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Abstract—Recently emerged app markets provide a centralized
paradigm for software distribution in smartphones. The difficulty
of massively collecting app data has led to a lack a good
understanding of app market dynamics. In this paper we seek
to address this problem, through a detailed temporal analysis
of Google Play, Google’s app market. We perform the analysis
on data that we collected daily from 160,000 apps, over a
period of six months in 2012. We report often surprising results.
For instance, at most 50% of the apps are updated in all
categories, which significantly impacts the median price. The
average price does not exhibit seasonal monthly trends and a
changing price does not show any observable correlation with
the download count. In addition, productive developers are not
creating many popular apps, but a few developers control apps
which dominate the total number of downloads. We discuss the
research implications of such analytics on improving developer
and user experiences, and detecting emerging threat vectors.

I. INTRODUCTION

The revolution in mobile device technology and the emer-

gence of “app markets”, have enabled regular users to evolve

from technology consumers to enablers of novel mobile expe-

riences. App markets such as Google Play provide new mech-

anisms for software distribution, collecting software written

by developers and making it available to smartphone users.

This centralized approach to software distribution contrasts the

desktop paradigm, where users typically obtain their software

directly from developers.

With more than one million apps, the Google Play Store

has evolved significantly since its initial AppStore (Apple)

inspired model. By making revenue-sharing transparent for

developers in paid downloads (70-to-30 cut), Google offers

financial incentives for contribution to app development.

Despite the popularity of app markets, due to their recency

and to the intricacies involved in obtaining time series data

from them, little is known about their internal dynamics.

Developers and users play key roles in determining the im-

pact that market interactions can have on future technology

and economics. However, new developers currently lack an

understanding of how their actions can impact the success of

their apps, and users lack guidance when choosing among apps

claiming similar functionality.

In this paper, we perform one of the first characteristic

studies of Google Play using real-world time series data, that

we collected from more than 160,000 apps 1 (out of a total of

around 700,000 apps in 2012), over a period of six months in

1We have collected data from more than 470,000 apps, but we have
complete daily data for 160,000 (see §III).

2012. With a focus on developers and their apps, we seek to

answer several questions:

Q1 Is the app market stale or are the apps updated frequently?

What are the characteristics of an app update? Are they

bandwidth intensive?

Q2 Are developers pricing their apps appropriately?

Q3 How many developers control the app supply? Do they

adjust app prices? Do developer actions impact the pop-

ularity of their apps?

Q4 How do top apps and top app lists evolve in time?

Our Findings. Our analysis reveals several surprising facts:

1) Market inactivity has a significant impact on the price

distribution. Relying on statistics computed on the entire

population (as opposed to only active apps) may mislead

developers, e.g., to undersell their apps (§IV).
2) Typical app update cycles are bi-weekly or monthly. More

frequently updated apps (under beta-testing or unstable)

can impose substantial bandwidth overhead and expose

themselves to negative reviews (§IV).
3) With every subsequent software update, a developer is more

likely to decrease the price. However, contrary to popular

belief, changing the price does not show an observable

correlation with the app’s download count(§V).
4) Developers that create many applications are not creating

many popular applications. However, a few elite developers

are responsible for applications which dominate the total

number of downloads (§V).
5) A majority of apps in top-k app lists follows a “birth-growth-

decline-death” process: they enter/exit from the bottom part

of a list. Apps that attain higher ranks have better stability

in top-k lists than apps that are at lower ranks (§VI).
Research Implications. We describe threat vectors that are

likely to grow in importance, including scam apps, i.e., paid

apps that attract downloads through misleading names and

unfounded claims, and update-based misbehavior such as DoS

attacks through frequent and large updates, as well as Jekyll-

Hyde apps that use updates to transform from popular and

benign into malware.

In addition, we argue that a detailed time series study of

app markets can improve developer and user experiences.

For instance, by integrating predictions of the impact that

price, permissions and code changes will have on the app’s

popularity, as well as insights extracted from user reviews, app

development tools can help developers optimize the success of

their apps. Visualizations of conclusions and analytics similar
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Fig. 1. Number of packages discovered per day, using 700 machines. At the
end of the process, we had collected data from more than 470,000 apps.

to the ones performed in this paper can help users choose

among apps with similar claimed functionality. We include

a detailed discussion of the applicability and future research

directions in app market analytics in §VII.
Limitations. While the Google Play market represents a large

body of other third-party markets and their environments,

we do not generalize our conclusions. We aim to study

economic aspects such as network effects, bidding wars and

price elasticity, system aspects such as permission evolution

and app size properties in future work.

II. RELATED WORK

Petsas et al. [18] are the first to explore mobile app markets

in the context of 4 providers, that do not include Google Play.

They show that the distribution of app popularity deviates from

Zipf, due in part to a strong temporal afnity of user downloads

to app categories. They show that on the markets they studied,

paid apps follow a different popularity distribution than free

apps. In contrast, our work exclusively analyzes Google Play,

the most popular Android app market. In addition, we focus on

different dimensions: (i) market staleness and its effect on app

pricing, (ii) app updates and their effect resource consumption,

(iii) the control of the market and the effect of developer

actions on the popularity of their apps and (iv) the evolution

in time of top apps and top-k app lists.

Xu et al. [23] use IP-level traces from a tier-1 cellular

network provider to understand the behavior of mobile apps.

They provide an orthogonal analysis of spatial and temporal

locality, geographic coverage, and daily usage patterns.

Security is has been a theme in the large scale collection of

mobile apps. Previous work includes malware detection [25],

malware analysis [24], malicious ad libraries [14], vulner-

ability assessment [11], overprivilege identication [12] and

detection of privacy leaks [10]. While in this paper we focus

on the different problem of understanding the dynamics of

Google Play, we also introduce novel mobile app attacks.

III. DATA & METHODOLOGY

We collected our data from Google Play [3], an app

distribution channel hosted by Google for its open source

software stack Android. In order to submit apps to Google

Play, a developer first needs to obtain a publisher account

for a one-time fee of $25 [13]. Google allows developers to

freely submit any number of apps without imposing an app
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Fig. 2. Distribution of free vs. paid apps, by category. While the number of
free apps exceeds the number of paid ones, this property does not hold for
several popular app categories.

review process. Developers can sell their apps for a price of

their choice, or distribute them for free. Google Play lists

apps according to several categories, ranging from “Arcarde

& Action” to “Weather”. Users download and install apps of

interest, which they can then review. A review has a rating

ranging from 1 to 5. Each app has an aggregate rating, an

average over all the user ratings received.

Methodology. We have built a crawler to collect and process

metadata of Google Play apps using a total of 700 machines

for a period of 7.5 months (February 2012 - November 2012)

which we call the crawl period. As the performance of a

crawler depends heavily on the initial seed list — a bad seed

list will either send the crawler in a loop (links pointing to

each other) or will make it hit a dead-end (no more links to

crawl) — we relied on our own app discovery process that

relies on the “Similar Apps” portion of each new HTML page

that is fetched to discover new apps. Due to this, the number

of apps we discover increases with time. Figure 1 shows the

app discovery of our crawler during the last six months of

the crawl period (April 2012 - November 2012), which we

call the observation period. We consider the first 1.5 months

as the warm up period during which roughly 240,000 apps

were discovered and do not consider data collected during

this period for subsequent analysis. At the end of the crawl

period, we had collected data from more than 470,000 apps.

To avoid overloading the provider, we limited our crawler to

perform 20 parallel crawls with a two second sleep period. A

daily crawl takes ≈7-14 hours, a time window safe enough to

prevent roll-over to the next day. At the end of each day, we

archive the raw HTML pages (≈14 GB compressed/day) to

support any additional data analytics (e.g., analyzing HTML

source code complexity). Our six months of archived raw files

consume ≈7 TB of storage and the processed data (described

below) consumes ≈400 GB including relevant indexes. At the

end of the crawl period, 160K apps (out of the total 470K

apps) form a good set – we had daily meta-data for these

apps for six months (the observation period).

Dataset. Our 160K apps include both free and paid apps. As

mentioned earlier, for each app, we have taken daily snap-

shots of the application-related meta-information consisting

of developer name, app category, downloads (as a range i.e.,
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app category. At most 50% of the apps in each category have received an
update within a year.

Class Review counts Percent Apps

Unpopular 0 – 10
3 74.14

Popular 10
3 – 10

5 24.1
Most-Popular > 10

5 0.7

TABLE I
POPULARITY CLASSES OF APPS, ALONG WITH THEIR DISTRIBUTION.

NOTE THAT MOST APPS ARE UNPOPULAR, AND ONLY 0.7% OF THE APPS

HAVE MORE THAN 100,000 DOWNLOADS.

10-100, 1K-5K etc.), app aggregate rating (on a 1-5 scale),

review count (absolute number of user ratings), last updated

timestamp, software version, OS supported, file size, price, url

and the set of permissions that the app requests. Figure 2 shows

the per-category distribution of paid vs. free Google Play apps.

While overall, the number of free apps exceed the number of

paid apps, several popular categories such as “Personalization”

and “Books & References” are dominated by paid apps.

IV. POPULARITY AND STALENESS

In this section, we classify apps into classes based on

their popularity towards gaining an understanding of market

staleness i.e., the fraction of apps that are active, and the

implications it can have on app pricing. Next, we study in

detail the frequency of app updates for apps from various

classes and the implications they can have on end-users.

Market Staleness: We classify apps according to their pop-

ularity into three classes (shown in Table I) based on their

review count. We say an app is stale if it has not been updated

within the last year from the observation period. We say that

the market is stale if 50% of its apps are stale.

Figure 3 shows the Box-Whisker plot [6] of the per-app

time since the last update, by app category. At most 50%

of the apps in each category have received an update within

an year from our observation period. For instance, most apps

in Libraries & Demo have not been updated within the last

1.5 years. Some categories such as Arcade & Action, Casual,

Entertainment, Books & Reference, Tools contain apps that are

older than three years. By randomly sampling these apps, we

found the following to be the main reasons for their staleness:

(1) they are either stable or classic (time-insensitive apps that

are not expected to change) and hence do not require an update

(e.g., “Divide and Conquer” in Casual), (2) developers have

abandoned them (e.g., “Amazed” in Casual), and (3) they do

not require an update (e.g., e-books, wallpapers, libraries).

Note that the presence of a significant percentage of stale

apps, and of popularity classes, may mislead developers in

their process of determining a listing price for their app.

The median price in our dataset is $0.99 when all apps are

considered and $1.31 when considering only active apps. This

indicates that developers that set their price based on the

former value may be selling their apps at lower profits.

App Updates: We now focus on the update frequency of apps

in our dataset, during the observation period (April-November

2012). We seek to understand whether app developers prefer

seamless updating i.e., do they push out releases within short

time periods? In our dataset, only 24% apps have received at

least one update in the observation period.

Figure 4 plots the distribution of update frequency of apps

across categories based on their popularity. As expected,

Unpopular apps receive few or no updates. We observed that

this is due to the app being new or abandoned by its developer.

For instance, “RoboShock” from “DevWilliams” in Arcade &

Action with good reviews from 4 users has received only one



update on September 28, 2012 since its release in August 2011

(inferred from its first comment).

Outliers (e.g., “Ctalk” in the Social category) push out

large number of updates (111). Popular apps are updated

more frequently: 75% in each category receive 10 or less

updates, while some apps average around 10-60 updates during

our observation period. User comments associated with these

apps indicate that the developer pushes out an update when

the app attracts a negative review (e.g., “not working on my

device!”). In the Most-Popular category, the population differs

significantly. While some apps seldom push any updates, apps

like “Facebook” (Social) have been updated 17 times. The

lower number of updates of most popular apps may be due

to testing: Companies that create very popular apps are more

likely to enforce strict testing and hence may not need as many

updates as other apps.

To identify how frequently developers push these updates,

we computed the average update interval (AUI) per app mea-

sured in days (figure not shown). In Popular and Unpopular

classes, 50% of apps receive at least one update within 100

days. The most interesting set is a class of Unpopular apps

that receive an update in less than a week. For instance, the

developer of “Ctalk” pushed, on average, one update per day

totaling 111 updates in six months indicating development

stage (it had only 50-100 downloads) or instability of the app.

On the other hand,Most-Popular apps receive an update within

20 to 60 days.

Updates, bandwidth and reputation. A high update fre-

quency is a likely indicator of an on-going beta test of a feature

or an unstable application. Such apps have the potential to

consume large amounts of bandwidth. For instance, a music

player “Player Dreams”, with 500K-1M downloads, pushed

out 91 updates in the last six months as part of its beta testing

phase (inferred from app description). With the application

size being around 1.8 MB, this app has pushed out ≈164 MB

to each of its users. Given its download count of 500K-1M,

each update utilizes ≈0.87-1.71 TB of bandwidth. We note

that frequent updates, especially when the app is unstable,

often attract negative reviews. For instance, “Terremoti Italia”

that pushed out 34 updates in the observation interval, often

received negative reviews of updates disrupting the workflow.

Findings 1: (1) Similar to desktop ecosystem, developers in mobile
ecosystem prefer seamless updating with typical update cycles
being bi-weekly or monthly. (2) Apps that are unstable or under
beta-testing can impose substantial bandwidth overhead and expose
themselves to negative reviews. (3) Google Play is stale with
at most 50% of the apps being updated in all categories. (4)
Market staleness has a significant impact on the median price
(difference of ≈$0.32). Thus, computing aggregate statistics on
the entire population may result in counter-intuitive findings, and
may mislead developers to undersell their apps.

V. DEVELOPER IMPACT

In this section, we are interested in understanding what

fraction of popular apps are being controlled by an elite set of

developers and if there is a power-law effect in-place. Next,
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Fig. 6. Monthly trend for average price. The average price does not exhibit
seasonal monthly trends.

we analyze the impact that developer actions (e.g., changing

the price, permissions etc.) can have on the app popularity.

A. Market Control

To understand the impact that developers have on the

market, we observe their number of apps, downloads, and

review count. Figure 5 plots these distributions, all showing

behavior consistent with a power-law distribution [17]. We

display the maximum likelihood fit of a power-law distribution

for each scatter plot as well [16], [8]. The α coefficients

for the number of applications, reviews and downloads are

2.48, 1.79, and 1.78, respectively. The Kolmogorov-Smirnov

(a goodness-of-fit indicator) fit values are 0.045, 0.032, and

0.031, respectively. The coefficients determine the steepness

of the power-law curve. They show that the number of apps

per developer has the highest power-law distribution: a few

developers have a large number of apps while many developers

have few apps. However, the developers that post the most

apps do not have the most popular apps in terms of reviews

and download counts. Instead, Figure 5(b) shows that a few

developers control apps that attract most of the reviews. Since

Figure 5(c) shows an almost linear relation between review

and download counts (1 review for each 300 downloads), this

implies that those apps are also popular.

B. Price Dispersion

Price dispersion is the spread between the highest and

lowest prices in the market. In our dataset, we used the

coefficient of variation (COV) [22], the ratio of standard

deviation to the mean, to measure price dispersion. COV= 1
indicates a dispersal consistent with a Poisson process i.e.,

uniformly at random; COV> 1 indicates greater variability

than would be expected with a Poisson process; and COV< 1
indicates less variation. In our dataset, we observed an average

COV (computed for all apps) to be 2.45 indicating a non-

negligible price dispersion, in agreement with results in the

context of other electronic markets [7].

Figure 6 shows the STL decomposition [9] of the average

price timeseries in the observation interval, for a periodicity of

one month. The grey-bar on the seasonal panel (see Figure 6)

is only slightly larger than that on the data panel indicating

that the seasonal signal is large relative to the variation in

the data. In the trend panel, the grey box is much larger
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D ↑ P ↓ P ↑ RC ↑ SV ↑ TP ↓ TP ↑

D ↑ 0.18 -0.02 0.13 0.34 0.09 0.21

P ↓ 0.18 -1.00 0.09 0.89 0.89 0.93

P ↑ -0.02 -1.00 -0.23 0.72 0.51 0.76

RC ↑ 0.13 0.09 -0.23 0.73 0.65 0.70

SV ↑ 0.34 0.89 0.72 0.73 0.99 1.00

TP ↓ 0.09 0.89 0.51 0.65 0.99 -1.00

TP ↑ 0.21 0.94 0.76 0.70 1.00 -1.00

TABLE II
YULE ASSOCIATION MEASURE (EQUATION 1) FOR ALL PAIRS OF

ATTRIBUTES. D DENOTES NUMBER OF DOWNLOADS, P IS PRICE, RC IS

REVIEW COUNT, SV IS SOFTWARE VERSION NUMBER AND TP IS THE

TOTAL NUMBER OF PERMISSIONS. (↑) DENOTES AN INCREASING

ATTRIBUTE AND (↓) DENOTES A DECREASING ONE. THE DARKER THE

SHADING OF A CELL THE STRONGER THE (POSITIVE) CORRELATION.

than either of the ones on the data/seasonal panels, indicating

the variation attributed to the trend is much smaller than the

seasonal component and consequently only a small part of

the variation in the data series. The variation attributed to the

trend is considerably smaller than the stochastic component

(the remainders). We deduce that in our six month observation

period these data do not exhibit a trend.

Findings 2: (1) Price dispersion is significant, with a COV

of 2.45, an observation similar to the results obtained in the

context of other electronic markets [7]. (2) The average price

does not exhibit seasonal monthly trends.

C. Impact of Developer Actions

Developers have control over several attributes they can

leverage to increase the popularity of their apps. This includes

pricing, the number of permissions requested from users and

the frequency of updates. In this section we investigate the

relation between such levers and their impact on app popular-

ity. For instance, common-sense dictates that a price reduction

should increase the number of downloads an app receives.

Reducing permissions should also increase app popularity

thereby impact the download count. We note that permission

changes occur when the developer updates the app.

We are interested in verifying whether this is indeed the case

and if so, how weakly or strongly one attribute change causes

a change in the other. We study the association between app

attribute changes. We define a random variable for increase or

decrease of each attribute, and measure the association among

pairs of variables. For example, let X be a variable for price

increase. For each 〈 day, app 〉 tuple, we let X be a set of all

of the app and day tuples where the app increased its price that

day (relative to the previous day’s value). For this analysis we

consider 160K apps which actually have changes throughout

our observation period, and we discard the remaining apps.

We use the Yule measure of association[21] to quantify the

association between two attributes, A and B:

|A ∩B| ∗ |A ∩B| − |A ∩B| ∗ |A ∩B|

|A ∩B| ∗ |A ∩B|+ |A ∩B| ∗ |A ∩B|
(1)

A is the complement of A, i.e., each 〈 day, app 〉 tuple where

the attribute does not occur, and |A| denote the cardinality

of a set (in this case A). This association measure captures

the association between the two attributes: zero indicates

independence, +1 indicates perfectly positive correlation, and -

1 perfectly negative correlation. Table II shows the association

measure values for all pairs of download count (D), price (P),

review count (RC) and the total number of permission (TP)

attributes.

Table II shows that a price decrease has a high association

with changes in software version and permissions. However,

similarly high associations are not observed with a price

increase. Thus, when a developer is updating software or

permissions they are more likely to decrease the price than

increase the price of an app.

Contrary to popular belief, changing price does not show

significant correlation with the download or review counts.

We randomly sampled 50 apps where this is happening and

observe the following to be the main reasons. First, apps are

initially promoted as free and a paid version is released if

they ever become popular. However, in some cases, the feature

additions are not significant (e.g., ads vs. no ads) and hence

do not cause enough motivation for users to switch to the

paid version. Second, with app markets offering paid apps for

free as part of special offers (e.g., Thanksgiving deals), users

may expect the app to be given out for free rather than take

a discount of a few cents.

In addition, software version and total permissions are

highly positively correlated. Such association agrees with

intuition since a developer changing permissions generally is

making a change to the software.

Findings 3: (1) Productive developers are not creating many
popular apps. (2) Metrics indicating popularity of a developer
follow a power-law distribution: a few developers control apps
which dominate the total number of downloads. (3) Price decrease
has a high association with software version and permission usage,
and (4) Contrary to popular belief, changing price does not show
any observable correlation with the download count.



VI. TOP-K DYNAMICS

Google publishes a variety of lists including Free (most

popular free applications), Paid (most popular paid applica-

tions), New (Free) (newly released free applications), New

(Paid) (newly released paid applications) and Gross (highly

grossing applications). These lists are typically updated based

on application arrival and the schedule of Google’s own

ranking algorithms. We took hourly snapshots of five top-

k lists (≈ 3000 apps) between Jul-Nov, 2012 (≈2880 hours

worth of data).

The ranking algorithms are kept secret. We believe this is

done to avoid their misuse by developers who want to be

placed high on specific lists. However, in this section we seek

answers to several fundamental questions: How long will an

app remain on a top-k list? Will an app’s rank increase any

further than its current rank? How long will it take for an app’s

rank to stabilize? Developers can leverage this knowledge

to better prepare for sudden incoming traffic (in terms of

comments, ratings etc.) and apply financial forecasting (for

paid apps in terms of app-revenue; for free apps in terms of

ad-revenue).

A. Top-K App Evolution

We seek here to understand and characterize the life of

an application on the top-k list. Specifically, we would like

to investigate whether apps follow the “birth-growth-decline-

death” process (inverted bathtub curve [15]). We summarize

the evolution of apps on the top-k lists using three measures,

DEBUT and EXIT, denoting the rank on the top-k list when

the app joins/leaves the list, and TOTL.HRS denoting the total

number of hours spent by an app in a top-k list.

Figure 7 shows the histograms for the 3 measures for the

3000 apps we monitored. For DEBUT and EXIT, measur-

ing rank, smaller numbers indicate better performance. For

TOTL.HRS measured in hours, higher values are better. Fig-

ures 7(a) and 7(b) show that most apps entered and exited from

the bottom part of the list (indicated by the high debut and exit

ranks). This is consistent with the lifetime metaphor discussed

earlier. Notable exceptions include the “ROM Manager” app,

that entered at #1 on August 14, 2012, and exited at rank #20

on October 6, 2012, occupying seven different ranks during

its lifetime on the list.

Figure 7(c) shows that New (Free) and New (Paid) apps

do not stay on the list for more than 500 hours (≈ 20 days)

indicating that these lists may be taking into account all those

applications which were last updated in the last 20 days. We

have confirmed this hypothesis also by verifying that indeed

the “last updated” field of these apps is within the last 20

days. From the same figure, for other lists, we also emphasize

the presence of a long tail of apps that have been present for

thousands of hours. We conclude that:

Findings 4: (1) A majority of apps follows a “birth-growth-

decline-death” process, as they enter/exit from the bottom

part of a list. (2) Most of the apps with modest DEBUT

and EXIT values have a short, eventful life occupying many

positions quickly, and (3) The New (Free) and New (Paid)

lists choose among apps that were updated within the last

20 days.

B. Top-K List Variation

We now characterize the changes in the rankings of the top-

k items from the five lists over time. Changes over time can be

explained not only by the dynamic nature of the app uploading

process but also by changes in the ranking algorithm.

We use the Inverse Rank Measure to assess the changes over

time in each of the rankings. This measure gives more weight

to identical or near identical rankings among the top ranking

items. This measure tries to capture the intuition that identical

or near identical rankings among the top items indicate greater

similarity between the rankings. Let us assume the following:

kn is the list of top-k apps at time tn, σn(i) is the rank of app

i in kn, Z is the set of items common to kn−1 and kn, S is

the set of items in kn−1 but not in kn, T is the set of items

in kn but not in kn−1. Then, the inverse rank measure is [5]

defined as follows:

M
(kn−1,kn) = 1−

N (kn−1,kn)

Nmax(kn−1,kn)
(2)

where N (kn−1,kn) =
∑

i∈Z | 1
σn−1(i)

− 1
σn(i)

|+∑
i∈S | 1

σn−1(i)
− 1

(|kn|+1) | +
∑

i∈T | 1
σn(i)

− 1
(|kn−1|+1) |,

and

Nmax
(kn−1,kn) =

|kn−1|∑

i=1

|
1

i
−

1

(|kn|+ 1)
|+

|kn|∑

i=1

|
1

i
−

1

(|kn−1|+ 1)
|

Figure 8(a) shows the variation of Mkt1
,kt2 for consecutive

days in the month of September. Note that values above 0.7

indicate high similarity [5]. We observe that the lists are

similar from day to day for Free list but this is not the case

for Paid and Gross. Intuitively, this indicates that the effort to

displace a free app seems to be higher than that of a paid app

or the frequency with which the ranking algorithm is run on

Free list is less than that of the Paid list.

Figure 8(b) shows the number of apps that occupy a rank

position in 5 different list-types over our observation period.

Note that a lower rank is preferred. For example, the 300th

rank position in the New (Free) list is occupied by 441

applications. With the increase in rank, the rate of applications

being swapped is increasing for each category indicating an

increased churn – it is easier for apps to occupy as well as

get displaced on high ranks. For Paid, Gross, and Free, the

number of apps varies from 34 to 142, 30 to 173, and 43 to

163, respectively, from the 1st to the 400th rank.

Figure 8(c) shows the distribution of the lifetime of ap-

plications that occupy a specific rank position. To evaluate

the variation in the distributions we choose the 1st, 50th,
100th, 200th, and 400th rank positions. For each category,

the average lifetime is longer for higher ranking apps then for

lower ranking apps. We can clearly observe this phenomenon

in the case of New (Free) and New (Paid). In both the cases,

the lifetime of the apps at the lowest rank (i.e., 400th) is the
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Fig. 8. (a) The Inverse Rank Measure vs. Timestamp. The Free list varies little from day to day, which is not the case for Paid and Gross. (b) Number of
apps vs. ranks. (c) Lifetime of apps at various ranks. The average top-k list lifetime is longer for higher ranking than for lower ranking apps.

lowest, i.e., ≈6 hours and it starts increasing with the increase

in the ranks. We can attribute this effect to the frequently

changing list of new apps and the relatively easier competitions

to be on the top-400 lists. However, in case of Free apps, the

average lifetime of apps on the 1st rank is 94.2 hours and

decreases to 16.7 hours for the 400th rank. For Paid and Gross

categories, the lifetime changes from 81.6 to 20.6 hours and

65.7 to 17.9 hours, respectively, for the rank 1 → 400. We

attribute these effects to the stability of the apps in these lists.

Findings 5: Apps that attain higher ranks (e.g., 1-10) have

better top-k list “stability” than apps that are at lower ranks

(e.g., 300-400). That is, they are allowed to stay longer by

a factor of between 3.6 and 5.5.

VII. RESEARCH IMPLICATIONS

We discuss now the implications of our work on future

directions for security and systems research in app markets.

A. Emerging Threat Vectors

Our analysis has shown that several developers upload many

unpopular apps (see §V ), while others tend to push frequent

updates (§IV). In the following, we expose new vulnerabilities

related to such behaviors.

Scam Apps. We have identified several “productive” devel-

opers, that upload many similar apps. Among them, we have

observed several thousands of premium applications (priced

around $1.99) that are slight variations of each other and have

almost no observable functionality. Such apps rely on their

names and description to scam users into paying for them, then

fail to deliver. Each such app receives ≈500-1000 downloads,

bringing its developer a profit of $1000-2000. A promising

research direction is to identify relevant features, including

reviews, update frequency, price, and use machine learning

tools to detect suspicious scam apps.

Update Attacks. While updates enable developers to fix bugs

and push new functionality in a seamless manner, we have

identified two attack vectors that rely on them. The attack

vectors can be exploited both by malicious developers and by

attackers that infiltrate developer accounts.

• Jekyll-Hyde apps. A motivated attacker develops and up-

loads a benign app. Once it gains popularity, the attacker

pushes malware as an update. For instance, the attacker can

ramp up the permissions required by the app, exploiting the

observation that a user is more likely to accept them, then

to uninstall the app. One direction to explore is to monitor

the evolution of an app, as related to uploads. This includes

detecting review and download spikes, fraudulent reviews and

sudden rating variations (e.g., see [20]), as well as strong

negative reviewer sentiments.

• DoS attacks. In §IV we discus the case of apps such

as “Player Dreams”, whose each update utilizes ≈0.87-1.71

TB of bandwidth (assuming automatic updates on the user



side). Amazon EC2 [1] charges $12K for a bandwidth of

10 TB/month. Attackers can utilize this channel to launch

bandwidth and even battery exhaustion attacks, by pushing

frequent updates to a large user base.

B. App Market Ecosystem

Analytics-driven Application Development. We envision a

development model where insights derived from raw market-

level data is integrated into the application development. Such

a model is already adopted by websites such as Priceline [4]

through their “Name Your Own Price” scheme where the

interface provides users with hints on setting an optimal

price towards a successful bid. We propose the extension

of development tools like Google’s Android Studio [2] with

market-level analytics, including:

• Median Price: In §IV, we showed that developers may be

settling down for lower profits. Provide them with hints on the

optimal price for their app based on, say, #features, price of

active apps in the same category etc.

• Application Risk: Provide predictions on the impact of

permissions and updates on reviews and download count.

• App Insights: Present actionable insights extracted from user

reviews (e.g., using solutions like NetSieve [19]), including

most requested feature, list of buggy features, features that

crash the app.

Enriching User Experience. We believe data-driven insights

will be indispensable to enhance the end user experience:

• Analytics Based App Choice: Visualize app price, update

overhead, required permissions, reviewer sentiment to enhance

the user experience when choosing among apps with similar

claimed functionality. For instance, develop scores for indi-

vidual features, and even an overall “sorting” score based on

user preferences. Scam apps (see §VII-A) should appear at the

bottom of the score based sorted app list.

• Analytics Based Update Quarantine: We envision a quaran-

tine based approach to defend against Jekyll-Hyde apps. An

update installation is postponed until analytics of variation in

app features indicates the update is stable and benign. To avoid

a situation where all users defer installation, we propose a

probabilistic quarantine. Each user can update the app after a

personalized random interval after its release.

VIII. CONCLUSION

In spite of the widespread interest in smartphone app

markets, little has been published that reveals the nature of

applications, or the developers. This paper is a first attempt

to capture temporal patterns in Google Play, an influential

app market. Using data collected from more than 160,000

apps daily over a six month period, we examined market

trends, application characteristics and developer behavior in

real-world market settings. Our work provides insights into the

impact of developer levers (e.g., price, permissions requested,

update frequency) on app popularity. We proposed future

directions for integrating analytics insights into developer and

user experiences. We introduced novel attack vectors on app

markets and discussed future detection directions.
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