
1

Search Rank Fraud and Malware Detection in
Google Play

Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar, Duen Horng Chau

Abstract—Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and malware

proliferation. To identify malware, previous work has focused on app executable and permission analysis. In this paper, we introduce

FairPlay, a novel system that discovers and leverages traces left behind by fraudsters, to detect both malware and apps subjected to

search rank fraud. FairPlay correlates review activities and uniquely combines detected review relations with linguistic and behavioral

signals gleaned from Google Play app data (87K apps, 2.9M reviews, and 2.4M reviewers, collected over half a year), in order to

identify suspicious apps. FairPlay achieves over 95% accuracy in classifying gold standard datasets of malware, fraudulent and

legitimate apps. We show that 75% of the identified malware apps engage in search rank fraud. FairPlay discovers hundreds of

fraudulent apps that currently evade Google Bouncer’s detection technology. FairPlay also helped the discovery of more than 1,000

reviews, reported for 193 apps, that reveal a new type of “coercive” review campaign: users are harassed into writing positive reviews,

and install and review other apps.

Index Terms—Android market, search rank fraud, malware detection

✦

1 INTRODUCTION

The commercial success of Android app markets such
as Google Play [1] and the incentive model they offer to
popular apps, make them appealing targets for fraudu-
lent and malicious behaviors. Some fraudulent developers
deceptively boost the search rank and popularity of their
apps (e.g., through fake reviews and bogus installation
counts) [2], while malicious developers use app markets as
a launch pad for their malware [3]–[6]. The motivation for
such behaviors is impact: app popularity surges translate
into financial benefits and expedited malware proliferation.

Fraudulent developers frequently exploit crowdsourcing
sites (e.g., Freelancer [7], Fiverr [8], BestAppPromotion [9])
to hire teams of willing workers to commit fraud collec-
tively, emulating realistic, spontaneous activities from unre-
lated people (i.e., “crowdturfing” [10]), see Figure 1 for an
example. We call this behavior “search rank fraud”.

In addition, the efforts of Android markets to identify
and remove malware are not always successful. For in-
stance, Google Play uses the Bouncer system [11] to remove
malware. However, out of the 7, 756 Google Play apps we
analyzed using VirusTotal [12], 12% (948) were flagged by
at least one anti-virus tool and 2% (150) were identified as
malware by at least 10 tools (see Figure 6).

Previous mobile malware detection work has focused
on dynamic analysis of app executables [13]–[15] as well as
static analysis of code and permissions [16]–[18]. However,
recent Android malware analysis revealed that malware
evolves quickly to bypass anti-virus tools [19].

In this paper, we seek to identify both malware and
search rank fraud subjects in Google Play. This combination

• Mahmudur Rahman is with IBM.
• Mizanur Rahman and Bogdan Carbunar are with FIU. Email:

{mrahm031, carbunar}@cs.fiu.edu
• Duen Horng Chau is with Georgia Tech. Email: polo@gatech.edu
• A preliminary version of this article has appeared in SDM 2016.

Fig. 1: An “install job” posting from Freelancer [7], asking
for 2000 installs within 3 days (in orange), in an organized
way that includes expertise verifications and provides se-
crecy assurances (in blue). Text enlarged for easier reading.

is not arbitrary: we posit that malicious developers resort to
search rank fraud to boost the impact of their malware.

Unlike existing solutions, we build this work on the
observation that fraudulent and malicious behaviors leave
behind telltale signs on app markets. We uncover these
nefarious acts by picking out such trails. For instance, the
high cost of setting up valid Google Play accounts forces
fraudsters to reuse their accounts across review writing jobs,
making them likely to review more apps in common than
regular users. Resource constraints can compel fraudsters to
post reviews within short time intervals. Legitimate users
affected by malware may report unpleasant experiences
in their reviews. Increases in the number of requested
permissions from one version to the next, which we will
call “permission ramps”, may indicate benign to malware
(Jekyll-Hyde) transitions.

2

1.1 Contributions

We propose FairPlay, a system that leverages the above
observations to efficiently detect Google Play fraud and
malware (see Figure 7). Our major contributions are:
A fraud and malware detection approach. To detect fraud
and malware, we propose and generate 28 relational, behav-
ioral and linguistic features, that we use to train supervised
learning algorithms [§ 4]:

• We formulate the notion of co-review graphs to model
reviewing relations between users. We develop PCF, an
efficient algorithm to identify temporally constrained,
co-review pseudo-cliques — formed by reviewers with
substantially overlapping co-reviewing activities across
short time windows.

• We use temporal dimensions of review post times to
identify suspicious review spikes received by apps; we
show that to compensate for a negative review, for an
app that has rating R, a fraudster needs to post at
least R−1

5−R
positive reviews. We also identify apps with

“unbalanced” review, rating and install counts, as well
as apps with permission request ramps.

• We use linguistic and behavioral information to (i)
detect genuine reviews from which we then (ii) extract
user-identified fraud and malware indicators.

Tools to collect and process Google Play data. We have
developed GPCrawler, a tool to automatically collect data
published by Google Play for apps, users and reviews, as
well as GPad, a tool to download apks of free apps and scan
them for malware using VirusTotal.
Novel longitudinal and gold standard datasets. We con-
tributed a longitudinal dataset of 87, 223 freshly posted
Google Play apps (along with their 2.9M reviews, from
2.3M reviewers) collected between October 2014 and May
2015. We have leveraged search rank fraud expert contacts
in Freelancer [7], anti-virus tools and manual verifications
to collect gold standard datasets of hundreds of fraudulent,
malware and benign apps [§ 3]. We have published these
datasets on the project website [20].

1.2 Results

FairPlay has high accuracy and real-world impact:
High Accuracy. FairPlay achieves over 97% accuracy in
classifying fraudulent and benign apps, and over 95% accu-
racy in classifying malware and benign apps. FairPlay sig-
nificantly outperforms the malware indicators of Sarma et
al. [16]. Furthermore, we show that malware often engages
in search rank fraud as well: When trained on fraudulent
and benign apps, FairPlay flagged as fraudulent more than
75% of the gold standard malware apps [§ 5.3].
Real-world Impact: Uncover Fraud & Attacks. FairPlay
discovers hundreds of fraudulent apps. We show that these
apps are indeed suspicious: the reviewers of 93.3% of them
form at least 1 pseudo-clique, 55% of these apps have at
least 33% of their reviewers involved in a pseudo-clique,
and the reviews of around 75% of these apps contain at
least 20 words indicative of fraud.

FairPlay also enabled us to discover a novel, coercive re-
view campaign attack type, where app users are harassed into
writing a positive review for the app, and install and review
other apps.We have discovered 1, 024 coerced reviews, from
users complaining about 193 such apps [§ 5.4 & § 5.5].

Fig. 2: Google Play components and relations. Google Play’s
functionality centers on apps, shown as red disks. Develop-
ers, shown as orange disks upload apps. A developer may
upload multiple apps. Users, shown as blue squares, can
install and review apps. A user can only review an app that
he previously installed.

2 BACKGROUND, RELATED WORK,

AND OUR DIFFERENCES

Systemmodel. We focus on the Android appmarket ecosys-
tem of Google Play. The participants, consisting of users
and developers, have Google accounts. Developers create
and upload apps, that consist of executables (i.e., “apks”),
a set of required permissions, and a description. The app
market publishes this information, along with the app’s re-
ceived reviews, ratings, aggregate rating (over both reviews
and ratings), install count range (predefined buckets, e.g.,
50-100, 100-500), size, version number, price, time of last
update, and a list of “similar” apps. Each review consists
of a star rating ranging between 1-5 stars, and some text.
The text is optional and consists of a title and a description.
Google Play limits the number of reviews displayed for an
app to 4, 000. Figure 2 illustrates the participants in Google
Play and their relations.
Adversarial model. We consider not only malicious devel-
opers, who upload malware, but also rational fraudulent
developers. Fraudulent developers attempt to tamper with
the search rank of their apps, e.g., by recruiting fraud
experts in crowdsourcing sites to write reviews, post ratings,
and create bogus installs. While Google keeps secret the
criteria used to rank apps, the reviews, ratings and install
counts are known to play a fundamental part (see e.g., [21]).

To review or rate an app, a user needs to have a Google
account, register a mobile device with that account, and
install the app on the device. This process complicates the
job of fraudsters, who are thus more likely to reuse accounts
across jobs. The reason for search rank fraud attacks is
impact. Apps that rank higher in search results, tend to
receive more installs. This is beneficial both for fraudulent
developers, who increase their revenue, and malicious de-
velopers, who increase the impact of their malware.

2.1 Android Malware Detection

Zhou and Jiang [19] collected and characterized 1, 200 An-
droid malware samples, and reported the ability of malware
to quickly evolve and bypass the detection mechanisms of
anti-virus tools.

Burguera et al. [13] used crowdsourcing to collect sys-
tem call traces from real users, then used a “partitional”
clustering algorithm to classify benign and malicious apps.

3

Shabtai et al. [14] extracted features from monitored apps
(e.g., CPU consumption, packets sent, running processes)
and usedmachine learning to identify malicious apps. Grace
et al. [15] used static analysis to efficiently identify high and
medium risk apps.

Previouswork has also used app permissions to pinpoint
malware [16]–[18]. Sarma et al. [16] use risk signals extracted
from app permissions, e.g., rare critical permissions (RCP)
and rare pairs of critical permissions (RPCP), to train SVM
and inform users of the risks vs. benefits tradeoffs of apps.
In § 5.3 we show that FairPlay significantly improves on the
performance achieved by Sarma et al. [16].

Peng et al. [17] propose a score to measure the risk
of apps, based on probabilistic generative models such as
Naive Bayes. Yerima et al. [18] also use features extracted
from app permissions, API calls and commands extracted
from the app executables.

Sahs and Khan [22] used features extracted from app
permissions and control flow graphs to train an SVM classi-
fier on 2000 benign and less than 100 malicious apps. Sanz et
al. [23] rely strictly on permissions as sources of features for
several machine learning tools. They use a dataset of around
300 legitimate and 300 malware apps.

Google has deployed Bouncer, a framework that moni-
tors published apps to detect and remove malware. Ober-
heide and Miller [11] have analyzed and revealed details
of Bouncer (e.g., based in QEMU, using both static and
dynamic analysis). Bouncer is not sufficient - our results
show that 948 apps out of 7,756 apps that we downloaded
from Google Play are detected as suspicious by at least
1 anti-virus tool. In addition, FairPlay detected suspicious
behavior for apps that were not removed by Bouncer during
a more than 6 months long interval.

Instead of analyzing app executables, FairPlay employs
a relational, linguistic and behavioral approach based on
longitudinal app data. FairPlay’s use of app permissions
differs from existing work through its focus on the temporal
dimension, e.g., changes in the number of requested permis-
sions, in particular the “dangerous” ones. We observe that
FairPlay identifies and exploits a new relationship between
malware and search rank fraud.

2.2 Graph Based Opinion Spam Detection

Graph based approaches have been proposed to tackle opin-
ion spam [24], [25]. Ye and Akoglu [24] quantify the chance
of a product to be a spam campaign target, then cluster
spammers on a 2-hop subgraph induced by the products
with the highest chance values. Akoglu et al. [25] frame
fraud detection as a signed network classification problem
and classify users and products, that form a bipartite net-
work, using a propagation-based algorithm.

FairPlay’s relational approach differs as it identifies apps
reviewed in a contiguous time interval, by groups of users
with a history of reviewing apps in common. FairPlay
combines the results of this approach with behavioral and
linguistic clues, extracted from longitudinal app data, to
detect both search rank fraud and malware apps. We em-
phasize that search rank fraud goes beyond opinion spam,
as it implies fabricating not only reviews, but also user app
install events and ratings.

3 THE DATA

We have collected longitudinal data from 87K+ newly re-
leased apps over more than 6 months, and identified gold
standard data. In the following, we briefly describe the tools
we developed, then detail the data collection effort and the
resulting datasets.

Data collection tools. We have developed the Google Play
Crawler (GPCrawler) tool, to automatically collect data pub-
lished by Google Play for apps, users and reviews. Google
Play prevents scripts from scrolling down a user page. Thus,
to collect the ids of more than 20 apps reviewed by a user. To
overcome this limitation, we developed a Python script and
a Firefox add-on. Given a user id, the script opens the user
page in Firefox. When the script loads the page, the add-
on becomes active. The add-on interacts with Google Play
pages using content scripts (Browser specific components
that let us access the browsers native API) and port objects
for message communication. The add-on displays a “scroll
down” button that enables the script to scroll down to the
bottom of the page. The script then uses a DOMParser to
extract the content displayed in various formats by Google
Play. It then sends this content over IPC to the add-on. The
add-on stores it, using Mozilla XPCOM components, in a
sand-boxed environment of local storage in a temporary file.
The script then extracts the list of apps rated or reviewed by
the user.

We have also developed the Google Play App Downloader
(GPad), a Java tool to automatically download apks of
free apps on a PC, using the open-source Android Market
API [26]. GPad takes as input a list of free app ids, a Gmail
account and password, and a GSF id. GPad creates a new
market session for the “androidsecure” service and logs in.
GPad sets parameters for the session context (e.g., mobile
device Android SDK version, mobile operator, country),
then issues a GetAssetRequest for each app identifier in the
input list. GPad introduces a 10s delay between requests.
The result contains the url for the app; GPad uses this
url to retrieve and store the app’s binary stream into a
local file. After collecting the binaries of the apps on the
list, GPad scans each app apk using VirusTotal [12], an
online malware detector provider, to find out the number
of anti-malware tools (out of 57: AVG, McAfee, Symantec,
Kaspersky, Malwarebytes, F-Secure, etc.) that identify the
apk as suspicious.We used 4 servers (PowerEdge R620, Intel
Xeon E-26XX v2 CPUs) to collect our datasets, which we
describe next.

3.1 Longitudinal App Data

In order to detect suspicious changes that occur early in
the lifetime of apps, we used the “New Releases” link to
identify apps with a short history on Google Play. Our
interest in newly released apps stems from our analysis
of search rank fraud jobs posted on crowdsourcing sites,
that revealed that app developers often recruit fraudsters
early after uploading their apps on Google Play. Their intent
is likely to create the illusion of an up-and-coming app,
that may then snowball with interest from real users. By
monitoring new apps, we aim to capture in real-time the
moments when such search rank fraud campaigns begin.

4

0

1000

2000

3000

4000

5000

 P
e
rs

o
n
a
liz

a
ti
o
n

 S
p
o
rt

s

 B
u
s
in

e
s
s

 E
d
u
c
a
ti
o
n

 T
o
o
ls

 P

ro
d
u
c
ti
v
it
y

 H
e
a
lt
h
 &

 F
it
n
e
s
s

 T
ra

ve
l
&

 L
o
c
a
l

 N
e
w

s
 &

 M
a
g
a
z
in

e
s

 L
ife

s
ty

le

 B
o
o
k
s
 &

 R
e
fe

re
n
c
e

 C
o
m

m
u
n
ic

a
ti
o
n

 F
in

a
n
c
e

 A
rc

a
d
e

 S
o
c
ia

l
 E

n
te

rt
a
in

m
e
n
t

 M
u
s
ic

 &
 A

u
d
io

 P

u
z
z
le

 P

h
o
to

g
ra

p
h
y

 C
a
s
u
a
l

 M
e
d
ia

 &
 V

id
e
o

 A
c
ti
o
n

 A
d
ve

n
tu

re

 E
d
u
c
a
ti
o
n
a
l

 R
a
c
in

g

 S
im

u
la

ti
o
n

 F
a
m

ily

 T
ri

v
ia

 S

h
o
p
p
in

g

 M
e
d
ic

a
l

 C
a
s
in

o

 T
ra

n
s
p
o
rt

a
ti
o
n

 S
tr

a
te

g
y

 B
o
a
rd

 C

a
rd

 R

o
le

 P
la

y
in

g

 W
o
rd

 C

o
m

ic
s

 L
ib

ra
ri

e
s
 &

 D
e
m

o

 W
e
a
th

e
r

 M
u
s
ic

App types

N
u

m
b

e
r

o
f

a
p

p
s

Fig. 3: Distribution of app types for the 87, 223 fresh app set.
With the slight exception of “Personalization” and “Sports”
type spikes, we have achieved an almost uniform distribu-
tion across all app types, as desirable.

8184

95 588 1151

4570

11304

24317

19949

17065

0

5000

10000

15000

20000

25000

0−1 1−1.5 1.5−2 2−2.5 2.5−3 3−3.5 3.5−4 4−4.5 4.5−5
Average rating of apps

N
u

m
b

e
r

o
f

a
p

p
s

Fig. 4: Average rating distribution for the 87, 223 fresh app
set. Most apps have more than 3.5 stars, few have between
1 and 2.5 stars, but more than 8, 000 apps have less than 1.

We approximate the first upload date of an app using
the day of its first review. We have started collecting new
releases in July 2014 and by October 2014 we had a set of
87, 223 apps, whose first upload time was under 40 days
prior to our first collection time, when they had at most 100
reviews.

Figure 3 shows the distribution of the fresh app cate-
gories. We have collected app from each category supported
by Google Play, with at least 500 apps per category (Music
& Audio) and more than 4, 500 for the most popular cat-
egory (Personalization). Figure 4 shows the average rating
distribution of the fresh apps. Most apps have at least a 3.5
rating aggregate rating, with few apps between 1 and 2.5
stars. However, we observe a spike at more than 8, 000 apps
with less than 1 star.

We have collected longitudinal data from these 87, 223
apps between October 24, 2014 andMay 5, 2015. Specifically,
for each app we captured “snapshots” of its Google Play
metadata, twice a week. An app snapshot consists of values
for all its time varying variables, e.g., the reviews, the rating
and install counts, and the set of requested permissions (see
§ 2 for the complete list). For each of the 2, 850, 705 reviews
we have collected from the 87, 223 apps, we recorded the
reviewer’s name and id (2, 380, 708 unique ids), date of
review, review title, text, and rating.

This app monitoring process enables us to extract a
suite of unique features, that include review, install and
permission changes. In particular, we note that this ap-

Fig. 5: Co-review graph of 15 seed fraud accounts (red
nodes) and the 188 GbA accounts (orange nodes). Edges
indicate reviews written in common by the accounts corre-
sponding to the endpoints. We only show edges having at
least one seed fraud account as an endpoint. The 15 seed
fraud accounts form a suspicious clique with edges weights
that range between 60 and 217. The GbA accounts are also
suspiciously well connected to the seed fraud accounts: the
weights of their edges to the seed fraud accounts ranges
between 30 and 302.

948

617

523

329

241

150

64 36 16 5 1
0

250

500

750

1000

1 2 3 5 7 10 12 13 15 20 26
Number of anti−malware tools

N
u

m
b

e
r

o
f

d
e

te
ct

e
d

 a
p

p
s

Fig. 6: Apks detected as suspicious (y axis) by multiple anti-
virus tools (x axis), through VirusTotal [12], from a set of
7, 756 downloaded apks.

proach enables us to overcome the Google Play limit of 4000
displayed reviews per app: each snapshot will capture only
the reviews posted after the previous snapshot.

3.2 Gold Standard Data

Malware apps. We used GPad (see § 3) to collect the apks
of 7, 756 randomly selected apps from the longitudinal set
(see § 3.1). Figure 6 shows the distribution of flags raised
by VirusTotal, for the 7, 756 apks. None of these apps had
been filtered by Bouncer [11]! From the 523 apps that were
flagged by at least 3 tools, we selected those that had at least
10 reviews, to form our “malware app” dataset, for a total of
212 apps. We collected all the 8, 255 reviews of these apps.
Fraudulent apps. We used contacts established among Free-
lancer [7]’s search rank fraud community, to obtain the
identities of 15 Google Play accounts that were used to
write fraudulent reviews for 201 unique apps. We call the
15 accounts “seed fraud accounts” and the 201 apps “seed

5

Notation Definition

CoReG Module

nCliques number of pseudo-cliques with ρ ≥ θ
ρmax, ρmed, ρSD clique density: max, median, SD
CSmax, CSmed, CSSD pseudo-cliques size: max, median, SD
inCliqueCount % of nodes involved in pseudo-cliques

RF Module

malW % of reviews with malware indicators
fraudW , goodW % of reviews with fraud/benign words
FRI fraud review impact on app rating

IRR Module

spikeCount, spikeamp days with spikes & spike amplitude
I1/Rt1, I2/Rt2 install to rating ratios
I1/Rv1, I2/Rv2 install to review ratios

JH Module

permCt, dangerCount # of total and dangerous permissions
rampCt # of dangerous permission ramps
dangerRamp # of dangerous permissions added

TABLE 1: FairPlay’s most important features, organized by
their extracting module. § 4.2 describes ρ and θ.

fraud apps”. Figure 5 shows the graph formed by the review
habits of the 15 seed accounts: nodes are accounts, edges
connect accounts who reviewed apps in common, and edge
weights represent the number of such commonly reviewed
apps. The 15 seed fraud accounts form a suspicious clique.
This shows that worker controlled accounts are used to
review many apps in common: the weights of the edges
between the seed fraud accounts range between 60 and 217.
Fraudulent reviews. We have collected all the 53, 625 re-
views received by the 201 seed fraud apps. The 15 seed
fraud accounts were responsible for 1, 969 of these reviews.
We used the 53, 625 reviews to identify 188 accounts, such
that each account was used to review at least 10 of the 201
seed fraud apps (for a total of 6, 488 reviews). We call these,
guilt by association (GbA) accounts. Figure 5 shows the co-
review edges between these GbA accounts (in orange) and
the seed fraud accounts: the GbA accounts are suspiciously
well connected to the seed fraud accounts, with the weights
of their edges to the seed accounts ranging between 30 and
302.

To reduce feature duplication, we have used the 1, 969
fraudulent reviews written by the 15 seed accounts and
the 6, 488 fraudulent reviews written by the 188 GbA ac-
counts for the 201 seed fraud apps, to extract a balanced set
of fraudulent reviews. Specifically, from this set of 8, 457
(= 1, 969+6, 488) reviews, we have collected 2 reviews from
each of the 203 (= 188+15) suspicious user accounts. Thus,
the gold standard dataset of fraudulent reviews consists of
406 reviews.

The reason for collecting a small number of reviews from
each fraudster is to reduce feature duplication: many of the
features we use to classify a review are extracted from the
user who wrote the review (see Table 2).

Benign apps. We have selected 925 candidate apps from
the longitudinal app set, that have been developed by
Google designated “top developers”. We have used GPad
to filter out those flagged by VirusTotal. We have manually
investigated 601 of the remaining apps, and selected a set
of 200 apps that (i) have more than 10 reviews and (ii) were

Fig. 7: FairPlay system architecture. The CoReG module
identifies suspicious, time related co-review behaviors. The
RF module uses linguistic tools to detect suspicious behav-
iors reported by genuine reviews. The IRR module uses
behavioral information to detect suspicious apps. The JH
module identifies permission ramps to pinpoint possible
Jekyll-Hyde app transitions.

developed by reputable media outlets (e.g., NBC, PBS) or
have an associated business model (e.g., fitness trackers).
We have also collected the 32, 022 reviews of these apps.
Genuine reviews. We have manually collected a gold
standard set of 315 genuine reviews, as follows. First, we
have collected the reviews written for apps installed on
the Android smartphones of the authors. We then used
Google’s text and reverse image search tools to identify and
filter those that plagiarized other reviews or were written
from accounts with generic photos. We have then manually
selected reviews that mirror the authors’ experience, have at
least 150 characters, and are informative (e.g., provide infor-
mation about bugs, crash scenario, version update impact,
recent changes).

4 FAIRPLAY: PROPOSED SOLUTION

We now introduce FairPlay, a system to automatically detect
malicious and fraudulent apps.

4.1 FairPlay Overview

FairPlay organizes the analysis of longitudinal app data into
the following 4 modules, illustrated in Figure 7. The Co-
Review Graph (CoReG) module identifies apps reviewed in
a contiguous time window by groups of users with signif-
icantly overlapping review histories. The Review Feedback
(RF) module exploits feedback left by genuine reviewers,
while the Inter Review Relation (IRR) module leverages
relations between reviews, ratings and install counts. The
Jekyll-Hyde (JH) module monitors app permissions, with
a focus on dangerous ones, to identify apps that convert
from benign to malware. Each module produces several
features that are used to train an app classifier. FairPlay also
uses general features such as the app’s average rating, total
number of reviews, ratings and installs, for a total of 28
features. Table 1 summarizes the most important features.
We now detail each module and the features it extracts.

6

Fig. 8: Example pseudo-cliques and PCF output. Nodes
are users and edge weights denote the number of apps
reviewed in common by the end users. Review timestamps
have a 1-day granularity. (a) The entire co-review graph,
detected as pseudo-clique by PCF when θ is 6. When θ is
7, PCF detects the subgraphs of (b) the first two days and
(c) the last two days. When θ=8, PCF detects only the clique
formed by the first day reviews (the red nodes).

4.2 The Co-Review Graph (CoReG) Module

This module exploits the observation that fraudsters who
control many accounts will re-use them across multiple jobs.
Its goal is then to detect sub-sets of an app’s reviewers
that have performed significant common review activities in
the past. In the following, we describe the co-review graph
concept, formally present the weighted maximal clique enu-
meration problem, then introduce an efficient heuristic that
leverages natural limitations in the behaviors of fraudsters.

Co-review graphs. Let the co-review graph of an app,
see Figure 8, be a graph where nodes correspond to user
accounts who reviewed the app, and undirected edges have
a weight that indicates the number of apps reviewed in
common by the edge’s endpoint users. Figure 16a shows
the co-review clique of one of the seed fraud apps (see
§ 3.2). The co-review graph concept naturally identifies user
accounts with significant past review activities.

The weighted maximal clique enumeration problem. Let
G = (V,E) be a graph, where V denotes the sets of vertices
of the graph, and E denotes the set of edges. Let w be a
weight function, w : E → R that assigns a weight to each
edge of G. Given a vertex sub-set U ∈ V , we use G[U] to
denote the sub-graph of G induced by U . A vertex sub-set
U is called a clique if any two vertices in U are connected
by an edge in E. We say that U is a maximal clique if no
other clique of G contains U . The weighted maximal clique
enumeration problem takes as input a graph G and returns
the set of maximal cliques of G.

Maximal clique enumeration algorithms such as [27],
[28] applied to co-review graphs are not ideal to solve the
problem of identifying sub-sets of an app’s reviewers with
significant past common reviews. First, fraudsters may not
consistently use (or may even purposefully avoid using) all
their accounts across all fraud jobs that they perform. In
addition, Google Play provides incomplete information (up
to 4,000 reviews per app, may also detect and filter fraud).
Since edge information may be incomplete, original cliques
may now also be incomplete. To address this problem, we
“relax” the clique requirement and focus instead of pseudo-
cliques:

The weighted pseudo-clique enumeration problem. For a
graph G = (V,E) and a threshold value θ, we say that
a vertex sub-set U (and its induced sub-graph G[U]) is a

Algorithm 1 PCF algorithm pseudo-code.

Input: days, an array of daily reviews, and
θ, the weighted threshold density

Output: allCliques, set of all detected pseudo-cliques
1. for d :=0 d < days.size(); d++
2. Graph PC := new Graph();
3. bestNearClique(PC, days[d]);
4. c := 1; n := PC.size();
5. for nd := d+1; d < days.size() & c = 1; d++
6. bestNearClique(PC, days[nd]);
7. c := (PC.size() > n); endfor
8. if (PC.size() > 2)
9. allCliques := allCliques.add(PC); fi endfor
10. return
11. function bestNearClique(Graph PC, Set revs)

12. if (PC.size() = 0)
13. for root := 0; root < revs.size(); root++
14. Graph candClique := new Graph ();
15. candClique.addNode (revs[root].getUser());
16. do candNode := getMaxDensityGain(revs);
17. if (density(candClique ∪ {candNode}) ≥ θ))
18. candClique.addNode(candNode); fi
19. while (candNode != null);
20. if (candClique.density() > maxRho)
21. maxRho := candClique.density();
22. PC := candClique; fi endfor
23. else if (PC.size() > 0)
24. do candNode := getMaxDensityGain(revs);
25. if (density(candClique ∪ candNode) ≥ θ))
26. PC.addNode(candNode); fi
27. while (candNode != null);
28. return

pseudo-clique of G if its weighted density ρ =
∑

e∈E
w(e)

(n
2
)

[29]

exceeds θ; n = |V | 1. U is a maximal pseudo-clique if in
addition, no other pseudo-clique of G contains U . The
weighted pseudo-clique enumeration problem outputs all
the vertex sets of V whose induced subgraphs are weighted
pseudo-cliques of G.
The Pseudo Clique Finder (PCF) algorithm. We propose
PCF (Pseudo Clique Finder), an algorithm that exploits the
observation that fraudsters hired to review an app are likely
to post those reviews within relatively short time intervals
(e.g., days). PCF (see Algorithm 1), takes as input the set of
the reviews of an app, organized by days, and a threshold
value θ. PCF outputs a set of identified pseudo-cliques with
ρ ≥ θ, that were formed during contiguous time frames. In
Section 5.3 we discuss the choice of θ.

For each day when the app has received a review (line
1), PCF finds the day’s most promising pseudo-clique (lines
3 and 12 − 22): start with each review, then greedily add
other reviews to a candidate pseudo-clique; keep the pseudo
clique (of the day) with the highest density. With that “work-
in-progress” pseudo-clique, move on to the next day (line
5): greedily add other reviews while the weighted density
of the new pseudo-clique equals or exceeds θ (lines 6 and
23 − 27). When no new nodes have been added to the
work-in-progress pseudo-clique (line 8), we add the pseudo-
clique to the output (line 9), then move to the next day (line

1. ρ is thus the average weight of the graph’s edges, normalized by
the total number of edges of a perfect clique of size n.

7

Notation Definition

ρR The rating of R
L(R) The length of R
pos(R) Percentage of positive statements in R
neg(R) Percentage of negative statements in R

nr(U) The number of reviews written by U
π(ρR) Percentile of ρR among all reviews of U
ExpU(A) The expertise of U for app A
BU (A) The bias of U for A
Paid(U) The money spent by U to buy apps
Rated(U) Number of apps rated by U
plusOne(U) Number of apps +1’d by U
n.flwrs(U) Number of followers of U in Google+

TABLE 2: Features used to classify review R written by user
U for app A.

1). The greedy choice (getMaxDensityGain, not depicted
in Algorithm 1) picks the review not yet in the work-in-
progress pseudo-clique, whose writer has written the most
apps in common with reviewers already in the pseudo-
clique. Figure 8 illustrates the output of PCF for several θ
values.

If d is the number of days over which A has received
reviews and r is the maximum number of reviews received
in a day, PCF’s complexity is O(dr2(r + d)).

We note that if multiple fraudsters target an app in the
same day, PCF may detect only the most densely connected
pseudo-clique, corresponding to the most prolific fraudster,
and miss the lesser dense ones.
CoReG features. CoReG extracts the following features
from the output of PCF (see Table 1) (i) the number of cliques
whose density equals or exceeds θ, (ii) the maximum, me-
dian and standard deviation of the densities of identified
pseudo-cliques, (iii) the maximum, median and standard
deviation of the node count of identified pseudo-cliques,
normalized by n (the app’s review count), and (iv) the total
number of nodes of the co-review graph that belong to at
least one pseudo-clique, normalized by n.

4.3 Reviewer Feedback (RF) Module

Reviews written by genuine users of malware and fraudu-
lent apps may describe negative experiences. The RF mod-
ule exploits this observation through a two step approach:
(i) detect and filter out fraudulent reviews, then (ii) identify
malware and fraud indicative feedback from the remaining
reviews.
Step RF.1: Fraudulent review filter. We posit that certain
features can accurately pinpoint genuine and fake reviews.
We propose several such features, see Table 2 for a summary,
defined for a review R written by user U for an app A.
• Reviewer based features. The expertise of U for appA, defined
as the number of reviewsU wrote for apps that are “similar”
toA, as listed by Google Play (see § 2). The bias of U towards
A: the number of reviews written by U for other apps
developed byA’s developer. In addition, we extract the total
money paid by U on apps it has reviewed, the number of
apps that U has liked, and the number of Google+ followers
of U .
• Text based features. We used the NLTK library [30] and the
Naive Bayes classifier, trained on two datasets: (i) 1, 041

0

25

50

75

2013 2013 2014 2014 2015
Time

P
o

s
it

iv
e
 r

e
v
ie

w
s

Daily Yoga− Fitness On−the−Go

0

15

30

45

60

2013 2014 2014 2014 2014 2015 2015
Time

P
o

s
it

iv
e
 r

e
v
ie

w
s

RealCalc Scientific Calculator

Fig. 9: Timelines of positive reviews for 2 apps from the
fraudulent app dataset. The first app has multiple spikes
while the second one has only one significant spike.

sentences extracted from randomly selected 350 positive
and 410 negative Google Play reviews, and (ii) 10, 663
sentences extracted from 700 positive and 700 negative
IMDB movie reviews [31]. 10-fold cross validation of the
Naive Bayes classifier over these datasets reveals a false
negative rate of 16.1%and a false positive rate of 19.65%, for
an overall accuracy of 81.74%. We ran a binomial test [32]
for a given accuracy of p=0.817 over N=1,041 cases using
the binomial distribution binomial(p,N) to assess the 95%
confidence interval for our result. The deviation of the
binomial distribution is 0.011. Thus, we are 95% confident
that the true performance of the classifier is in the interval
(79.55, 83.85).

We used the trained Naive Bayes classifier to determine
the statements of R that encode positive and negative
sentiments. We then extracted the following features: (i)
the percentage of statements in R that encode positive and
negative sentiments respectively, and (ii) the rating ofR and
its percentile among the reviews written by U .

In Section 5 we evaluate the review classification ac-
curacy of several supervised learning algorithms trained
on these features and on the gold standard datasets of
fraudulent and genuine reviews introduced in Section 3.2.

Step RF.2: Reviewer feedback extraction. We conjecture
that (i) since no app is perfect, a “balanced” review that
contains both app positive and negative sentiments is more
likely to be genuine, and (ii) there should exist a relation
between the review’s dominating sentiment and its rating.
Thus, after filtering out fraudulent reviews, we extract
feedback from the remaining reviews. For this, we have
used NLTK to extract 5, 106 verbs, 7, 260 nouns and 13, 128
adjectives from the 97, 071 reviews we collected from the
613 gold standard apps (see § 3.2). We removed non ascii
characters and stop words, then applied lemmatization
and discarded words that appear at most once. We have
attempted to use stemming, extracting the roots of words,
however, it performed poorly. This is due to the fact that
reviews often contain (i) shorthands, e.g., “ads”, “seeya”,
“gotcha”, “inapp”, (ii) misspelled words, e.g., “pathytic”,
“folish”, “gredy”, “dispear” and even (iii) emphasized mis-
spellings, e.g., “hackkked”, “spammmerrr”, “spooooky”.

8

S
ta

n
d
a
rd

iz
e
d

R
e
s
id

u
a
ls

:

<
−

4
−

4
:−

2
−

2
:0

0
:2

2
:4

>
4
1

 −
 5

1

0
 −

 5
0

1

0
0

 −
 5

0
0

1

0
0

K
 −

 5
0

0
K

1

0
K

 −
 5

0
K

1

0
M

 −
 5

0
M

1

K
 −

 5
K

1

M
 −

 5
M

5
 −

 1
0

5

0
 −

 1
0

0

5

0
0

 −
 1

K

5

0
0

K
 −

 1
M

5

0
K

 −
 1

0
0

K

5

0
M

 −
 1

0
0

M

5

K
 −

 1
0

K

5

M
 −

 1
0

M

0.5M~1M

1~5

10~50
100~500
100K~0.5M
10K~50K
1K~5K
1M+
5~10
50~100
500~1K
50K~100K
5K~10K

Install count

R
a
ti
n
g
 c

o
u
n
t

Fig. 10: Mosaic plot of install vs. rating count relations of the
87K apps. Larger cells (rectangles) signify that more apps
have the corresponding rating and install count range; dot-
ted lines mean no apps in a certain install/rating category.
The standardized residuals identify the cells that contribute
the most to the χ2 test. The most significant rating:install
ratio is 1:100.

Thus, we ignored stemming.
We used the resulting words to manually identify lists

of words indicative of malware, fraudulent and benign
behaviors. Our malware indicator word list contains 31
words (e.g., risk, hack, corrupt, spam, malware, fake, fraud,
blacklist, ads). The fraud indicator word list contains 112
words (e.g., cheat, hideous, complain, wasted, crash) and
the benign indicator word list contains 105 words.
RF features. We extract 3 features (see Table 1), denoting the
percentage of genuine reviews that contain malware, fraud,
and benign indicator words respectively. We also extract
the impact of detected fraudulent reviews on the overall
rating of the app: the absolute difference between the app’s
average rating and its average rating when ignoring all the
fraudulent reviews.

4.4 Inter-Review Relation (IRR) Module

This module leverages temporal relations between reviews,
as well as relations between the review, rating and install
counts of apps, to identify suspicious behaviors.
Temporal relations. In order to compensate for a negative
review, an attacker needs to post a significant number of
positive reviews. Specifically,

Claim 1. Let RA denote the average rating of an app A just
before receiving a 1 star review. In order to compensate
for the 1 star review, an attacker needs to post at least
RA−1
5−RA

positive reviews.

Proof: Let σ be the sum of all the k reviews received
by a before time T . Then, RA = σ

k
. Let qr be the number of

fraudulent reviews received by A. To compensate for the 1
star review posted at time T , qr is minimized when all those
reviews are 5 star. We then have that: RA = σ

k
= σ+1+5qr

k+1+qr
.

The numerator of the last fraction denotes the sum of all the
ratings received by A after time T and the denominator is
the total number of reviews. Rewriting the last equality, we

S
ta

n
d
a
rd

iz
e
d

R
e
s
id

u
a
ls

:

<
−

4
−

4
:−

2
−

2
:0

0
:2

2
:4

>
4

Rating vs Install count

Install count

R
a
ti
n
g

0

.5
M

 −
 1

M

1

 −
 5

1

0
 −

 5
0

1

0
0

 −
 5

0
0

1

0
0

K
 −

 0
.5

M

1

0
K

 −
 5

0
K

1

K
 −

 5
K

1

M
 −

 5
M

1
M

0
 −

 5
M

0

5

 −
 1

0

5

0
 −

 1
0

0

5

0
0

 −
 1

K

5

0
K

 −
 1

0
0

K

5

K
 −

 1
0

K

5

M
 −

 1
M

0

5

M
0

 −
 1

M
0

0

0~1
1~2
2~3

3.5~4.0

3~3.5

4.0~4.5

4.5~5.0

Fig. 11: Mosaic plot showing relationships between the
install count and the average app rating, over the 87K
apps. A cell contains the apps that have a certain install
count interval (x axis) and rating interval (y axis). Larger
cells contain more apps. We observe a relationship between
install count and rating: apps that receive more installs also
tend to have higher average ratings (i.e., above 3 stars). This
may be due to app popularity relationship to quality which
may be further positively correlated with app rating.

obtain that qr = σ−k
5k−σ

= RA−1
5−RA

. The last equality follows by
dividing both the numerator and denominator by k.

Figure 13 plots the lower bound on the number of fake
reviews that need to be posted to cancel a 1-star review, vs.
the app’s current rating. It shows that the number of reviews
needed to boost the rating of an app is not constant. Instead,
as a review campaign boosts the rating of the subject app,
the number of fake reviews needed to continue the process,
also increases. For instance, a 4 star app needs to receive
3, 5-star reviews to compensate for a single 1 star review,
while a 4.2 star app needs to receive 4 such reviews. Thus,
adversaries who want to increase the rating of an app, i.e.,
cancel out previously received negative reviews, will need
to post an increasing, significant number of positive reviews.

Such a “compensatory” behavior is likely to lead to
suspiciously high numbers of positive reviews. We detect
such behaviors by identifying outliers in the number of daily
positive reviews received by an app. Figure 9 shows the
timelines and suspicious spikes of positive reviews for 2
apps from the fraudulent app dataset (see Section 3.2). We
identify days with spikes of positive reviews as those whose
number of positive reviews exceeds the upper outer fence
of the box-and-whisker plot built over the app’s numbers of
daily positive reviews.
Reviews, ratings and install counts. We used the Pearson’s
χ2 test to investigate relationships between the install count
and the rating count, as well as between the install count
and the average app rating of the 87K new apps, at the
end of the collection interval. We grouped the rating count
in buckets of the same size as Google Play’s install count
buckets. Figure 10 shows the mosaic plot of the relationships
between rating and install counts. p=0.0008924, thus we
conclude dependence between the rating and install counts.
The standardized residuals identify the cells (rectangles)

9

15

0 0

64

34

64
72

113

75

38
47

39

8
14

8
2 3 1 1 1 2

0

25

50

75

100

125

0 1−5 6−10 11−1516−2021−2526−30
Permission count

N
u
m

b
e
r

o
f
a
p
p
s

Legitimate
Malware
Fake

(a)

46

14

40

138

162

115

16

32 28

0 2 3 0 1 1
0

50

100

150

0 1−5 6−10 11−15 16−20
Dangerous permission count

N
u
m

b
e
r

o
f
a
p
p
s

Legitimate
Malware
Fake

(b)

Jan17, 2015
1. Findaccountsondevice
2. Useaccountsondevice

18 permissions

Nov8, 2014
12

Nodangerouspermissions requested

Nov21, 2014
GooglePlay licensecheck

13

Dec25, 2014

1. Readphonestatus&identity
2.Modify&deleteUSBstoragecontents
3. Test access toprotectedstorage

16

Dangerous
Permission
Ramp

(c)

Fig. 12: (a) Distribution of total number of permissions requested by malware, fraudulent and legitimate apps. (b)
Distribution of the number of “dangerous” permissions requested by malware, fraudulent and benign apps. (c) Dangerous
permission ramp during version updates for a sample app “com.battery.plusfree”. Originally the app requested no
dangerous permissions.

0

10

20

30

40

1
1

.1
1

.2
1

.3
1

.4
1

.5
1

.6
1

.7
1

.8
1

.9 2
2

.1
2

.2
2

.3
2

.4
2

.5
2

.6
2

.7
2

.8
2

.9 3
3

.1
3

.2
3

.3
3

.4
3

.5
3

.6
3

.7
3

.8
3

.9 4
4

.1
4

.2
4

.3
4

.4
4

.5
4

.6
4

.7
4

.8
4

.9

Rating

R
e
v
ie

w
 C

o
u
n
t

Fig. 13: Lower bound on the number of fake reviews that
need to be posted by an adversary to cancel a 1-star review,
vs. the app’s current rating (shown with 0.1-star granular-
ity). At 4 stars, the adversary needs to post 3 5-star reviews
to cancel a 1-star review, while at 4.2 stars, 4 5-star reviews
are needed.
that contribute the most to the χ2 test. The most significant
rating:install ratio is 1:100.

In addition, Figure 11 shows the mosaic plot of the app
install count vs. the average app rating. Rectangular cells
correspond to apps that have a certain install count range
(x axis) and average rating range (y axis). It shows that few
popular apps, i.e., with more than 1, 000 installs, have below
3 stars, or above 4.5 stars. We conjecture that fraudster
efforts to alter the search rank of an app will not be able
to preserve a natural balance of the features that impact
it (e.g., the app’s review, rating, and install counts), which
will easily be learned and detected by supervised learning
algorithms.
IRR features. We extract temporal features (see Table 1):
the number of days with detected spikes and the maximum
amplitude of a spike. We also extract (i) the ratio of installs
to ratings as two features, I1/Rt1 and I2/Rt2 and (ii) the
ratio of installs to reviews, as I1/Rv1 and I2/Rv2. (I1, I2]
denotes the install count interval of an app, (Rt1, Rt2] its
rating interval and (Rv1, Rv2] its (genuine) review interval.

4.5 Jekyll-Hyde App Detection (JH) Module

Figure 12a shows the distribution of the total number of
permissions requested by malware, fraudulent and legiti-
mate apps. Surprisingly, not only malware and fraudulent
apps but also legitimate apps request large numbers of
permissions.

In addition, Android’s API level 22 labels 47 permissions
as “dangerous”. Figure 12b compares the distributions of
the number of dangerous permissions requested by the
gold standard malware, fraudulent and benign apps. The
most popular dangerous permissions among these apps are
“modify or delete the contents of the USB storage”, “read
phone status and identity”, “find accounts on the device”,
and “access precise location”. Only 8% of the legitimate
apps request more than 5 dangerous permissions, while
16.5% of the malware apps and 17% of the fraudulent apps
request more than 5 permissions. Perhaps surprisingly, most
legitimate (69%), malware (76%) and fraudulent apps (61%)
request between 1 and 5 dangerous permissions.

After a recent Google Play policy change [33], Google
Play organizes app permissions into groups of related per-
missions. Apps can request a group of permissions and
gain implicit access also to dangerous permissions. Upon
manual inspection of several apps, we identified a new type
of malicious intent possibly perpetrated by deceptive app
developers: apps that seek to attract users with minimal per-
missions, but later request dangerous permissions. The user
may be unwilling to uninstall the app “just” to reject a few
new permissions. We call these Jekyll-Hyde apps. Figure 12c
shows the dangerous permissions added during different
version updates of one gold standard malware app.
JH features. We extract the following features (see Table 1),
(i) the total number of permissions requested by the app, (ii)
its number of dangerous permissions, (iii) the app’s number
of dangerous permission ramps, and (iv) its total number of
dangerous permissions added over all the ramps.

5 EVALUATION

5.1 Experiment Setup

We have implemented FairPlay using Python to extract data
from parsed pages and compute the features, and the R tool
to classify reviews and apps. We have set the threshold
density value θ to 3, to detect even the smaller pseudo
cliques.

We have used theWeka data mining suite [34] to perform
the experiments, with default settings. We experimented
with multiple supervised learning algorithms. Due to space
constraints, we report results for the best performers: Multi-
Layer Perceptron (MLP) [35], Decision Trees (DT) (C4.5) and

10

Strategy FPR% FNR% Accuracy%

DT (Decision Tree) 2.46 6.03 95.98
MLP (Multi-layer Perceptron) 1.47 6.67 96.26
RF (Random Forest) 2.46 5.40 96.26

TABLE 3: Review classification results (10-fold cross-
validation), of gold standard fraudulent (positive) and gen-
uine (negative) reviews. MLP achieves the lowest false
positive rate (FPR) of 1.47%.

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Decision tree
Random forest
MLP

Fig. 14: ROC plot of 3 classifiers: Decision Tree, Random
Forest and Multilayer Perceptron (MLP). for review classi-
fication. RF and MLP are tied for best accuracy, of 96.26%.
The EER of MLP is as low as 0.036.

Random Forest (RF) [36], using 10-fold cross-validation [37].
For the backpropagation algorithm of the MLP classifier,
we set the learning rate to 0.3 and the momentum rate to
0.2. We used MySQL to store collected data and features.
We use the term “positive” to denote a fraudulent review,
fraudulent or malware app; FPR means false positive rate.
Similarly, “negative” denotes a genuine review or benign
app; FNR means false negative rate.

We use the Receiver Operating Characteristic (ROC)
curve to visually display the trade-off between the FPR and
the FNR. TPR is the true positive rate. The Equal Error Rate
(EER) is the rate at which both positive and negative errors
are equal. A lower EER denotes a more accurate solution.

5.2 Review Classification

To evaluate the accuracy of FairPlay’s fraudulent review de-
tection component (RF module), we used the gold standard
datasets of fraudulent and genuine reviews of § 3.2. We used
GPCrawler to collect the data of the writers of these reviews,
including the 203 reviewers of the 406 fraudulent reviews
(21, 972 reviews for 2, 284 apps) and the 315 reviewers of
the genuine reviews (9, 468 reviews for 7, 116 apps). We
observe that the users who post genuine reviews write fewer
reviews in total than those who post fraudulent reviews;
however, overall, those users review more apps in total. We
have also collected information about each of these collected
apps, e.g., the identifiers of the app developer.

Table 3 shows the results of the 10-fold cross validation
of algorithms classifying reviews as genuine or fraudulent

Strategy FPR% FNR% Accuracy%

FairPlay/DT 3.01 3.01 96.98
FairPlay/MLP 1.51 3.01 97.74
FairPlay/RF 1.01 3.52 97.74

TABLE 4: FairPlay classification results (10-fold cross vali-
dation) of gold standard fraudulent (positive) and benign
apps. RF has lowest FPR, thus desirable [38].

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MLP
Decision tree
Random Forest

Fig. 15: ROC plot of 3 classifiers: Decision Tree, MLP and
Bagging for app classification (legitimate vs fraudulent).
Decision Tree has the highest accuracy, of 98.99%. The EER
of MLP is as low as 0.01.

(Random Forest, Decision Tree and MLP). Figure 14 shows
the ROC plots of these algorithms. To minimize wrongful
accusations, we seek to minimize the FPR [38]. MLP simul-
taneously achieves the highest accuracy of 96.26% and the
lowest FPR of 1.47% (at 6.67% FNR). The EER of MLP is
3.6% and its area under the curve, AUC, is 0.98. Thus, in the
following experiments, we use MLP to filter out fraudulent
reviews in the RF.1 step.

5.3 App Classification

To evaluate FairPlay, we have collected all the 97, 071 re-
views of the 613 gold standard malware, fraudulent and
benign apps, written by 75, 949 users, as well as the 890, 139
apps rated by these users.

In the following, we evaluate the ability of various
supervised learning algorithms to correctly classify apps as
either benign, fraudulent or malware. Specifically, in the
first experiment we train only on fraudulent and benign
app data, and test the ability to accurately classify an app
as either fraudulent or benign. In the second experiment,
we train and test only on malware and benign apps. In
the third experiment, we train a classifier on fraudulent
and benign apps, then test its accuracy to classify apps
as either malware or benign. Finally, we study the most
impactful features when classifying fraudulent vs. benign
and malware vs. benign apps.

We seek to identify the algorithms that achieve low
FPR values, while having a reasonable FNR [38], [39]. The
reason for this is that incorrectly labeling a benign app
(e.g., Facebook’s client) as fraudulent or malware can have
a disastrous effect.

11

(a)

0

1

2

3

4

5

6

7

8

9

10

>20

11-20

0 20 40 60

No. of
pseudo
cliques

with >3

No. of Apps

(b)

Belong to largest clique
Belong to any pseudo clique

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

81-90

91-100

0 20 40 60 80

No. of
Apps

% of app reviewers (nodes)

(c)

Fig. 16: (a) Clique flagged by PCF for “Tiempo - Clima gratis”, one of the 201 seed fraud apps (see § 3.2). The clique
contains 37 accounts (names hidden for privacy) that reviewed the app. The edge weights are suspiciously high: any two
of the 37 accounts reviewed at least 115 apps and up to 164 apps in common! (b & c) Statistics over the 372 fraudulent
apps out of 1, 600 investigated: (b) Distribution of per app number of discovered pseudo-cliques. 93.3% of the 372 apps
have at least 1 pseudo-clique of θ ≥ 3 (c) Distribution of percentage of app reviewers (nodes) that belong to the largest
pseudo-clique and to any clique. 8% of the 372 apps have more than 90% of their reviewers involved in a clique!

Strategy FPR% FNR% Accuracy%

FairPlay/DT 4.02 4.25 95.86
FairPlay/MLP 4.52 4.72 95.37
FairPlay/RF 1.51 6.13 96.11

Sarma et al. [16]/SVM 65.32 24.47 55.23

TABLE 5: FairPlay classification results (10-fold cross val-
idation) of gold standard malware (positive) and benign
apps, significantly outperform Sarma et al. [16]. FairPlay’s
RF achieves 96.11% accuracy at 1.51% FPR.

Fraud Detection Accuracy. Table 4 shows 10-fold cross
validation results of FairPlay on the gold standard fraud-
ulent and benign apps (see § 3.2). All classifiers achieve an
accuracy of around 97%. Random Forest is the best, having
the highest accuracy of 97.74% and the lowest FPR of 1.01%.
Its EER is 2.5% and the area under the ROC curve (AUC) is
0.993 (see Figure 15).

Figure 16a shows the co-review subgraph for one of
the seed fraud apps identified by FairPlay’s PCF. The 37
accounts that reviewed the app form a suspicious tightly
connected clique: any two of those accounts have reviewed
at least 115 and at most 164 apps in common.

Malware Detection Accuracy. We have used Sarma et
al. [16]’s solution as a baseline to evaluate the ability of
FairPlay to accurately detect malware. We computed Sarma
et al. [16]’s RCP and RPCP indicators (see § 2.1) using the
longitudinal app dataset. We used the SVM based variant of
Sarma et al. [16], which performs best. Table 4 shows 10-fold
cross validation results over the malware and benign gold
standard sets. FairPlay significantly outperforms Sarma et
al. [16]’s solution, with an accuracy that consistently exceeds
95%. We note that the performance of Sarma et al.’s solution
is lower than the one reported in [16]. This inconsistency
may stem from the small number of malware apps that were
used both in [16] (121 apps) and in this paper (212 apps).

For FairPlay, Random Forest has the smallest FPR of
1.51% and the highest accuracy of 96.11%. It also achieves
an EER of 4% and has an AUC of 0.986. This is surprising:
most FairPlay features are meant to identify search rank
fraud, yet they also accurately identify malware.

Rank Fraudulent vs. Benign Malware vs. Benign

1 CSSD nCliques
2 inCliqueCount CSSD

3 spikeCount CSmed

4 CSmax malW
5 ρmax I1/Rv1
6 CSmed CSmax

7 fraudW fraudW
8 malW dangerCount

TABLE 6: Top 8 most important features when classifying
fraudulent vs. benign apps (center column) and malware vs.
benign apps (rightmost column). Notations are described in
Table 1. While some features are common, some are more
efficient in identifying fraudulent apps than malware apps,
and vice versa.

Is Malware Involved in Fraud? We conjectured that the
above result is due in part to malware apps being involved
in search rank fraud. To verify this, we have trained FairPlay
on the gold standard benign and fraudulent app datasets,
then we have tested it on the gold standard malware
dataset. MLP is the most conservative algorithm, discover-
ing 60.85%of malware as fraud participants. Random Forest
discovers 72.15%, and Decision Tree flags 75.94% of the
malware as fraudulent. This result confirms our conjecture
and shows that search rank fraud detection can be an
important addition to mobile malware detection efforts.

Top-most Impactful Features. We further seek to compare
the efficacy of FairPlay’s features in detections fraudulent
apps and malware. Table 6 shows the most impactful fea-
tures of FairPlay when using the Decision Tree algorithm to
classify fraudulent vs. benign and malware vs. benign apps.
It shows that several features are common : the standard
deviation, median and maximum over the sizes of identi-
fied pseudo-cliques (CSSD , CSmed, CSmax), the number of
reviews with fraud indicator words (fraudW). Surprisingly,
even the number of reviews with malware indicator words
(malW) has an impact in identifying fraudulent apps, yet,
as expected, it has a higher rank when identifying malware
apps.

12

0

100

200

300

400

500

0 250 500 750 1000

of nodes

#
 o

f
n
o
d
e
s
 i
n
 m

a
x
 c

liq
u
e

(a)

0

50

100

150

200

250

0 250 500 750 1000

of nodes

D
e
n
s
it
y
 o

f
m

a
x
 c

liq
u
e

(b)

0

100

200

300

400

500

0 50 100 150 200

of nodes

#
 o

f
n
o
d
e
s
 i
n
 m

a
x
 c

liq
u
e

(c)

0

50

100

150

200

250

0 50 100 150 200

of nodes

D
e
n
s
it
y
 o

f
m

a
x
 c

liq
u
e

(d)

Fig. 17: Scatterplots for the gold standard fraudulent and malware apps. (a) Each red square represents a fraudulent app,
whose y axis value is its number of nodes (reviews) in the largest pseudo-clique identified, and whose x axis value is its
number of nodes. (b) For each fraudulent app, the density of its largest pseudo-clique vs. its number of nodes. (c) For
each malware app, the size of its largest pseudo-clique vs. its number of nodes. (d) For each malware app, the density of
its largest pseudo-clique vs. its number of nodes. Fraudulent apps tend to have more reviews. While some malware apps
have relatively large (but loosely connected) pseudo-cliques, their size and density is significantly smaller than those of
fraudulent apps.

In addition, as expected, features such as the percentage
of nodes involved in a pseudo-clique (inCliqueCount), the
number of days with spikes (spikeCount) and the max-
imum density of an identified pseudo-clique (ρmax) are
more relevant to differentiate fraudulent from benign apps.
The number of pseudo-cliques with density larger than 3
(nCliques) the ratio of installs to reviews (I1/Rv1) and the
number of dangerous permissions (dangerCount) are more
effective to differentiate malware from benign apps.

More surprising are the features that do not appear in
the top, for either classifier. Most notably, the Jekyll-Hyde
features that measure the ramps in the number of dangerous
permissions. One explanation is that the 212 malware apps
in our gold standard dataset do not have sufficient danger-
ous permission ramps. Also, we note that our conjecture
that fraudster efforts to alter the search rank of an app will
not be able to preserve a natural balance of the features that
impact it (see IRR module) is only partially validated: solely
the I1/Rv1 feature plays a part in differentiating malware
from benign apps.

Furthermore, we have zoomed in into the distributions
of the sizes and densities of the largest pseudo-cliques, for
the gold standard fraudulent and malware apps. Figure 17
shows scatterplots over the gold standard fraudulent and
malware apps, of the sizes and densities of their largest
pseudo-cliques, as detected by FairPlay. Figure 17a shows
that fraudulent apps tend to have very large pseudo-clique
and Figure 17c shows that malware apps have significantly
smaller pseudo-cliques. We observe however that malware
apps have fewer reviews, and some malware apps have
pseudo-cliques that contain almost all their nodes. Since the
maximum, median and standard deviation of the pseudo-
clique sizes are computed over values normalized by the
app’s number of reviews, they are impactful in differentiat-
ing malware from benign apps.

Figure 17b shows that the largest pseudo-cliques of the
larger fraudulent apps tend to have smaller densities. Fig-
ure 17d shows a similar but worse trend for malware apps,
where with a few exceptions, the largest pseudo-cliques of
the malware apps have very small densities.

5.4 FairPlay on the Field

We have also evaluated FairPlay on other, non “gold stan-
dard” apps. For this, we have first selected 8 app categories:
Arcade, Entertainment, Photography, Simulation, Racing,

Sports, Lifestyle, Casual. We have then selected the 6, 300
apps from the longitudinal dataset of the 87K apps, that
belong to one of these 8 categories, and that have more than
10 reviews. From these 6, 300 apps, we randomly selected
200 apps per category, for a total of 1, 600 apps. We have
then collected the data of all their 50, 643 reviewers (not
unique) including the ids of all the 166, 407 apps they
reviewed.

We trained FairPlay with Random Forest (best perform-
ing on previous experiments) on all the gold standard
benign and fraudulent apps. We have then run FairPlay on
the 1, 600 apps, and identified 372 apps (23%) as fraudulent.
The Racing and Arcade categories have the highest fraud
densities: 34% and 36% of their apps were flagged as
fraudulent.
Intuition. We now focus on some of the top most impactful
FairPlay features to offer an intuition for the surprisingly
high fraud percentage (23% of 1, 600 apps). Figure 16b
shows that 93.3% of the 372 apps have at least 1 pseudo-
clique of θ ≥ 3, nearly 71% have at least 3 pseudo-
cliques, and a single app can have up to 23 pseudo-cliques.
Figure 16c shows that the pseudo-cliques are large and
encompass many of the reviews of the apps: 55% of the
372 apps have at least 33% of their reviewers involved in a
pseudo-clique, while nearly 51% of the apps have a single
pseudo-clique containing 33% of their reviewers.

Figure 18 shows the scatterplots of the number of nodes
and densities of the largest clique in each of the 372 apps.
While intuitively apps with more reviews tend to have
larger pseudo-cliques (Figure 18a), surprisingly, the densi-
ties of such pseudo-cliques are small (Figure 18b).

Figure 19 shows the distribution of the number of
malware and fraud indicator words (see Step RF.2) in the
reviews of the identified 372 fraudulent apps. It shows that
around 75% of the 372 fraudulent apps have at least 20
fraud indicator words in their reviews.

5.5 Coercive Review Campaigns

Upon close inspection of apps flagged as fraudulent by
FairPlay, we detected apps perpetrating a new attack type:
harass the user to either (i) write a positive review for the
app, or (ii) install and write a positive review for other
apps (often of the same developer). We call these behaviors
coercive review campaigns and the resulting reviews, as coerced
reviews. Example coerced reviews include, “I only rated it

13

0

100

200

300

400

500

0 500 1000 1500 2000

of nodes

#
 o

f
n
o
d
e
s
 i
n
 m

a
x
 c

liq
u
e

(a)

0

50

100

150

200

250

0 500 1000 1500 2000

of nodes

D
e
n
s
it
y
 o

f
m

a
x
 c

liq
u
e

(b)

Fig. 18: Scatterplots of the 372 fraudulent apps out of 1, 600 investigated, showing, for each app, (a) the number of nodes
(reviews) in the largest clique identified vs. the app’s number of nodes (b) the density of the largest clique vs. the app’s
number of nodes. While apps with more nodes also tend to have larger cliques, those cliques tend to have lower densities.

0

20

40

60

80

100

120

0-20 21-40 41-60 61-80 81-100 101-120121-140141-160161-180181-200 >200

N
u

m
b

e
r

o
f

a
p

p
s

Number of Strong signals

Fig. 19: Distribution of the number of malware and fraud
indicator words (see Step RF.2) in the reviews of the 372
identified fraudulent apps (out of 1, 600 apps). Around 75%
of these apps have at least 20 fraud indicator words in their
reviews.

0

20

40

60

0 20 40 60 80
Number of coercive reviews

N
u

m
b

e
r

o
f

a
p

p
s

Fig. 20: Distribution of the number of coerced reviews
received by the 193 coercive apps we uncovered. 5 apps
have each receivedmore than 40 reviews indicative of rating
coercion, with one app having close to 80 such reviews!

because i didn’t want it to pop up while i am playing”, or
“Could not even play one level before i had to rate it [...]
they actually are telling me to rate the app 5 stars”.

In order to find evidence of systematic coercive review
campaigns, we have parsed the 2.9 million reviews of our
dataset to identify those whose text contains one of the root
words [“make”, “ask”, “force”] and “rate”. Upon manual
inspection of the results, we have found 1, 024 coerced
reviews. The reviews reveal that apps involved in coercive
review campaigns either have bugs (e.g., they ask the user to
rate 5 stars even after the user has rated them), or reward the

user by removing ads, providing more features, unlocking
the next game level, boosting the user’s game level or
awarding game points.

The 1, 024 coerced reviews were posted for 193 apps.
Figure 20 shows the distribution of the number of coerced
reviews per app. While most of the 193 apps have received
less than 20 coerced reviews, 5 apps have each received
more than 40 such reviews.

We have observed several duplicates among the coerced
reviews. We identify two possible explanations. First, as we
previously mentioned, some apps do not keep track of the
user having reviewed them, thus repeatedly coerce subse-
quent reviews from the same user. A second explanation
is that seemingly coerced reviews, can also be posted as
part of a negative search rank fraud campaign. However,
both scenarios describe apps likely to have been subjected
to fraudulent behaviors.

6 CONCLUSIONS

We have introduced FairPlay, a system to detect both fraud-
ulent and malware Google Play apps. Our experiments on
a newly contributed longitudinal app dataset, have shown
that a high percentage of malware is involved in search rank
fraud; both are accurately identified by FairPlay. In addition,
we showed FairPlay’s ability to discover hundreds of apps
that evade Google Play’s detection technology, including a
new type of coercive fraud attack.

7 ACKNOWLEDGMENTS

This research was supported in part by NSF grants 1527153,
1526254, and 1450619, and ARO W911NF-13-1-0142.

REFERENCES

[1] Google Play. https://play.google.com/.
[2] Ezra Siegel. Fake Reviews in Google Play and Apple App Store.

Appentive, 2014.
[3] Zach Miners. Report: Malware-infected Android apps spike in the

Google Play store. PCWorld, 2014.
[4] Stephanie Mlot. Top Android App a Scam, Pulled From Google

Play. PCMag, 2014.
[5] Daniel Roberts. How to spot fake apps on the Google Play store.

Fortune, 2015.
[6] Andy Greenberg. Malware Apps Spoof Android Market To Infect

Phones. Forbes Security, 2014.

14

[7] Freelancer. http://www.freelancer.com.
[8] Fiverr. https://www.fiverr.com/.
[9] BestAppPromotion. www.bestreviewapp.com/.
[10] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, Manish

Mohanlal, Haitao Zheng, and Ben Y. Zhao. Serf and Turf: Crowd-
turfing for Fun and Profit. In Proceedings of ACM WWW. ACM,
2012.

[11] Jon Oberheide and Charlie Miller. Dissecting the Android
Bouncer. SummerCon2012, New York, 2012.

[12] VirusTotal - Free Online Virus, Malware and URL Scanner. https:
//www.virustotal.com/, Last accessed on May 2015.

[13] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crow-
droid: Behavior-Based Malware Detection System for Android. In
Proceedings of ACM SPSM, pages 15–26. ACM, 2011.

[14] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael
Weiss. Andromaly: a Behavioral Malware Detection Framework
for Android Devices. Intelligent Information Systems, 38(1):161–190,
2012.

[15] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xux-
ian Jiang. Riskranker: Scalable and Accurate Zero-day Android
Malware Detection. In Proceedings of ACM MobiSys, 2012.

[16] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju,
Cristina Nita-Rotaru, and Ian Molloy. Android Permissions: a
Perspective Combining Risks and Benefits. In Proceedings of ACM
SACMAT, 2012.

[17] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi,
Rahul Potharaju, Cristina Nita-Rotaru, and Ian Molloy. Using
Probabilistic Generative Models for Ranking Risks of Android
Apps. In Proceedings of ACM CCS, 2012.

[18] S.Y. Yerima, S. Sezer, and I. Muttik. Android Malware Detection
Using Parallel Machine Learning Classifiers. In Proceedings of
NGMAST, Sept 2014.

[19] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the IEEE S&P,
pages 95–109. IEEE, 2012.

[20] Fraud Detection in Social Networks. https://users.cs.fiu.edu/
∼carbunar/caspr.lab/socialfraud.html.

[21] Google I/O 2013 - Getting Discovered on Google Play. www.
youtube.com/watch?v=5Od2SuL2igA, 2013.

[22] Justin Sahs and Latifur Khan. A Machine Learning Approach to
Android Malware Detection. In Proceedings of EISIC, 2012.

[23] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero,
Pablo Garcia Bringas, and Gonzalo Álvarez. Puma: Permission
usage to detect malware in android. In International Joint Conference
CISIS12-ICEUTE´ 12-SOCO´ 12 Special Sessions, pages 289–298.
Springer, 2013.

[24] Junting Ye and Leman Akoglu. Discovering opinion spammer
groups by network footprints. In Machine Learning and Knowledge
Discovery in Databases, pages 267–282. Springer, 2015.

[25] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion
Fraud Detection in Online Reviews by Network Effects. In Pro-
ceedings of ICWSM, 2013.

[26] Android Market API. https://code.google.com/p/
android-market-api/, 2011.

[27] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-
case time complexity for generating all maximal cliques and com-
putational experiments. Theor. Comput. Sci., 363(1):28–42, October
2006.

[28] Kazuhisa Makino and Takeaki Uno. New algorithms for enumer-
ating all maximal cliques. 3111:260–272, 2004.

[29] Takeaki Uno. An efficient algorithm for enumerating pseudo
cliques. In Proceedings of ISAAC, 2007.

[30] Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python. O’Reilly, 2009.

[31] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs
Up? Sentiment Classification Using Machine Learning Techniques.
In Proceedings of EMNLP, 2002.

[32] John H. McDonald. Handbook of Biological Statistics. Sparky House
Publishing, second edition, 2009.

[33] New Google Play Store greatly simplifies per-
missions. http://www.androidcentral.com/
new-google-play-store-4820-greatly-simplifies-permissions,
2014.

[34] Weka. http://www.cs.waikato.ac.nz/ml/weka/.
[35] S. I. Gallant. Perceptron-based learning algorithms. Trans. Neur.

Netw., 1(2):179–191, June 1990.
[36] Leo Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

[37] Ron Kohavi. A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection. In Proceedings of IJCAI,
1995.

[38] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Falout-
sos. Polonium: Tera-scale graph mining and inference for malware
detection. In Proceedings of the SIAM SDM, 2011.

[39] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. Guilt by
association: Large scale malware detection by mining file-relation
graphs. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
1524–1533, New York, NY, USA, 2014. ACM.

Mahmudur Rahman received his Ph.D. in Com-
puter Science from Florida International Univer-
sity. He is now a security architect in the Wat-
son Security team at IBM. His current work fo-
cuses on the design of business-driven cogni-
tive solutions that meet security requirements
related to function, protection, assurance, risk
management and compliance. His research in-
terests include security and privacy with applica-
tions in online and geosocial networks, wireless
networks, distributed computing systems, and

mobile applications.

Mizanur Rahman is a Ph.D. candidate at Florida
International University. He has previously held
various positions in KAZ Software, iAppDragon
and Prolog Inc. His research interest include
internet data privacy, fraud detection in social
network and user experience analysis.

Bogdan Carbunar is an assistant professor in
SCIS at FIU. Previously, he held various re-
searcher positions within the Applied Research
Center at Motorola. His research interests in-
clude distributed systems, security and applied
cryptography. He holds a Ph.D. in Computer Sci-
ence from Purdue University.

Duen Horng (Polo) Chau is an Assistant Pro-
fessor at Georgia Techs School of Computa-
tional Science and Engineering, and an Asso-
ciate Director of the MS Analytics program. Polo
holds a Ph.D. in Machine Learning and a Mas-
ters in human-computer interaction (HCI). His
PhD thesis won Carnegie Mellons Computer
Science Dissertation Award, Honorable Men-
tion. Polo received faculty awards from Google,
Yahoo, and LexisNexis. He also received the
Raytheon Faculty Fellowship, Edenfield Faculty

Fellowship, Outstanding Junior Faculty Award. He is the only two-time
Symantec fellow and an award-winning designer.

