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ABSTRACT
The persistence of search rank fraud in online, peer-opinion sys-
tems, made possible by crowdsourcing sites and specialized fraud
workers, shows that the current approach of detecting and filtering
fraud is inefficient. We introduce a fraud de-anonymization ap-
proach to disincentivize search rank fraud: attribute user accounts
flagged by fraud detection algorithms in online peer-opinion sys-
tems, to the human workers in crowdsourcing sites, who control
them. We model fraud de-anonymization as a maximum likeli-
hood estimation problem, and introduce UODA, an unconstrained
optimization solution. We develop a graph based deep learning ap-
proach to predict ownership of account pairs by the same fraudster
and use it to build discriminative fraud de-anonymization (DDA)
and pseudonymous fraudster discovery algorithms (PFD).

To address the lack of ground truth fraud data and its pernicious
impacts on online systems that employ fraud detection, we pro-
pose the first cheating-resistant fraud de-anonymization validation
protocol, that transforms human fraud workers into ground truth,
performance evaluation oracles. In a user study with 16 human
fraud workers, UODA achieved a precision of 91%. On ground truth
data that we collected starting from other 23 fraud workers, our
co-ownership predictor significantly outperformed a state-of-the-
art competitor, and enabled DDA and PFD to discover tens of new
fraud workers, and attribute thousands of suspicious user accounts
to existing and newly discovered fraudsters.

CCS CONCEPTS
• Security and privacy → Social network security and pri-
vacy; Social aspects of security and privacy; • Information
systems → Incentive schemes;
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1 INTRODUCTION
Popular online service providers rely on user feedback to rank prod-
ucts and content they host over the Internet. Unfortunately, many
review-based platforms (e.g., Google Play [59], TripAdvisor [60],
Amazon [78], Twitter [22]) are the targets of undisclosed and de-
ceptive marketing practices whereby product developers engage in
fake endorsement either to boost their products or to demote those
of a competitor. Black hat crowdsourcing or crowdturfing offers an
economically viable opportunity for developers to hire specialized
workers who spam for profit [42, 71, 74, 76, 82].

This type of propaganda has a detrimental effect on the trust-
worthiness and quality of online services, and users can suffer from
such bait-and-switch schemes. For this reason, most major online,
peer-opinion services seek to detect and remove fake reviews that
result from hidden endorsements [49, 50, 65], which are unlawful
in accordance with FTC regulations 1. Significant academic work
on defenses against online fraud has focused on a binary classifi-
cation of reviews as fake or honest [18, 27, 31, 36, 37, 41, 43, 44, 47,
58, 61, 67, 71, 77, 79, 83], and of reviewers as fraudulent (Sybil) or
genuine [13, 20, 23, 40, 45, 81, 84, 87].

Fraud detection solutions however are not only (1) ineffective in
preventing fraud, as observed from the continued profitability of
fraud in online services and crowdsourcing platforms but also (2)
their accuracy is difficult to evaluate, given that collecting ground
truth fraud data is a notoriously hard task.

Services like Yelp acknowledge the validation problem, by not
removing but only making suspected fake reviews harder to ac-
cess, and moving reviews back and forth between the fake and
honest classes according to subsequent iterations of their detec-
tion algorithms [6, 49]. To address this problem, academic work
has built gold standard fraud datasets using rule-based heuristics,
assuming that e.g., fraudsters post reviews in a short period of
time [32, 33, 40, 44, 87], from the same IP address [40], or have a
skewed rating distribution [58, 87]. However, such assumptions are
also difficult to validate, especially as they are straightforward to

1If the endorser has been paid or given something of value to promote the product,
the connection between the marketer and endorser should be disclosed [2]
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Figure 1: DETEGO de-anonymizes fraud. Fraud detection
only identifies suspicious user accounts on the right. Fraud
de-anonymization also finds the crowdsourcing account
(left side) that controls them. Arrows signify control.

bypass by experienced fraudsters (e.g., using proxies, better dis-
tributing the post time and rating of reviews). In this paper, we take
steps toward addressing these problems.
Addressing inefficacy. In this paper, we propose to discourage
fraud instead of merely discovering it. To this end, as illustrated
in Figure 1, we seek to bridge the anonymity gap between exist-
ing fraud detection techniques, that only uncover pseudonymous
user accounts that post fraud, and the real identities of crowdsourc-
ing site accounts who control them. Specifically, we leverage the
observation that crowdsourcing site accounts contain uniquely
identifying payment information, e.g., bank, Paypal accounts, to
take steps toward de-anonymizing fraud, by attributing accounts
uncovered by fraud detection algorithms in online peer-opinion
systems, to their human owners in crowdsourcing sites.

We propose a general theoretical framework for the fraud de-
anonymization problem via Maximum Likelihood Estimation (MLE)
and assume a generative review-posting model wherein fraudster-
controlled accounts are more likely to endorse products in a pre-
defined partition of the product space. We introduce UODA, an
unconstrained optimization de-anonymization approach that at-
tributes a fraudulent user account to the fraud worker with the
highest likelihood of having generated its review history.

We develop DeepCluster, a semi-supervised approach to cluster
user accounts based on deep learning features extracted from the
common activities of the accounts. We leverage DeepCluster to
build a co-ownership predictor that determines if two input user ac-
counts are controlled by the same worker. We use the co-ownership
predictor to introduce (1) DDA, a discriminative de-anonymization
solution that trains a classifier to attribute a fraudulent user ac-
count to the worker who controls it, and (2) PFD, a pseudonymous
fraudster discovery algorithm that clusters fraudulent accounts that
cannot be attributed to known workers, such that each cluster is
likely controlled by a different, not yet discovered worker.

We introduce Detego 2, a system that combines fraud de-anony-
mization with fraudster discovery to iteratively expand both knowl-
edge of identifiable fraud workers and the accounts that they con-
trol. We believe that Detego can help peer-review sites identify the
experts from among hundreds of advertised fraud workers, who

2In Latin, detego means to uncover, reveal.

control large numbers of user accounts, and are responsible for post-
ing substantial numbers of fake reviews. Peer-review sites can use
this information to provide counter-incentives for expert fraudsters,
e.g., by pursuing them through their bank accounts (retrieved from
their crowdsourcing site accounts). Peer-review sites can also dis-
incentivize developers from hiring such identifiable fraudsters, e.g.,
by “shaming” promoted products with posts displaying information
about the fraudsters found to promote them [4].
Addressing validation. We introduce the first cheating-resistant,
fraud de-anonymization validation protocol, to obtain ground truth
confirmation on the performance of developed solutions. The proto-
col asks human fraud workers to reveal a seed set of user accounts
that they control, and subsequently confirm and prove control of
accounts that we predict that they control. We introduce multiple
verifications of participant attention and honesty, including asking
confirmations for accounts for which we already know the answer,
as well as e-mail and token based verifications.
Results. We conducted the fraud de-anonymization validation pro-
tocol, through a user study with 16 human fraud workers, who
revealed control of a total of 230 Google Play accounts. The par-
ticipants confirmed control of 91% of the user accounts newly dis-
covered by UODA. Further, on 942 ground truth attributed user
accounts that we collected from other 23 fraud workers, both DDA
and UODA achieved precision and recall that exceed 90%, and at-
tributed thousands of new accounts to these fraudsters.

We introduce intuition, and empirically evaluate the impact of
features used by our co-ownership predictor. Our predictor outper-
formed the F1-measure of state-of-the-art, Elsiedet’s Sybil social
link builder [87] by more than 12 percentage points, on ground
truth attributed data. Further, the PFD algorithm identified thou-
sands of accounts not previously known to be fraudulent, grouped
into communities according to common ownership by fraudsters.
We analyzed 1.1 billion pairs of reviews from these communities
and report orthogonal evidence of fraud, including communities
with more than 80% of accounts involved in review text plagiarism.
In summary, our contributions are the following:
• Fraud de-anonymization. Model fraud de-anonymization
as amaximum likelihood estimation problem. DevelopUODA,
an unconstrained optimization fraud de-anonymization al-
gorithm [§ 4].
• Co-ownership predictor. Introduce a graph based deep
learning approach to predict ownership of account pairs by
the same fraudster [§ 5]. Leverage the predictor to build
DDA, a discriminative fraud de-anonymization [§ 6] and
PFD, a pseudonymous fraudster discovery algorithm [§ 7].
• Human fraud de-anonymization oracles. Develop the
first protocol to provide human-fraud-worker-based per-
formance evaluation of fraud de-anonymization algorithms
[§ 9]. Evaluate proposed solutions using data collected through
this protocol [§ 11].

2 CONCEPTS AND BACKGROUND
In this section, we first formally define the basic terminology used
throughout the paper and then provide background details about
fraud in peer-opinion systems.



Figure 2: Anonymized screenshots of search rank fraud
from Facebook. (Top) Page of Facebook group dedicated to
search rank fraud. (Middle) Recruitment post from devel-
oper. (Bottom) Posts of fraud workers.

2.1 Basic Terminology
User. A person or entity who posts reviews about a subject on an
online peer-opinion system. Users make use of user accounts to
establish their identity online.
Subject. A developer created object or product that receives user
created reviews on the peer-opinion system.
Developer. A person or entity that hosts subjects on the peer-
opinion system. Developers usually have incentives to maximize
their subject’s visibility via review manipulation for which they
hire workers. Thus, we also refer to developers as employers.
Fraud worker. A person or entity that performs review manipula-
tion about a subject on behalf of a developer. Workers often use Sybil
accounts to post fraudulent reviews on the peer-opinion system.

2.2 System and Adversary Model
We consider online peer-opinion systems, e.g., Google Play, Yelp,
Amazon, that host accounts for developers, users and products.
Developers use their accounts to upload information about products
while users are expected to post reviews only for products they
have used. The survival of products in peer-opinion services is
contingent on their review influenced search rank. Higher ranked
products are acquired more frequently and generate more revenue,
either through direct payments or ads. For example, a one star boost
in rating was shown to help restaurants increase revenue by a 5-9%
margin [46]. While online systems keep their ranking algorithms
secret for security reasons [65], popular belief claims that large
numbers of positive reviews help products achieve higher search
rank [5].
Fraud Origin. The pressure to succeed has created a black market
for search rank fraud. Specialized fraud workers (also referred to as

fraud freelancers, or fraudsters) control multiple user accounts and
seek employment by product developers to post fake reviews or ac-
tivities for their products. The accounts controlled by a fraudworker
are also known as Sybils or sockpuppets [13, 23, 40, 45, 81, 84, 85, 87].
Fraud workers advertise their services through crowdsourcing
sites [1, 3, 28], social networks (e.g., Facebook groups), and special-
ized fraud sites [7–11]. Moreover, fraudulent activities are profitable
as evidenced by their price ranges. For instance, we identified 44
fraud workers in Facebook groups, Zeerk, Peopleperhour, Free-
lancer and Upwork that advertised prices ranging from a few cents
($0.56 on average from Zeerk.com) to several dollars per review (up
to $10 in Freelancer.com) [56].
Facilitating Fraud. Crowdsourcing sites like Fiverr, Upwork and
Freelancer [1, 3, 28] host accounts for workers and employers. These
crowdsourcing accounts have a unique identifier and require a
linked bank account for depositing employer’s escrow money or
withdrawing worker’s earnings. Workers on these sites bid on
employer posted jobs while employers assign jobs to workers after
successful negotiation. Thus, these crowdsourcing sites provide a
comprehensive platform for performing peer-opinion system fraud.

In addition, workers can also advertise on social networks where
they usually encounter no restriction to use keywords associated
with search rank fraud and other blackhat services. As a conse-
quence, social networks like Facebook provide high visibility to
these services due to their large user base (see Figure 2 for sample
snapshots). Furthermore, Facebook groups specializing in search
rank fraud efficiently enable developers and fraud workers to find
each other and communicate through posts and comments.

Moreover, fraud workers can also create their own service adver-
tising pages hoping that developers discover them using keyword
search on Internet search engines.
Effective fraud. In a separate Upwork data set experiment, we col-
lected 161 search rank fraud jobs and their 533 bidding workers. We
found that jobs assigned to a single worker occurred less frequently
than jobs awarded to 2 workers. Furthermore, some developers
assigned a single job to as many as 12 workers. We conjecture that
this assignment distribution occurs due to the limited ability of a
single worker to effect a significant impact over a subject’s search
rank. This observation reveals that subjects targeted by search rank
fraud will usually receive fake reviews from multiple fraud workers.

3 PROBLEM DEFINITION
The insight that multiple fraud workers usually target a single
subject suggests that a binary classification of fraud, e.g., fake vs.
honest reviews, fraudulent vs. genuine accounts [17, 26, 27, 31, 32,
44, 47, 80], is insufficient to understand and model fraud. Instead,
we study the fraud de-anonymization problem which deals with
attributing fraudulent accounts and fake reviews to the crowd-
sourcing accounts of the fraud workers who control and post them,
respectively.

Formally, letU be the set of all user accounts, and let S be the
set of all subjects hosted in the online peer-opinion system. We say
that a user account is fraudulent or fraudster-controlled if it was
opened by a fraudster to mainly perform fraudulent activities in
the online system, i.e., to target subjects from S.



Moreover, let U ∗ ⊆ U be the set of all fraudster-controlled
accounts in an online system, and letW be the set of all fraud
worker accounts in crowdsourcing sites. In addition, let W ∗ =
{(Wl ,Ul , Sl ) | Wl ∈ W,Ul ⊆ U ∗, Sl ⊆ S, l = 1 . . . f } ⊂ V be a
known set of f search rank fraud worker profiles whereV is the
universe of all worker profiles. A profile consists of a crowdsourcing
account id (Wl ), an incomplete set of user accounts (Ul ) known to
be controlled byWl in the peer-opinion system, and the incomplete
set of subjects (Sl ) known to have been fraudulently reviewed by
Wl . Section 9 describes a protocol to identify crowdsourced fraud
workers and build seed profiles for them.

Ideally, we want to attribute each account inU ∗ to the fraudster
who controls it. However, some accounts in U ∗ may not be con-
trolled by any of the known fraudsters inW ∗. To address this issue,
we formulate two distinct problems: fraud de-anonymization and
pseudonymous fraudster discovery:
FraudDe-Anonymization. Build a function FDA : U ∗\∪fl=1Ul 7→
W ∗, that, given a user account u ∈ U ∗ suspected of participation in
search rank fraud, returns the fraud worker inW ∗ most likely to
control u. In Section 4.1 we expand this definition in a maximum
likelihood estimation (MLE) based framing of the problem.
Pseudonymous FraudsterDiscovery. Build a function PFD : U ∗\
∪
f
l=1Ul 7→ V \W

∗ that, given a set of fraudster-controlled accounts
that were not assigned to one of the known fraudsters by the FDA
function, returns a new set of fraudster profiles fromV \W ∗ that
control these accounts.

Unlike standard de-anonymization, the adversarial process of
identifying users from data where their Personally Identifiable In-
formation (PII) has been removed [52], the fraud de-anonymization
problem seeks to attribute detected search rank fraud to the humans
who posted it. A solution to this problem will enable peer-review
services to identify the impactful crowdsourcing fraudsters who tar-
get them, and provide appealing fraud feedback proof to customers,
e.g., links to the crowdsourcing accounts responsible for boosting
a product’s rating. Furthermore, accurate fraud de-anonymization
will allow online services and law enforcement to retrieve bank-
ing information and real identities of fraudsters. Thus, fraud de-
anonymization may provide counter-incentives for crowdsourcing
workers to participate in fraud jobs, and for product developers to
recruit them.

In Section 4 and 6, we introduce unconstrained optimization and
discriminative fraud de-anonymization algorithms, respectively,
while in Section 7 we propose a pseudonymous fraudster discovery
algorithm. In Section 8, we show how Detego iteratively invokes a
pseudonymous fraudster discovery algorithm followed by a fraud-
ster de-anonymization algorithm, to expand knowledge of fraud
workers and the accounts they control.

4 UNCONSTRAINED OPTIMIZATION BASED
DE-ANONYMIZATION

We first propose a maximum likelihood based de-anonymization ap-
proach motivated by a realistic generative model of review posting
behavior. Next, we compute the likelihood of each worker having
generated a given suspicious fraudulent review history. We then
find the worker who maximizes such likelihood.

4.1 Definitions and Approach
We postulate a probabilistic review-posting model from accounts
controlled by fraudsters, inspired by Su et al. [69]. Specifically, we
assume that a fraudulent account u controlled by a fraudster profile
(W ,U , S ) ∈W ∗ is likely to review subjects in a pairwise-disjoint
family of sets overS, FW = {Ω1,Ω2, . . . ,Ωm } (Ωi ∩Ωj = ∅ ∀ i , j)
with different multiplicative factors r1, r2, . . . , rm describing u’s
responsiveness to each Ωi . Further, we assume that the review
history of a user account is described by a sequence of indepen-
dent and identically distributed random variables R1,R2, . . . ,Rn
where Rk ∈ S represents the k-th subject reviewed from the ac-
count. Therefore, a fraudulent account’s review posting behavior
is characterized by FW and ri for all i = 1 . . .m.

Let {pj } be a probability measure over the sample space S, re-
lated to the popularity of the subjects: pj ≥ 0,

∑ |S |
j=1 pj = 1. For

any fraudster profile (W ,U , S ) ∈W ∗, we define random variable
Rk (FW, r) with values in S and with the probability distribution:

P(Rk = sj ) =




r1pj
c if sj ∈ Ω1
...
rmpj
c if sj ∈ Ωm

pj
c if sj ∈

m⋂
i=1

ΩC
i

(1)

where c =
m∑
i=1

ri
∑
sj ∈Ωi

pj +
∑

sj ∈
m⋂
i=1

ΩCi

pj and r = [r1, . . . , rm]⊺ is the vector

of multiplicative factors. Specifically, the probability that the k-th
review targets subject sj is proportional to factor rm if subject sj
satisfies Ωm ’s membership properties. Otherwise, this probability
is simply given by the ratio pj/c .

Let R1 (FW, r), R2 (FW, r), . . ., Rn (FW, r), be a review history
suspected to be fraudulent. Given a set of candidate workers, each
described by a family of sets FW, the fraudster de-anonymization
problem derives the maximum likelihood estimates r̂ and F̂W of
the function:

L (FW, r) =
*.
,

m∏
i=1

∏
Rk ∈Ωi

P(Rk | FW, r)
+/
-

∏
Rk ∈

m⋂
i=1

ΩCi

P(Rk | FW, r) (2)

where F̂W is the family of sets associated with the worker most
likely linked with the given review history.

4.2 UODA
We introduce UODA, an unconstrained optimization based de-
anonymization approach that maximizes the function in Equa-
tion (2) without any constraints on themultiplicative values r1, . . . , rm .
Theorem 4.1 characterizes the solution for the fraudster de-anony-
mization problem under this unconstrained setting.

Theorem 4.1. Let S be the set of subjects hosted by the online
service, and {pj } be a probability measure on S (pj ≥ 0,

∑ |S |
j=1 pj =

1). Let C = {FW1 , . . . ,FWf } be a collection of family sets for each
fraud worker, where FWl ={Ωl1, Ωl2, . . ., Ωlm }. For any FW ∈ C,
define a random variable Rk (FW, r) taking values in S and obeying
the probability distribution in Equation (1). Given a review history



R1 (FW, r), R2 (FW, r), . . ., Rn (FW, r) suspected to be fraudulent, the
maximum likelihood estimates r̂ and F̂W are:

r̂t =
qt

(
1 −

∑m
i=1 Pi

)
Pt

(
1 −

∑m
i=1 qi

) for t = 1, . . . ,m (3)

and

F̂W = argmax
FW ∈C



m∑
i=1

qi ln
(
qi
Pi

)
− *
,
1 −

m∑
i=1

qi +
-
ln

( 1 −∑m
i=1 Pi

1 −
∑m
i=1 qi

) (4)

where qi = |{k | Rk ∈ Ωi }|/n and Pi =
∑
sj ∈Ωi

pj for i = 1, . . . ,m

Intuition. Equation (4) from Theorem 4.1 attributes a user ac-
count to the worker profile inW ∗ most likely responsible for the
account’s review history R1 (FW, r), R2 (FW, r), . . ., Rn (FW, r). The
Ω sets partition worker’s reviews into groups of subjects that have
different characteristics (features). qi is the fraction of subjects in
the account’s review history that are in the investigated worker’s
Ωi . Pi is the total popularity of all the subjects in the set Ωi . The
first term of Equation (4) reveals that the F̂W associated worker
most likely to control the suspect account has a family of Ω sets
for which most of qi are large and Pi are small; that is, many of the
subjects in the account’s review history appear in the worker’s sets
Ωi that are neither too big or popular.

Proof. Setting Rk = sk , we rewrite Equation (2) as:

L (FW, r) =
n∏

k=1

*.
,

m∑
i=1

ripk
c

XΩi (sk ) +
pk
c
X m⋂
i=1

ΩCi
(sk )

+/
-

when using indicator functionsXΩi (s ) for i = 1, . . . ,m, i.e.XΩi (s ) =
1 if s ∈ Ωi , and XΩi (s ) = 0 otherwise. We can then write the log-
likelihood function as follows:

lnL (FW, r) =
n∑

k=1
ln *.
,

m∑
i=1

ripk
c

XΩi (sk ) +
pk
c
X m⋂
i=1

ΩCi
(sk )

+/
-

=

n∑
k=1

*.
,

m∑
i=1

XΩi (sk ) ln
( ripk

c

)
+ X m⋂

i=1
ΩCi

(sk ) ln
(pk
c

)+/
-

= n *
,

m∑
i=1

qi ln(ri ) + ln(pk ) − ln(c )+
-

We can further rewrite c:

c =
m∑
i=1

ri
∑
sj ∈Ωi

pj +
∑

sj ∈
m⋂
i=1

ΩCi

pj =
m∑
i=1

Pi (ri − 1) + 1

Therefore,

lnL (FW, r) =

n *
,

m∑
i=1

qi ln(ri ) + ln(pk ) − ln *
,

m∑
i=1

Pi (ri − 1) + 1+
-
+
-

The first-order necessary conditions are:

∂ lnL (FW, r)
∂ri

=
−nPi∑m

i=1 Pi (ri − 1) + 1
+
nqi
ri
= 0 for i ∈ [m] (5)

We can also write (5) as them ×m non-homogeneous system of
linear equations:

[Pi (1 − qi )]ri − qi
∑
d,i

Pdrd = qi *
,
1 −

m∑
i=1

Pi+
-

for i ∈ [m] (6)

To solve the system of equations (6), we introduce the following
lemma, whose proof is in Appendix A.

Lemma 4.2. The system of linear equations

[Pi (1 − qi )]ri − qi
∑
d,i

Pdrd = qi *
,
1 −

m∑
i=1

Pi+
-

for i ∈ [m]

has solutions given by rt =
qt (1−

∑m
i=1 Pi )

Pt (1−
∑m
i=1 qi )

This enables us to write c as:

c =
m∑
i=1

Pi (ri − 1) + 1

=

m∑
i=1

Pi

(
qi
Pi

(1 −
∑m
i=1 Pi )

(1 −
∑m
i=1 qi )

− 1
)
+ 1

=

∑m
i=1 qi (1 −

∑m
i=1 Pi ) + (1 −

∑m
i=1 qi ) (1 −

∑m
i=1 Pi )

1 −
∑m
i=1 qi

=
1 −

∑m
i=1 Pi

1 −
∑m
i=1 qi

Thus, the value of r at which lnL (FW, r) reaches its maximum
must also maximize the function L(FW, r) defined as:

L(FW, r) =
m∑
i=1

qi ln(ri ) − ln(c )

=

m∑
i=1

qi ln(ri ) − ln
( 1 −∑m

i=1 Pi

1 −
∑m
i=1 qi

)

=

m∑
i=1

qi ln
(
qi
Pi

)
− *
,
1 −

m∑
i=1

qi+
-
ln

( 1 −∑m
i=1 Pi

1 −
∑m
i=1 qi

)
□

In Section 11.2 we instantiate UODA for two features that define
the Ω sets.

5 CO-OWNERSHIP PREDICTOR
We develop a co-ownership predictor function cowPred : U×U 7→
{0, 1} that determines if two user accounts are controlled by the
same fraud worker. Specifically, given two user accounts ui and
uj , cowPred (ui ,uj ) = 1 if ui and uj are controlled by the same
fraudster. cowPred uses several features, that model similarity of
behaviors between the input accounts. One such feature is extracted
by DeepCluster, a semi supervised learning approach that we pro-
pose to cluster user accounts.



Algorithm 1: DeepCluster identifies communities of fraudulent
accounts who targeted input subjects s1, .., sk , based on the simi-
larity of their DeepWalk features extracted from the union fraud
graph of the subjects.
Input :CoR[1 . . .k]; # Co-review graphs of reviewers of

subjects s1, . . . , sk ;
DWParams; # Best DeepWalk parameters;
UFG; # Union Fraud Graph over CoR[];

Output :clusters[1 . . .k][ ]; # Best clusters for s1, . . . , sk
1 UFeatures[ ][ ] = UFG .DWFeatures (DWParams )

2 for i = 1 to k do
3 candidates[ ][ ] = CoR[i].V ⋉UFeatures

4 candidates[ ][ ] = FilterHonest (candidates[ ][ ])
5 clusters[i] = дetBestClusters (candidates )
6 end
7 return clusters[ ][ ]

5.1 DeepCluster
DeepCluster leverages DeepWalk features [54] extracted from co-
review graphs. Given a subject s and its reviewer setUs ⊂ U (i.e.,
accounts who reviewed it), we define its co-review graph to be a
weighted graph Gs = (Vs ,Es ), where Vs = Us and (ui ,uj ) ∈ Es iff
users ui ,uj have reviewed the samew (ui ,uj ) subjects other than s
itself. Further, given a set of co-review graphsG = {G1, . . . ,Gk },Gi =

(Vi ,Ei ), we define their union fraud graph to be the union of all
the individual co-review graphs, viz., V = ∪Vi and E = ∪Ei for
1 ≤ i ≤ m.

DeepCluster, see Algorithm 1, clusters co-review graph nodes
(user accounts) based on their DeepWalk features [54], that go be-
yond their 1-hop neighbors and are based on random walks in the
union fraud graph. DeepCluster precomputes the DeepWalk fea-
tures of each account in the union fraud graph (line 1). We discuss
the choice of DeepWalk parameters in § 11. For each subject si ,
i ∈ [k], DeepCluster extracts all its users’ features (line 3), and uses
any fraud account detection algorithm, e.g. [12, 57] to filter out the
subject’s honest reviewers and their accounts (line 4). DeepClus-
ter then uses a clustering algorithm (e.g., K-means) to group the
fraudulent candidate accounts of subject si , i ∈ [k] (line 5).

5.2 Features
DeepCluster returns k cluster sets, one set for each of the k subjects
si (line 7). We use these clusters to extract cowPred’s first feature,
Co-cluster weight: The number of times that ui and uj have ap-
peared in the same cluster identified by DeepCluster. We further
introduce several other features:
• Co-review weight. The co-review weight of two accounts is

computed over their commonly reviewed subjects. Specifically, if
Sk is the set of subjects reviewed by uk , we define the co-review
weight of ui and uj as |Si ∩ Sj |.
• Inter-review times. We define the date difference attribute for

a subject sk ∈ Si ∩ Sj , i , j as ∆T i j (sk ) = |dt (ui , sk ) −dt (uj , sk ) |,
where dt (u, s ) denotes the date on which user u performed an
activity on subject s . Let the multiset Li j = {∆T i j (sk )}

|Si ∩ Sj |

k=1 . Li j
is a multiset, thus can contain duplicate elements. We compute the

minimum, mean, median, maximum, mode, and standard deviation
over Li j , and obtain a vector of review-time related features in R6.
Further, we define the unique lockstep feature, uL ∈ N, to be the
number of unique ways (with respect to review-posting time) in
which two accounts were used across subjects, i.e., the number of
unique elements in the multiset Li j .
• Rating difference. We define the rating difference predic-

tor as ∆Ri j (sk ) = |R (ui , sk ) − R (uj , sk ) |, where R (u, s ) is the rat-
ing assigned by user u to subject s . We use the multiset LRi j =
{∆Ri j (sk )}

|Si ∩ Sj |

k=1 to derive minimum, mean, median, maximum,
mode, and standard deviation for this feature over all the subjects in
the intersection and obtain a vector of rating features in R6. Further,
we also extract its number of unique elements uR ∈ N.
Intuition. Accounts with high co-review and co-cluster weights
are more likely to be controlled by the same fraudster. They have
not only reviewed many subjects in common, but they also have
similar neighbors (as identified by DeepWalk and DeepCluster) in
the individual co-review graphs of those subjects.

For the inter-review features, the statistics computed over Li j
leverage the observation that fraudsters synchronize the activities
of the accounts that they control, e.g., in a “lockstep” behavior [18,
67, 71]. Since fraudsters need to meet tight deadlines [64], we expect
∆T i j (sk ) to be lower for user accounts controlled by the same
worker (fake review “burstiness” assumption [17, 27, 31, 32, 44, 47]).
Further, we expect the unique lockstep uL to be lower for pair of
accounts governed by the same fraudster.

For the rating difference features, we expect uR to be lower for
pair of accounts controlled by the same worker, which would imply
that both accounts tend to post the same rating for their common
subjects. In Section 11.4 we use regularized logistic regression to
provide further insights into the impact of these features.

We train the co-ownership predictor on the 16 features above.
In Section 6 we use cowPred to devise a fraud de-anonymization
algorithm, while in Section 7 we use it to propose a pseudonymous
fraudster discovery algorithm.

6 DDA: DISCRIMINATIVE
DE-ANONYMIZATION

We introduce a discriminative de-anonymization solution (DDA), a
classifier that approximates the function FDA : U ∗ \ ∪fl=1Ul 7→W ∗

defined in Section 3. We exploit the intuition that in DeepCluster,
accounts in a union fraud graph that are controlled by the same
fraudster, form a densely connected subgraph, or cluster. Knowledge
that some accounts in such a cluster are controlled by a fraud
worker, would allow one to attribute the other accounts in that
cluster, to the same worker. However, our experiments revealed that
clusters often contain accounts controlled by different fraudsters,
as fraudsters tend to collaborate in search rank fraud jobs.

To disambiguate this fraud attribution problem, we leverage the
co-ownership predictor, of Section 5. Specifically, DDA analyzes
the clusters returned by DeepCluster (see Section 5.1). Some of
the clusters may consist of both un-attributed accounts and user
accounts known to be controlled by a fraud worker profile inW ∗.
DDA separately processes each un-attributed account u in such
clusters. First, it creates links (u,uw ), for each account uw con-
trolled by a workerw in u’s cluster. Then, it uses cowPred (u,uw )



Algorithm 2: Detego system iteratively attributes new fraud to
known fraudsters and discovers new fraudsters.
Input :W ∗[ ][ ]; # seed worker profiles
Output :W ∗[ ][ ]; # extended worker profiles

1 S =W ∗.дetProducts (); f =W ∗.size ();
2 while (S.notEmpty()) do
3 U = S .дetReviewerAccounts ();
4 <W ∗[1.. f ],UN >= FDA.(U , S,W ∗);
5 W ∗[f + 1, .. f + k] = PFD (UN );
6 S =W ∗.дetFreshProducts (); f =W ∗.size ();
7 end
8 return

to determine if u and uw share the same owner. Note that u may
appear in multiple clusters, computed by DeepCluster for multiple
subjects. DDA extracts |W ∗ | features foru: for each fraudster profile
inW ∗, the feature consists of the number of nodes controlled by
that fraudster, to whom u has a link according to cowPred (u,uw ).
DDA uses these features to train a supervised learning algorithm.

7 PFD: PSEUDONYMOUS FRAUDSTER
DISCOVERY

Following the fraud attribution process (e.g., UODA or DDA), we
are left with suspected fraudulent user accounts that have not been
attributed to any of the known fraudsters. We introduce now the
pseudonymous fraudster discovery (PFD) algorithm that groups
these un-attributed accounts into communities likely controlled by
the same, albeit not yet discovered, fraudster.

PFD uses the co-ownership predictor of Section 5 to build a
co-ownership graph Gc = (Vc ,Ec ) over the unknown accounts.
Nodes Vc are fraudster-controlled but un-attributed user accounts,
while an edge in Ec exists between two nodes if the accounts are
controlled by the same worker as predicted by cowPred . PFD then
recursively applies a Karger [38], weighted min-cut inspired al-
gorithm to partition the co-ownership graph into two subgraphs.
These subgraphs are more densely connected than the original
graph and connected through links of minimal total weight. We use
triangle density ρ (G ) =

t (V )

( |V |3 )
for an un-weighted graph G = (V ,E),

where t (V ) is the number of triangles formed by the edges in E.

8 PUTTING IT ALL TOGETHER
We introduce Detego, a fraud attribution and fraudster discovery
system (see Algorithm 2). Detego takes as input a seed setW ∗ of
f known fraudster profiles, which include user accounts known
to be controlled by each fraudster. Detego expands this seed data,
iteratively attributing more accounts to the known fraudsters, and
identifying new fraudsters.

Detego identifies the subjects S reviewed by the accounts con-
trolled by the seed fraudsters (Algorithm 2, line 1), then retrieves
all the user accounts U who reviewed these subjects (line 3). The
accounts inU include accounts controlled by the f fraudster pro-
files inW ∗, as well as accounts controlled by other, not yet iden-
tified fraudsters, and also honest accounts. Detego uses a fraud
de-anonymization (FDA) algorithm, e.g., either UODA or DDA to

Algorithm 3: Interaction protocol with human fraud workers,
to provide ground truth performance evaluation for fraud de-
anonymization algorithms.
Input :P ; # User study participant;

m, n, q ; # Numbers of accounts
Output :A[]; # Accounts attributed to P ;

1 A = P .revealAccounts(m);
2 Data[] = BFS(A, 2);
3 newAccounts[n] = FDA(A, Data);
4 ACAccounts[q] = genAttentionCheckAccounts();
5 Q = genQuestionnaire(newAccounts , ACAccounts);
6 Answers = send(A.randomAccount(), Q);
7 if Answers.passAttentionCheck() then
8 if newAccounts.getConfirmed().verifyOwnership() then
9 A.add(newAccounts.getConfirmed());

10 end
11 end
12 return A

(1) attribute accounts fromU to the fraudster profiles inW ∗ (line 4),
and (2) identify the other, non-attributed accounts fromU , denoted
by UN . Detego uses the PFD algorithm (line 5) to group the ac-
counts fromUN into communities belonging to k new fraudsters. It
then continues to iterate over newly discovered subjects, reviewed
by these new fraudsters or by the previously known fraudsters (line
6), and over newly identified fraudsters, e.g., using the techniques
described in Section 9.

9 FRAUD DE-ANONYMIZATION ORACLES
We leverage the observation that fraud workers know the user
accounts that they control, to introduce a novel approach to vali-
date fraud de-anonymization solutions, that converts human fraud
workers into FDA oracles. In Section 10 we use this approach to
evaluate UODA.

Algorithm 3 outlines our validation protocol, wherem, n, q are
integer parameters. The protocol consists of 2 main interaction
steps. In the first step, we ask each participant, i.e., recruited human
fraud worker, to revealm user accounts that they control in Google
Play, by sending their Google e-mail addresses associated with
these accounts (Algorithm 3, line 1). We then use a depth-2 breath
first search approach to collect (1) all the apps reviewed by them
accounts and (2) all the reviewers of these apps (line 2). We apply
a fraud de-anonymization solution (see next section) to identify n
new, candidate accounts, i.e., other Google Play accounts suspected
to be controlled by the same participant (line 3).

For the second interaction step, we have designed a questionnaire
that asks the participant to confirm if they control each of these n
candidate accounts, see Figure 3. Specifically, for each account, we
show the account’s profile photo and name, and ask the participant
if they control the account. We provide 3 options, “Yes”, “No” and
“I don’t remember”.
Participant validation. We have developed the following tests to
validate participant attention and honesty:



Figure 3: Anonymized screenshots of 3 questionnaire pages,
for accounts (left) revealed in step 1 to be controlled by the
participant, (center) known not to be controlled, and (right)
suspected by UODA to be controlled by the participant.
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Figure 4: Results of UODA on data validated by 16 human
fraud worker participants. UODA achieves an overall preci-
sion of 91%.

• Attention check. In addition to the n candidate accounts, we
add to the questionnaire q other test accounts (line 4), for which we
know the answer: (1) accounts that we know that the participant
controls, i.e., picked randomly from among them accounts revealed
in the first step, and (2) accounts that we know that the participant
does not control, i.e., accounts that have at least 20 followers and
significant other activities in Google Plus (posting photos, videos).
We present the questions for the n + q candidate and test accounts,
in randomized order (line 5).
• E-mail knowledge. Each Google Play account A has an asso-

ciated e-mail address E. Given E, one can easily retrieve the account
A. However, E is not public, and, given only knowledge of A, one
cannot find E. We leverage this observation to ask each participant
to reveal the e-mail address E of each Google Play account A that
they claim to control. We use E to find the corresponding account
A′. The participant fails this test if A′ does not exist or A′ , A.
• E-mail based validation. To verify ownership of claimed

accounts, we send the questionnaire to one of them e-mail addresses
revealed in the first step (randomly chosen) (line 6).
• Token and e-mail based validation. To verify ownership

of accounts confirmed in the questionnaire (line 8), we choose
randomly one of the n accounts confirmed, and send to its corre-
sponding e-mail address, a random, 6 character token. The accounts
verify iff. the participant can reproduce the token.

10 USER STUDY
We have recruited 16 fraud workers from India (4), Bangladesh (4),
UK (2), Egypt (2), USA (1), Pakistan (1), Indonesia (1), and Morocco

(1), 12 male and 4 female, who claimed to control between 40 to
500 accounts (M=211, SD=166). We have used these participants to
evaluate the performance of UODA.We have setm=10,n=5 andq=5,
thus each participant reveals 10 accounts controlled in Google Play,
then further confirms or denies control of 5 other UODA detected
accounts, and 5 test accounts. To run UODA, we have used the 10
accounts revealed by each participant in the first step, to collect
(via BFS) 718 apps, 265,724 reviewers and 341,993 reviews in total.
We collected up to 175 apps, 37,056 reviews and 22,848 reviewers
from a single worker. The participation incentive was set to $10 for
each participant.
Ethical considerations. We have developed IRB-approved pro-
tocols to ethically interact with participants and collect data. We
have not asked the participants to post any fraud on the online
service. We restricted the volatile handling of emails and photos
of accounts revealed by participants, to the validation process. We
have immediately discarded them after validation. We believe that
this information cannot be used to personally identify fraudsters:
recruited fraudsters control between 40-500 accounts each (M=211,
SD=166) thus any such account is unlikely to contain PII. Further,
since we do not preserve these emails and photos, their handling
does not fall within the PII definition of NIST SP 800-122. Under
GDPR, the use of emails and photos without context, e.g., name or
personal identification number, is not considered to be “personal
information”.

In the following we first detail the instantiation of UODA that
we evaluated, then describe the results of the user study.

10.1 UODA Parameters
We evaluate UODA (see § 4) using two features, defined by the
sets (1) Cl ≥ = {(s, s ′) ∈ Sl | cr (s, s

′) ≥ b1}, where cr (s, s ′) is the
number of reviewers shared by subjects s and s ′ and (2)Ul ≥ = {s ∈
Sl | ul (s ) ≥ b2},whereul (s ) is the number of accounts controlled by
workerWl who has reviewed subject s . Specifically, these features
define the family of sets FWl withm=4:

Ωl1 = {s ∈ Sl | s ∈ Cl ≥ \Ul ≥ }

Ωl2 = {s ∈ Sl | s ∈ Ul ≥ \Cl ≥ } (7)
Ωl3 = {s ∈ Sl | s ∈ Cl ≥ ∩Ul ≥ }

Ωl4 = {s ∈ Sl | s ∈ (Cl ≥ ∪Ul ≥ )
C }

The rationale behind this selection of Ω sets is that fraudsters are
hired to provide large number of reviews for different subjects. Thus,
a fraudulent account u controlled by a fraudster profile (W ,U , S ) ∈
W ∗ is more likely to post reviews for subjects that were reviewed
by other accounts under its control, see e.g. [35, 48, 70, 87].

10.2 Results
Figure 4 shows that 15 of the 16 participants have provided correct
responses to all 5 test accounts. The remaining participant answered
“I don’t remember” for a single test account, known not to be con-
trolled by the participant. We have thus decided to keep the data
from all participants. Further, for participants 2 and 4, UODA found
less than 5 suspected accounts (i.e., 4 and 3 respectively).

We observe that 10 out of 16 participants have confirmed control
(and passed our verification) of all UODA proposed accounts. 5



Algorithm 4: DeepWalk parameter tuning. For each parameter
set, compute Deepwalk embeddings on the union fraud graph and
run stratified cross validation (SCV) using a learning algorithm
Alд and only seed accounts as part of the training and validation
set (lines 3-5). We save the best performing configuration (lines
6-8).
Input :CRG # Co-review Graph

S # seed accounts
Alд # learning algorithm

Output :DWParams # Best DeepWalk parameters
1 Fmax = 0, DWParams = ∅

2 ParamSet = Generate.Grid({t ,d,γ ,w })
3 for p ∈ ParamSet do
4 D = S ⋉CRG .DWFeatures (p)

5 F = SCV(D,Alд)
6 if F > Fmax then
7 DWParams = p

8 end
9 Fmax = max{F , Fmax }

10 end
11 return DWParams

participants confirmed control of 4 out of 5 UODA recommended
accounts and 1 participant confirmed control of only 3 accounts
out of 5 UODA recommended accounts. UODA’s precision ( T P

T P+F P ,
where TP is the number of true positives and FP is the number of
false positives) is thus 91%, i.e., 7 unconfirmed accounts among 77
predicted. We note that for 3 out of the 7 unconfirmed accounts,
the participants did not remember if they control them or not.

11 EMPIRICAL EVALUATION
11.1 Attributed Account Data
We have recruited an additional set of 23 fraud workers and per-
formed only the first step of the fraud de-anonymization validation
protocol of § 9, where we asked each participant to reveal at least
15 accounts that they control in Google Play. Figure 5 shows the
number of accounts (bottom, red segments) revealed by each of the
23 workers, between 22 and 86 accounts revealed per worker, for a
total of 942 attributed fraud accounts.

We have selected the top 640 fraud apps, that received the highest
percentage of reviews from accounts controlled by the 23 fraudsters,
and crawled their reviews once every 2 days, over a 6 month period.
The 640 apps had between 7 to 3,889 reviews. Half of these apps
had at least 51% of their reviews written from accounts controlled
by the 23 fraudsters. On the whole, the 640 apps have received
159,469 reviews, of which 17,575 were written from the above 942
attributed fraud accounts.

In the following, we use this data to evaluate the ability of de-
veloped solutions to (1) attribute unknown accounts to existing
seed workers and (2) reveal hidden relationships among reviewers
towards uncovering previously unknown fraudulent workers.

Table 1: Performance of UODA and DDA on ground truth
data set. DDA performs better. However, with only 2 fea-
tures, UODA reaches an F1 of 83%.

Approach Algorithm Precision Recall F1

Top 1 85.11% 82.59% 83.83%
UODA Top 2 92.05% 90.32% 91.11%

Top 3 94.23% 92.91% 93.57%

KNN 94.28% 93.35% 93.81%
DDA MLP 94.90% 94.10% 94.50%

RF 94.37% 93.31% 93.84%

11.2 DeepCluster Parameter Tuning
We have built the union fraud graph over the user accounts who
reviewed the 640 fraud apps. To run DeepWalk, we transform this
union fraud graph into a non-weighted graph, where we replace
an edge between nodes ui and uj with weightwi j = w (ui ,uj ), by
wi j non-weighted edges between ui and uj . This ensures that the
probability of DeepWalk choosing node uj as next hop while at
node ui is proportional towi j . The resulting union fraud graph has
56,950 nodes and 34,742,730 edges (5,858,940 unique edges) and
consists of 202 disconnected components.

Algorithm 4 shows the pseudocode for the grid search process
that we used to identify the best performing DeepWalk parameters
on the union fraud graph: d = 300, t = 100,γ = 80,w = 5. d is the
number of dimensions when representing nodes in the graph, t is
the maximum length of a random walk, γ is the number of random
walks started from each node, andw is the the number of neighbors
used as the context in each iteration of its SkipGram component.

We have used K-means as clustering algorithm in DeepClus-
ter (see § 1) considering that we have prior knowledge about the
number of workers who targeted each subject. We identified the
optimum K value required by K-means for each subject si exper-
imentally, as follows. Iterate for values of K ranging from 2 to
|Wi | where |Wi | is the number of distinct workers known to have
targeted subject si . Since K-means is susceptible to local optima,
we run it 100 times on the embeddings of the co-review graph of
subject si , and assess the quality of the returned clusters. We use
a quasi-F1 score that gages how good a cluster configuration is
with regards to our ground truth. We also adjust for the number of
accounts in each cluster and compute the weighted average across
all clusters in one cluster configuration.

11.3 Fraud De-Anonymization
We compare the ability of the UODA and DDA algorithms to de-
anonymize the ground truth attributed account dataset of § 11.1.
For this, we first set randomly aside 75% of the seed accounts from
each worker into a set GT (Ground Truth) and let the remaining
25% accounts be the TT (Testing Truth) set. For DDA, we train
the co-ownership predictor using accounts in GT , then apply the
predictor to all accounts in TT and extract as features the number
of nodes in each class (known fraudster) to whom the account has
a link according to the co-ownership predictor. Finally, we train a
classifier on these features using stratified 10-fold cross validation.

For UODA, following the GT /TT split, we compute the Ω sets
as described in (7) using accounts in GT and test the algorithm on
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Figure 5: (Top) Distribution of seed and DDA attributed ac-
counts across the 23 fraudulent workers. DDA attributed
3,547 accounts to these fraudsters, 3.7 times more than the
size of the seed set. (Bottom) Perworker percentage of newly
attributed accounts suspected of self-plagiarism. Almost all
(≥ 90%) of the newly attributed accounts for 13 out of 23
fraud workers have self-plagiarized reviews.

the review histories of all accounts in TT . We fix the same b1 = 10
and b2 = 15 (obtained through a grid search) across all the workers.
Then, given an account u in TT , we select as candidate the worker
whose partition maximizes the function in Equation (4), i.e., we
evaluate such function 23 times (one for each worker) and attribute
u to the worker that maximizes it. Note that to evaluate the function,
we need Pi : the popularity volume of all the subjects in each Ωi .
We approximate Pi = ϵ

∑
sj ∈Ωi R (sj ) where R (sj ) is the number

of reviews that subject sj received from fraudster accounts in the
GT set and ϵ was set to mimic a probability distribution on S.
In practice, we have evaluated multiple values for ϵ , and chose
ϵ = 10−6 as best performer.

Table 1 compares UODA and DDA results after 10 different
randomGT /TT splits. We observe that DDA achieves an F1 measure
of 94.5%, outperforming UODA’s top 1 choice. UODA’s performance,
however, significantly increases when allowed to make mistakes.
Specifically, Top 2 UODA achieves an average F1 of 91.11% while
Top 3 UODA achieves an average F1 of 93.57%.
Fraud Attribution in theWild. We have further trained DDA on
all the ground truth information (both GT and TT sets). We then
applied the trained DDA to 3,681 accounts that appeared in at least
one seed cluster but never appeared in an unknown cluster of the
640 suspicious apps (§ 11.1). Figure 5 (top) shows the distribution
of 3,547 of these accounts attributed to the 23 fraud workers. Only
134 accounts were not assigned to any fraud worker. To validate
this result, we computed the review’s Jaccard similarity between
each newly attributed Ûl account and all seed Ul accounts, using
the review’s k−shingle representation as defined in [19].

Figure 5 (bottom) shows the proportion of newly assigned ac-
counts u ∈ Ûl that have at least one review similar (J (Rû ,Ru ) ≥
0.5) to those of accounts in its respective seed set. We have set k = 3
and considered only reviews with at least 10 characters in length.
We observe that 13 out of 23 fraud workers have around 90% of their

Table 2: Performance of our co-ownership predictor cowPred
vs. ELSIEDET [87] on ground truth data. cowPred signifi-
cantly outperforms ELSIEDET.

Solution ML Algo. Precision Recall F1

GBM 96.40% 96.94% 96.67%
RF 96.30% 97.01% 96.65%

cowPred SVM 93.75% 95.34% 94.54%
RLR 93.72% 94.42% 94.07%
NB 88.44% 95.66% 91.91%

Elsiedet Grid search 82.41% 85.92% 84.13%

new attributed accounts with similar reviews to the ones written by
its seed accounts. Likewise, 22 out of 23 fraudsters have at least 50%
of their accounts with similar reviews. These results confirm DDA’s
outcome and previous work on crowdsourced review manipulation,
e.g., [36].

11.4 Co-Ownership Predictor
Weevaluate the performance of the co-ownership predictor cowPred
of Section 5, and compare it against Elsiedet’s state-of-the-art so-
lution [87]. For this, we build training data as follows. First, create
complete graphs from among seed attributed accounts found in clus-
ters across all the product space, i.e., create a link (u,v ) foru,v ∈ Cj
where Cj is a cluster in product j. Then, using the 942 accounts of
§ 11.1, generate “positive” links (class 1) when both accounts in the
link are known to be controlled by the same fraudster and “negative”
links (class 0) when controlled by different fraudsters. Finally, for
each link (u,v ), extract the 16 features described in Section 6 and
append its class. Our training set consists of 17,695 pairs of user
accounts, 79.5% of which are controlled by the same fraudster.

We use this data to train several supervised learning algorithms
and select the top performer as the co-ownership predictor. Specifi-
cally, we used several sampling strategies and supervised learning
algorithms that train on the features of the co-ownership predictor:
Gradient Boosting Machine (GBM), Random Forests (RF), Support
Vector Machine (SVM), Regularized Logistic Regression (RLR), and
Naive Bayes (NB). We also set aside 20% of the 17,695 links as a
test set to assess the quality of the co-ownership predictor after
training with 10-fold CV. Further, to evaluate the impact of class
imbalance, we compared the no sampling strategy against strategies
of undersampling and oversampling. For the undersampling strategy,
we created a 50-50 training set with 2,901 links for each class. For
the oversampling strategy, we used the SMOTE algorithm [21] and
created synthetic data along the line segments joining any or all
of the k minority class nearest neighbors. cowPred’s results were
very similar for the no sampling and oversampling strategies, out-
performing the undersampling strategy. Thus, in the following we
present results only for the no sampling strategy.
The ELSIEDET co-ownership predictor. We compare cowPred
against the state-of-the-art Elsiedet’s Sybil social link builder [87].
Elsiedet builds social links between Sybil user accounts based on
their similarity: (i) whether their reviews were posted for the same
app, (ii) within a fixed time window ∆T , and (iii) were either 1-star
or 5-star. Accounts u and v are considered to form a Sybil social
link iff sim(u,v ) ≥ β , where β and ∆T are parameters. Zheng et
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Figure 6: Relative importance (shown as siдn(y) ∗ loд(1 +
abs (y))) for statistically significant features in the co-
ownership predictor using logistic regression. Co-review and
co-cluster have the highest positive impact, while the mean
date difference on Li j and the unique lockstep ui j have the
largest negative weight.

al. [87] manually tuned these parameters, as they observed that
several supervised learning techniques were not sensitive to differ-
ent thresholds employed. We have improved on this manual tuning
process, by implementing a grid search to obtain the best param-
eters ∆T ∗, β∗, using the same training set used for our cowPred
predictor. We compute performance for Elsiedet based on whether
links (u,v ) were predicted to be controlled by the same worker.
Comparison results. Table 2 compares cowPred’s performance
on the test set, for the best performing supervised learning algo-
rithms evaluated, against Elsiedet’s Sybil social link builder, with
best parameters ∆T ∗ = 30 and β∗ = 0.01. For cowPred , GBM and
RF achieved the best overall results. cowPred significantly outper-
formed Elsiedet, with an F1-measure of 96.67% vs. 84.13%. While
Elsiedet was designed for a different type of social network (i.e.,
Dianping, Yelp), and a different adversary type (elite reviewer), we
believe that cowPred’s advantage stems from its use of features ex-
tracted from common review behaviors exhibited by Sybil accounts.
We note that we were not able to compare cowPred against other
related solutions, e.g., Kumar et al.’s sockpuppet pair detection ap-
proach [40], as they leverage features not available in Google Play,
such as community features (downvotes and upvotes).
Feature Insights via Regularized Logistic Regression. In order
to understand the impact of and confirm the intuition behind the
cowPred features (see § 5.2), we train cowPred on the entire data
set (17,695 links) using a regularized logistic regression model [29].
Figure 6 shows the relative importance of the statistically signifi-
cant variables after applying Wald Chi-Squared test. We measure
importance as the value of the coefficients corresponding to the
trained model.

We observe that the co-review and co-cluster features have a
strong positive effect on the probability of two accounts being
controlled by the same worker. The higher their values the more
likely it is that two accounts are owned by the same underlying
worker. Similarly, a positive weight for mode (Li j ) and min(Li j )
(see § 5.2) suggests that if a long period of time between reviews
is repeated across most of the commonly reviewed apps then it is
more likely that the two accounts are handled by the same worker.
However, the unique lockstep feature uL shows a negative effect,

Figure 7: Co-ownership (co-w) graph over 5,548 user ac-
counts who reviewed 640 apps involved in fraud. Two ac-
counts are connected if they were predicted to be controlled
by the same fraudster. Partition algorithm identified 129
user account components, each potentially controlled by a
different fraudster. The largest cluster has 962 nodes and 54
components have more than 10 nodes.

i.e., the larger its value, the less likely it is that both accounts
belong to the same worker. Equivalently, contrary to the burstiness
assumption, the time difference for all reviews in common are rarely
similar. The sign effects ofmean(Li j ) and SD (Li j ) are less intuitive.
We conjecture these sign effects are the result of existing correlation
across all variables. Further, mean(LRi j ) impacts negatively the
probability of co-ownership. Hence, accounts controlled by the
same worker tend to award similar star rating to their commonly
reviewed apps. However, we notice that rating features have the
least significant effect. This observation implies that most workers
post either positive or negative reviews.

11.5 Pseudonymous Fraudster Discovery
We applied the cowPred predictor with no sampling strategy and
GBM with Bernoulli loss function. We used 279,431 links from
5,690 unknown (un-attributed) user accounts that reviewed 640
suspicious apps. These accounts occurred in clusters without seed
accounts (unknown clusters). The resulting co-ownership graph
consists of 5,548 user accounts and 97,448 edges. Figure 7 shows
129 components identified by PFD. We conjecture that each of
these dense components is controlled by a different fraudster. In
the following, we validate this conjecture.
Result Validation.We use orthogonal evidence of fraud to validate
the dense components of Figure 7. Specifically, we inspect reviews’
text written by accounts in each cluster. Upon manual investigation,
we found many suspicious behaviors, including singular coinci-
dence: The review “this game is Really cute and awesome. I think
this is so addicting cause when my kid play this game; i can’t resist
her to playing it." was posted from three different accounts in the
same component for three different apps on the same date; the
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Figure 8: Scatterplot for 71 fraudster communities (shown as
dots) discovered by PFD: the percentage of users who wrote
reviews that are at least 50% Jaccard similar to other reviews
(x axis) vs. the number of review pairs (in log scale) in each
component (y axis). 15 communities have at least 80% of
their user accounts suspected of plagiarism.

enthusiastic reviewer: A user account posted the review: “Try
it guys for who never use this app.. I’m enjoy and love app...thanks
very much.. because i really enjoy with this app...” for 40 apps in two
days; and the lazy high-level editors: We found 12 accounts in
one component that used the review “[App Name] It is very exciting.
I like it Nice app! Beautiful screenshot. Very interesting It is useful.
I like it so much” as a template to post reviews for 8 apps. The
fraudster would tailor this template by adding the name of the app
as a prefix.

In addition, similar to the validation in § 11.3, we have com-
puted the Jaccard similarity for every pair of reviews using their
text’s k-shingle representation with k = 3. We performed this cal-
culation over each of the 71 detected components with at least 6
accounts. This experiment generated a total of 1.1 billion Jaccard
pairs from 118,281 reviews belonging to 5,364 accounts. Moreover,
we evaluate the possibility that accounts responsible for reviews
with low similarity are generated by accounts not engaged in re-
view manipulation. Specifically, we first computed, a, the number
of user accounts in a component that posted reviews with Jaccard
similarity at least 0.5 to other reviews in that component. Next, we
computed, b, the total number of accounts for each of the selected
components. Finally, we computed the ratio a/b. Figure 8 highlights
fifteen components (1967 users) with ratio greater than 0.8. Very
few components have a ratio below 0.3. This result suggests that,
even for large components, users that generated very dissimilar
reviews are in fact also engaged in review manipulation that reuse
high amounts of text.

12 DISCUSSION AND LIMITATIONS
Underground fraud markets. If successful, the fraud de-anony-
mization approach proposed in this paper may drive fraudsters to
underground markets. This is however compatible with our objec-
tives, to degrade fraudster capabilities and real-life impact. Further,
we observe that Detego’s ground truth collection and solution vali-
dation approach, identifies and leverages intrinsic vulnerabilities in
the developer-to-fraudster interactions, i.e., developers need to ver-
ify claimed fraudster expertise and fraudsters need to make a profit.
Even underground markets need to provide basic functionality that

includes worker expertise, developer reputation verifications, and
payment mechanisms. When underground fraud markets become
accessible to regular developers, they will also be accessible to re-
searchers, who can exploit the same vulnerabilities for ground truth
collection and fraud de-anonymization validation purposes.
Evasion strategies. Fraudsters can try to game theDetego system.
For instance, a fraudster can use multiple sets of disjoint accounts
and never use them while reviewing the same app. We observe
however that Detego introduces a tradeoff between the fraud op-
eration’s efficiency and its detectability. Decreasing account reuse
decreases profits, as reputable accounts are often preferred in search
rank fraud jobs [22, 68, 87]. Increasing account reuse exposes the
fraud operation toDetego detection and attribution. Thus,Detego
forces fraudsters to minimize account reuse and reduces review
fraud incentives.

Further, an adversarial developer who wants to boost the average
rating of her app, needs to commission a number of fake reviews
that is linear in the number of the app’s honest reviews [55]. Such
behavior however affects the temporal distribution of the app’s
reviews [55], which makes it detectable, i.e., through the inter-
review-time and rating-difference features of Detego.
Importance of seed fraud data. Detego can effectively provide
fraud de-anonymization only in the presence of seed ground truth
information about accounts controlled by known fraudsters. Fu-
ture work may explore the ability of cross-site identity linking
attacks [15, 16, 34, 62, 86] (see § 13) to e.g., link reviews of detected
Sybil communities to public profiles of crowdsourcing accounts.
Informed consent. To recruit 16 participants for the user study
of Section 10, we have contacted 320 fraud workers. This small
turnout may be due to a combination of factors, that include de-
serted accounts, lack of interest, and the online consent form used
as part of our IRB approved validation process. We note that the
16 participants were honest (a single “I don’t remember” among
80 test accounts). Future work may investigate the use of IRB ap-
proved deception to evaluate the impact of the consent form on the
number of participants, their honesty, and the precision of fraud
de-anonymization algorithms.

We believe that realization of consequences will not be a major
factor in the recruitment process. Our results suggest that reward
driven participation is enough for certain fraudsters. Proofs of
expertise are normal in crowdsourcing sites, where they enable
developers gain confidence when hiring workers. Thus, Detego’s
data collection (or variations) can blend in with regular recruitment
of fraud. Further, the use of deception may increase the probability
of successful recruiting.
Fraud account memorability. Search rank fraud workers can
control hundreds of accounts in the online system, which can im-
pact memorability. However, in our study, participants were able
to correctly detect ground truth controlled and non-controlled ac-
counts. The caveat is that we only presented participants with 5
test accounts. Future work should determine the maximum number
of questions that we can ask participants, before factors like fatigue
and boredom impact their honesty and accuracy.
I.i.d. assumption. UODA assumes that the review history of a
fraudulent user account is independent and identically distributed,
i.e., that an element in the sequence of reviews is independent of



the element that came before it. A possible future work is to explore
UODA assuming a Markovian review-posting model.

13 RELATEDWORK
Author identification and cross-site identity linking. The au-
thor identification problem seeks to identify the original author of a
document [51]. Narayanan et al. [51] used linguistic stylometry to
perform large scale identification of blog post authors and argue
damaging implications to anonymous bloggers and whistleblow-
ers. Another closely related problem is that of cross-site identity
linking attacks [15, 16, 34, 62, 86]. Adversaries were shown to be
able to exploit linguistic [14] and location [30] patterns to link
pseudonymous identities of the same user across different sites.
Backes et al. [16] introduced relative and absolute linkability mea-
sures that rank identities by their anonymity, and used information
about matching identities to estimate linkability risks. Andreou et
al. [15] further studied relationships between anonymity and risks
of linkability of Facebook and Twitter accounts.

Venkatadri et al. [73] leveraged this attack to develop a frame-
work to transfer trust between sites and identify trustworthy ac-
counts. Jain et al. [34] observed that Facebook and Twitter pro-
files share attributes, to develop identity search methods that link
Twitter accounts to their owners’ Facebook accounts. Cloning at-
tacks [39], where adversaries clone the accounts of victims from
one site to another, may thwart this linkage.

In the context of our work, de-anonymization is not an attack but
a desirable feature. This problem is also more challenging: unlike
Twitter and Facebook, crowdsourcing and peer-opinion sites do
not facilitate explicit forms of inter-connection. Further, instead of
finding a one-to-one mapping, our research focuses on a many-to-
one de-anonymization strategy that seeks to attribute many fake
identities to a real identity (i.e. underlying fraud worker).
Sybil community detection. The pseudonymous fraudster dis-
covery problem is equivalent to uncovering Sybil (or sockpuppet)
communities. Sybil accounts disconnect physical from online iden-
tities, thus have a suite of malicious uses, that include gaining
control over systems [25], vandalism [63], or creating the illusion
of widespread support of ideas, people and products [66]. Early
Sybil detection work in online systems has focused on social net-
works [23, 72, 84, 85], and made the assumption that attackers can
easily form social relationships between Sybil accounts they con-
trol, but find it hard to establish links to honest accounts. However,
Yang et al. [81] showed that in Renren, Sybil accounts do not form
tight-knit communities, and are well connected with honest users.

In peer-opinion systems that lack strong social links between
user accounts, social graphs can be replaced by co-activity graphs,
such as our co-review graphs. Then, in discussion communities,
Kumar et al. [40] showed that Sybil accounts still differ from honest
accounts through social network structure, posting behavior and
linguistic traits. They leveraged the discovery that pairs of accounts
controlled by the same individual are more likely to interact on the
same discussion, to build a co-ownership predictor. Zheng et al. [87]
predict Sybil links between user accounts based on the similarity of
their reviews, in terms of the products targeted, times and ratings.

In Section 11.4 we show that our co-ownership predictor signif-
icantly outperforms the accuracy of Zheng et al. [87]’s predictor.

We did not compare against the predictor of Kumar et al. [40], that
uses community feedback features that are unavailable in sites like
Google Play. Further, after detecting Sybil communities, Detego
seeks to de-anonymize them by finding the crowdsourcing account
of the human fraud worker who controls them.
Fraud detection. There is a large body of research on defend-
ing against online system fraud. State of the art approaches use
inference on the social graph [12, 37, 53, 58, 75] and classical ma-
chine learning based on several assumptions. These assumptions
include: (i) bursty activity [27, 43, 44, 83], (ii) review plagiarism [31,
36, 37, 47] and distinguishability of machine vs. human generated
reviews [82], (iii) extreme reviews and deviation [47, 58, 77, 79],
(iv) lockstep behavior [18, 67, 71], and (v) ratio of singleton ac-
counts [58, 61, 83]. Unlike this work, that has focused on providing
binary classification of reviews as fake or honest, and accounts
as fraudulent or benign, we seek to identify the prolific workers
responsible for significant fraud. We implement a maximum likeli-
hood estimation and deep learning based guilt-by-association pro-
cess to expand seed, fraudster-controlled account sets, and assign
them to the crowdsourcing account of the fraudster who controls
them.
Fraud data collection. De Cristofaro et al. [24] deployed Facebook
honeypot pages and analyzed like farms based on demographic,
temporal and social dimensions. Some farms seemed to be operated
by bots while others mimic regular users’ behaviors. Stringhini et
al. [68] studied Twitter follower markets by purchasing followers
from different merchants and used such ground truth to discover
patterns and detect “market” accounts in the wild. In this paper
we use fraudster responses to conduct a live validation of our solu-
tions, and map accounts in the online peer-opinion system to the
controlling crowdsourcing worker.

14 CONCLUSIONS
In this paper we study the search rank fraud de-anonymization
problem and show that it is different from the well studied fraud or
spammer detection problem. We model fraud de-anonymization as
a maximum likelihood estimation problem and develop an uncon-
strained optimization fraud de-anonymization algorithm. We intro-
duce a graph based deep learning approach to predict co-ownership
of fraudulent account pairs, and use it to build discriminative fraud
de-anonymization and pseudonymous fraudster discovery algo-
rithms. Further, we introduce the first protocol to involve human
fraud workers in the task of evaluating the performance of fraud
de-anonymization algorithms. We show that our solutions achieve
high precision and recall on ground truth data, significantly outper-
form a state-of-the-art approach and are able to attribute thousands
of new accounts to known crowdsourced fraudsters.
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A PROOF OF LEMMA 4.2
Proof. We note that (6) can be expressed in matrix form as:

(diag(p) − qp⊺)r = *
,
1 −

m∑
i=1

Pi+
-
q (8)

where p = [P1, . . . , Pm]⊺, q = [q1, . . . ,qm]⊺, r = [r1, . . . , rm]⊺
and diag(p) is them ×m diagonal matrix with diag(p)ii = Pi .

We also note that:

A = diag(p) − qp⊺

= diag(p) − q1⊺ diag(p)
= (I − q1⊺) diag(p)

and therefore:
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det(A) = det((I − q1⊺) diag(p))

= det(I − q1⊺)
m∏
i=1

Pi

= *
,
1 −

m∑
i=1

qi+
-

m∏
i=1

Pi

where 1 = [1, . . . , 1]⊺ and the last equality follows from Sylvester’s
determinant theorem.

Let At be the matrix formed by replacing the t-th column of A
by the column vector

(
1 −

∑m
i=1 Pi

)
q. Thus,

At =

a1, . . . , *

,
1 −

m∑
i=1

Pi+
-
q, . . . , am



where at represents the t−th column of matrix A. We also note that

at = Pt et − Ptq

q = et −
1
Pt

at

where et denotes the vector with a 1 in the t-th coordinate and
0’s elsewhere. By properties of the determinant, it is plain that:

det(At) =

*
,
1 −

m∑
i=1

Pi+
-
det([a1, . . . , q, . . . , am])

= −

(
1 −

∑m
i=1 Pi

)
Pt

det([a1, . . . , at − Pt et, . . . , am])

= −

(
1 −

∑m
i=1 Pi

)
Pt

(det(A) − Pt det([a1, . . . , et, . . . , am]))

= −

(
1 −

∑m
i=1 Pi

)
Pt

(det(A) − Pt (−1)t+tMinor(A)t t )

= −

(
1 −

∑m
i=1 Pi

)
Pt


*
,
1 −

m∑
i=1

qi+
-

m∏
i=1

Pi − Pt *
,
1 −

∑
i,t

qi+
-

∏
i,t

Pi



= −

(
1 −

∑m
i=1 Pi

)
Pt


*
,
1 −

m∑
i=1

qi − 1 +
∑
i,t

qi+
-

m∏
i=1

Pi



=
qt (1 −

∑m
i=1 Pi )

∏m
i=1 Pi

Pt
By Cramer’s rule it follows that:

rt =
det(At)

det(A)
=

qt
(
1 −

∑m
i=1 Pi

)
Pt

(
1 −

∑m
i=1 qi

)
We are left to prove thatMinor(A)t t = (1 −

∑
i,t qi )

∏
i,t Pi , but

this follows from the construction of A. Take
p−t = [P1, . . . , Pt−1, Pt+1, . . . , Pm]⊺ and
q−t = [q1, . . . ,qt−1,qt+1, . . . ,qm]⊺, we then have:

det(A−t,−t ) = det(diag(p−t ) − q−tp
⊺
−t )

= *
,
1 −

∑
i,t

qi+
-

∏
i,t

Pi = Minor(A)t t

□
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