triples of
points show that each successive reshuffle of a level requires
more time as the level grows; after the fourth reshuffle, the
level is empty. The bands below the average query time re-
flect that after a large reshuffle, most of the levels are empty,
decreasing the number of levels that must be examined in
the following queries.
Impact of Network Latency. Figure 4 explores the
impact of network latency on response time (simulated using
sleep; the granularity of that primitive affects the accuracy
of the points at 0ms and 5ms). A strong dependence on
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Figure 3: A database is built from 64KB items using
a Bloom filter collision rate of 2−35 with network
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network round trip time can be observed, due to the fact
that round trip costs are paid several times during the online
phase of each query.
Impact of Database Size. Figure 5 explores the im-
pact of database size on response time in a controlled low-
latency network setting (localhost network < .1ms latency).
Here the databases are not grown as in figure 3, but rather
queries are issued on a pre-constructed database of the in-
dicated size. Multiple hard disks are used to incur disk seek
cost in parallel. The behavior validates the O(log n log log n)
complexity and looks almost logarithmic for the considered
database sizes. For a 1 TByte database, over 2 1

4
queries per

second can be performed.

Improvements. Our implementation suffers from two bot-
tlenecks that are not inherent to the protocol. First, the
Java implementation of the cryptographic primitives is sig-
nificantly slower than what can be achieved on the hardware
used. This slow-down is most prevalent during the reshuf-
fle process, in which we encountered an unexpected CPU
bottleneck instead of the expected I/O bottleneck. Second,
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Figure 5: The impact of database size on query re-
sponse time in a controlled, low-latency network set-
ting on a pre-constructed database (logscale on x
axis).

our implementation runs queries synchronously. The highly
interactive nature of our query process, in which the output
from one level is needed before the query to the next level can
be composed, requires that we pay the network round-trip
delay multiple times per query, as illustrated in Figure 4.A
higher query throughput can be achieved by running mul-
tiple queries simultaneously, since the network delay does
not represent a resource bottleneck. The current implemen-
tation does not yet support simultaneous queries, however
this can be achieved (at least for those queries that don’t
trigger reshuffles) without affecting the rest of the protocol.
Additionally, disk seek times will be mitigated in a parallel
implementation, for the same reason, if there are multiple
hard disks on the provider, since the disk seek penalty can
be paid simultaneously across different disks.

7. CONCLUSIONS
In this paper we introduce a first practical oblivious data

access protocol with correctness. The key insights lie in new
constructions and sophisticated reshuffling protocols that
yield practical computational complexity (to O(log n log log n))
and storage overheads (to O(n)). We also introduce a first
practical implementation that allows a throughput of several
queries per second on 1Tbyte+ databases, with full compu-
tational privacy and correctness, orders of magnitude faster
than existing approaches.
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