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Private Badges for Geosocial Networks
Bogdan Carbunar, Radu Sion, Rahul Potharaju, Moussa Ehsan

Abstract—Geosocial networks (GSNs) extend classic online
social networks with the concept of location. Users can report
their presence at venues through “check-ins” and, when certain
check-in sequences are satisfied, users acquire special status in the
form of “badges”. We first show that this innovative functionality
is popular in Foursquare, a prominent GSN. Furthermore, we
address the apparent tension between privacy and correctness,
where users are unable to prove having satisfied badge con-
ditions without revealing the corresponding time and location
of their check-in sequences. To this end, we propose several
privacy preserving protocols that enable users to prove having
satisfied the conditions of several badge types. Specifically, we
introduce (i) GeoBadge and T-Badge, solutions for acquiring
location badges, (ii) FreqBadge, for mayorship badges, (iii) e-
Badge, for proving various expertise levels and (iv) MPBadge,
for accumulating multi-player badges. We show that a Google
Nexus One smartphone is able to perform tens of badge proofs
per minute while a provider can support hundreds of million of
check-ins and badge verifications per day.

Index Terms—Geosocial networks, privacy, security.

I. INTRODUCTION

Location Based Services (LBS) provide users with infor-

mation and entertainment applications centered on their geo-

graphical position. A recently introduced but popular LBS are

Geosocial Networks (GSNs), social networks centered on the

locations of users and businesses. GSNs such as Foursquare [1]

and Yelp [2] allow users to register or “check-in” their

location, share it with their friends, leave recommendations

and collect prize “badges”. Badges are acquired by checking-in

at certain locations (i.e., venues), following a required pattern.

Besides keeping track of the locations of their friends,

users rely on GSNs to receive promotional deals, coupons and

personalized recommendations. For GSN providers however,

the main source of revenue is location-based ad targeting.

Boasting millions of users [3] and tens of millions of location

check-ins per day [4], GSNs can provide personalized, location

dependent ads. The more user information they are able to

collect, the more accurate are their predictions.

Thus, the price of participation for users is compromised

privacy, in particular, location privacy. Service providers learn

the places visited by each user, the times and the sequence

of visits as well as user preferences (e.g., the frequency

distribution of their visits) [5], [6]. The service providers may

use this information in ways the users never suspected when
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they signed-up (e.g., having their location shared with third

parties [7], [8]).

Opting out of GSN services seems to be a rational way

to avoid compromised privacy (allowing stalking, theft [9]).

In this paper however, we show that such radical measures

may not be necessary. To this end, we introduce a framework

that enables users to privately acquire GSN badges. In this

framework. users are responsible for storing and managing

their location information, and the provider’s (oblivious) par-

ticipation serves solely the goal of ensuring user correctness.

We define badges as aggregate location based predicates.

We propose solutions to support a variety of such predicates,

including (i) checking-in a pre-defined number of times at a

location or set of locations, (ii) checking-in the most number of

times (out of all the users) at a location, (iii) proving various

expertise levels, and (iv) simultaneously checking-in with k
other users at a location.

Given the recent surge of location privacy breaches and

the ensuing liability problems [10], implementing privacy

solutions may ultimately be in the service provider’s best

interest.

The challenge consists of providing solutions that balance

three requirements. On one dimension, clients need strong

privacy guarantees. The service provider should not learn

user profile information, including (i) linking users to (loca-

tion,time) pairs, (ii) linking users to any location, even if they

achieve special status at that location and even (iii) building

pseudonymous user profiles – linking multiple locations where

the same “unknown” user has checked-in. On the second

dimension, the service provider needs assurances of client

correctness when awarding location-related badges. Otherwise,

since special status often comes with financial and social

perks, privacy would protect users that perpetrate fraudulent

behaviors such as, reporting fake locations [11], duplicating

and sharing special status tokens, or checking-in more fre-

quently than allowed. On a third dimension, the provider needs

to be able to collect certain user information. Being denied

access to all user information discourages participation.

The use of client pseudonyms to provide client privacy

during check-ins and special status requests is vulnerable to

profile based de-anonymization attacks [12], [13]: Constructed

pseudonymous profiles can be joined with residential and

employment datasets to reveal profile owner identities.

Instead, in a first contribution, we introduce essential prop-

erties that need to be satisfied by private “badging” solu-

tions. Informally, we define user privacy in terms of indis-

tinguishability: an adversary controlling the service provider

and any coalition of colluding users, should be unable to

distinguish between any interactions with two registered (but

not controlled) users. We then define correctness, to model

the inability of users to claim special status without satisfying
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the associated spatial, temporal and frequency requirements.

Furthermore, we introduce a provider usability property to

model the ability of the provider to build popularity statistics

for the venues supported (e.g., per-site check-ins and issued

badges).

In a second contribution, we propose four solutions, for the

the aggregate location predicates described above, that satisfy

the defined properties. GeoBadge, allows users to privately

prove having performed k check-ins at one venue, where k
is a predefined parameter. FreqBadge extends GeoBadge with

provably time-constrained check-ins as well as arbitrary values

for k. e-Badge extends GeoBadge with the notion of levels

of expertise, unlocked as the user performs more check-ins

at new venues. MPBadge extends GeoBadge with the notion

of simultaneous, co-located check-ins from multiple users.

The complexity of MPBadge lies in the seeming contradiction

between the ability of multiple clients to anonymously check-

in at the same location and the ability of rogue users to launch

Sybil attacks [14].

The solutions deploy cryptographic techniques such as

zero-knowledge (ZK) proofs, quadratic residuosity constructs,

threshold secret sharing and blind signatures. Clients collect

special, provider-issued tokens during check-ins, which they

either aggregate to build generic, non-traceable badges, or use

to build ZK proofs of ownership. Client correctness is partly

ensured by the use of blind signatures of single-use tokens.

Instead of publishing acquired badges, and relinquishing

privacy, our approach provides users with control over their

badges. Users locally store them on their mobile devices and

can prove ownership of their badges in a zero knowledge

manner, to other interested parties.

We have implemented and evaluated the performance of our

solutions on Google Nexus One smartphones and a 16 quad-

core server. Experimental results are extremely positive. The

GSN provider can support thousands of check-ins and special

status verifications per second, while a smartphone can build

strongly secure aggregate location and correctness proofs in

just a few seconds.

The paper is organized as follows. Section II summarizes re-

lated work. Section III describes the system model considered

and defines the associated privacy and security requirements.

Section IV describes the cryptographic tools used in our

solutions. Section V presents GeoBadge, the private location

badge solution and Section VI presents FreqBadge, the private

mayorship solution. Section VII presents e-Badge, the private,

multi-venue expertise badge solution and Section VIII present

the private multi-player badge solution. Section IX describes

our implementation results. Section X concludes.

II. RELATED WORK

This paper extends our previous work [15] with (i) an exten-

sively modified FreqBadge solution, (ii) constructs supporting

a new badge type (e-Badge), (iii) an analysis of MP-Badge,

(iv) an extension of all the solutions with a protocol that

enables proofs of badge ownership (ProveBadge), and (v) a

better detailed system model.

Location cloaking: Anonymization, pseudonimization, loca-

tion and temporal cloaking techniques (introducing errors in

location reports to provide 1-out-of-k anonymity) have been

initially proposed in [16]. Hoh et al. [17] proposed a location

cloaking approach based on the concept of virtual trip lines,

that when crossed, trigger a device location update. Olumofin

et al. [18] propose a location cloaking based private infor-

mation retrieval algorithm that enables mobile device users to

privately retrieve points of interest around their location. Pan et

al. [19] and Ghinita et al. [20] identified the important problem

of preventing attacks that link even cloaked successive location

reports. Pan et al. [19] rely on a trusted anonymizing proxy

to maintain cloaking sets of active users, and update them as

the users issue successive location reports. Ghinita et al. [20]

propose both off-line solutions that report temporally cloaked

pre-defined regions, and on-line solutions.

Private geographic algorithms. Eppstein et al. [21] intro-

duced data-oblivious algorithms for secure multi-party com-

putations (SMC) for location based services. The proposed

techniques are relevant to geometric problems – convex hull,

quadtrees, closest pair – and cannot be easily applied to solve

the privacy issues we consider in this work. Ghinita et al. [22]

propose a privacy robust geometric transformation for private

matches on spatial datasets (e.g., geo-tagged data items).

Location verification: Saroiu and Wolman [23] introduced

the location proof concept – a piece of data that certifies

a receiver to a geographic location. The solution relies on

special access points (APs), that are able to issue such signed

proofs. APs add their location to their presence beacons and

then generate location proofs upon client request, containing

the signed client identity, AP identity, location and timestamp.

Luo and Hengartner [24] extend this concept with client

privacy, achieved with the price of requiring three independent

trusted entities. Note that both solutions rely on the existence

of specialized APs or cell-towers, that modify their beacons

and are willing to participate and sign arbitrary information.

Cellular providers are notorious for their unwillingness to

collaborate and modify their protocols. Most AP owners have

trouble setting up security features thus we envision that only

few APs (if any) will provide this functionality – defeating the

solution’s applicability.

To address the central management problems, Zhu and

Cao [25] proposed the APPLAUS system, where co-located,

Bluetooth enabled devices compute privacy preserving loca-

tion proofs. While the p2p approach can solve the central

management problems (for a strongly Bluetooth-connected

network), not many users enable this interface, due to lack

of applications and associated power-drain.

Proximity alerts: Zhong et al. [26] have proposed three

protocols that privately alert participants of nearby friends.

Location privacy here means that users of the service can learn

a friend’s location only if the friend is nearby. Manweiler

et al. [27] propose several cloaking techniques for private

server-based location/time matching of peers. Narayanan et

al. [28] proposed several other solutions for the same problem,

introducing the use of location tags as a means to provide

location verification. Nielsen et al. [29] use secure multiparty

computation techniques to address a similar problem. Hu et

al. [30] address the problem of service providers delivering

authenticated LBSs, while preserving the data being queried by
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Fig. 1. Foursquare stats: (a) CDF of days out, check-ins and things done by
users. (b) Badge and friends evaluation.

clients. Our work is different, by enabling private and correct

aggregate location predicates in GSNs.

Summary: Existing work has focused on (i) hiding user

location from LBS providers and other parties and on (ii)

enabling users to prove claimed locations. Instead, in this

paper we focus on the next step, of anonymizing location

aggregates defined by geosocial networks.

III. MODEL

A. The System

We consider a geosocial network provider, S, which

we model after the most popular in existence to date,

Foursquare [1]. Each subscriber (or user) has an account

with S. Subscribers are assumed to have mobile devices

equipped with a GPS receiver and a Wi-Fi interface (present

on most smartphones). To use the provider’s services, a client

application needs to be downloaded and installed. Subscribers

can register and receive initial service credentials, including

a unique user id; let IdA denote the id of user A. In the

following we use the terms user and subscriber to refer to

users of the service and the term client to denote the software

provided by the service and installed by users on their devices.

Besides users, the geosocial network also supports a set of

venues, which are businesses with a geographic location. Let

V denote the set of all the venues registered with the system.

Users report their location, through check-ins at venues of

interest, share it with friends (e.g., imported from Facebook or

discovered and invited on Foursquare) and are awarded points

and “badges”. A user with more check-in days at a venue

than anyone else in the past 60 days becomes the “Mayor”

of the venue. Foursquare has partnered with a long list of

venues (bars, cafes, restaurants, etc) to reward the Mayor with

freebies and specials. Foursquare imposes a discrete division

of time, in terms of epochs. A user can check-in at one venue

at most once per epoch. This strategy has made Foursquare

quite popular, with a constantly growing user base, which we

currently estimate at over 20 million users.

B. Foursquare Data

In order to understand the need for our solutions, we have

collected profiles from 781,239 randomly selected Foursquare

users. For every user, we have gathered the user profile

including the total number of friends, the total number of

check-ins, the total number of days the user was out (days

the user was actively performing check-ins) and the total

number of things done (e.g., reviews left for a venue). Our

first question was how active are Foursquare users. Figure 1(a)

shows the CDF of the number of check-ins, days out (days

the user was actively performing check-ins) and things done

(e.g., reviews left for a venue) by users. Note that 45% of

the collected users have between 80 and 950 check-ins, for

between 50 and 300 days of activity (at this time Foursquare

is 2 years and a half old). This shows that many Foursquare

users are very active. Our second question regards the pop-

ularity of badges in geosocial networks. Figure 1(b) shows

the cumulative distribution function (CDF) of the number of

badges earned by users as well as their friends. Note that 45%

of the users (between the median and the 95th percentile) have

between 10 and 50 badges and between 20 and 95 friends.

This, coupled with the large numbers of reported check-ins,

leads us to conclude that Foursquare is a system worthy to

evaluate our protocols.

To corroborate the check-in data in a location-aware fashion,

we used a Foursquare feature that allows users to query the

list of venues at a location using (latitude, longitude) pairs.

Specifically, we started with a seed latitude and longitude

(in our case, 40.000, -73.000, representing New York City).

We then generated 5000 random coordinates around this

coordinate pairs. For each newly generated coordinate pair, we

queried Foursquare to collect all the venues near that location.

Figure 2(a) shows the scatter plot of check-ins vs. users in one

of the most active locations in our dataset, the city of Babylon

in Long Island, NY. Each point on the plot denotes a venue,

the x axis shows the total number of check-ins recorded at

the venue and the y axis shows the total number of users that

have performed the check-ins. Note that a few venues record

1000-5000 check-ins, from more than 500 users. Most venues

however range from a few tens to a few hundred check-ins and

users. Finally, Figure 2(b) shows the evolution between August

2010 and February 2011 of the number of check-ins per day

for two randomly selected venues. The number of check-ins

range between 3 to almost 70 per day. Our conclusions are that

Foursquare users are actively checking-in and venues record

many daily check-ins. This data rich environment can be a

goldmine for rogue GSN providers. Moreover, the number of

recorded check-ins suggests that badges and mayorship are

likely to become objects of contention. Thus, devising private

and secure “badging” protocols becomes a problem of primary

importance for GSNs.

C. Geo: A Framework for Private GSNs

A full-fledged private GSN solution is composed of a set

of protocols Geo = {Setup, RegisterV enue, Subscribe,
CheckIn, StatV erify, ProveBadge}, described in the fol-

lowing. We use the notation Prot(P1(args1), .., Pn(argsn))
to denote protocol Prot run between participants P1, .., Pn,

each with its own arguments.

Setup(S()): Executed initially (only once) by the service

provider S. The server produces public information pubS and

private information privS . The server publishes pubS .
RegisterVenue(O(V ), S(privS)): Executed by the owner O
to register a new venue V with the provider.
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Fig. 2. (a) Scatterplot check-ins vs. users in a small town. (b) Per-venue
check-in distribution over time for two random venues.

Subscribe(C(), S(pubS , privS)): Executed once by any client

C that wants to register with the service. If the subscription

fails, the server returns -1. Otherwise, the client receives a

unique id and the server’s public information pubS .
CheckIn(C(Id, V, T, pubS), S(privS)): Executed by a sub-

scribed client with identifier Id, to report location V at time

T to the provider S. S verifies the correctness of V and T and

returns -1 in case of failure. Otherwise, the client is issued a

special token proving its presence at V during T .
StatVerify(C(Id, V, k, T k, pubS), S(privS)): After accumu-

lating sufficient tokens, the client runs StatV erify with the

server, for a specific venue V , providing its entire set of tokens,

Tk. If the tokens prove that special status has indeed been

achieved, the server issues a special status token (or badge),

BV , to the client. We support several badge types, introduced

by Foursquare [1] and SCVNGR [31]:

• Location Badge (GeoBadge/T-Badge). GeoBage is is-

sued after the client runs CheckIn during k different

epochs at a venue V . T-Badge is issued after the client

runs CheckIn at k different venues. GeoBadge and T-

Badge model Foursquare badges such as “Newbie”, “Lo-

cal”, “Adventurer”, “Explorer” and “Superstar”, see [32].

• Expert Badge (e-Badge). e-Badges support several levels

of expertise. To achieve level 1 of expertise, the client

needs to run CheckIn at k different, select locations,

with a common background. A user having expertise level

L for an e-Badge can reach level L+1 after performing

k more check-ins at similar (but different) locations. k is

a system parameter. This models several expertise badges

from Foursquare (e.g., “Swimmie”, “Wino”, “Pizzaiolo”,

see [33]), where the rules are the same for all the areas of

expertise: A user achieves level 1 for checking in at five

unique places. From there, every level up is five more

unique places.

• Mayorship (FreqBadge). Issued when the client has

performed the largest number of CheckIns, at most one

per epoch, in the past m epochs at a given venue. m
is a system parameter. FreqBadge models Foursquare

“mayor” badges.

• Multi-Player Badge (MPBadge). Issued when the client

runs CheckIn simultaneously with s other users at

the same location. s is a system parameter. The MP-

Badge models Foursquare badges such as “Player Please!

(Heart)”, see [34].

ProveBadge(C1(pubS, V, BV ), C2(pubS, V ), S(privS , V )):

This protocol enables client C1 to prove ownership of a badge

BV for a venue V to another client C2. In order to preserve

the privacy of C1, following the ProveBadge execution, C2

should not learn additional information about C1 and should

not be able to prove ownership of the badge to another client.

D. Privacy and Correctness Properties

1) Server Side: We consider a provider S that follows the

protocols correctly. This implies for instance that the provider

will not hand out incorrect information to users. However, we

assume that S is interested in collecting tuples of the format

(Id, V, T ), where Id is a user id, V is a venue and T is a time

value. In order to achieve this goal, S may collude with venues

and existing clients and generate Sybil clients to track users

of interest. The provider however does not collude with users

to issue badges without merit. We do not consider physical

attacks, such as, the server physically tracking individual users.

Intuitively, to achieve privacy, the provider should learn

nothing about Geo clients, including the venues and times at

which a user runs the CheckIn function, as well as her total

and per-venue CheckIn counts. We note that this necessarily

includes also hiding correlations between venues where a

given client has run CheckIn. We formalize this intuition

using games run between an adversary A and a challenger

C. A controls the service provider, the set of venues and

any number of clients, thus controls the initial parameter

generation functionality (e.g., the Setup function). A shares

public parameters with C. C controls two clients C0 and C1.

C initially runs the Subscribe function with A for the two

clients and obtains their unique identifiers.

In a first CheckIn-Indistinguishability game, we model the

adversary’s inability to distinguish between clients during

CheckIn executions, even when the adversary controls an

initial trace of CheckIn executions. We use the notation

Cb(args) or Cci to denote either client C0 or client C1

(according to the value of the bit b or ci), using input values

args.
CheckIn Indistinguishability (CI-IND). A generates pub-

lic information pubA (and corresponding private informa-

tion privA), generates l bits c1, .., cl, and l + 1 venue ids

V1, .., Vl, Vl+1, Vi ∈ V , i=1..l+1, and sends them to C. For
each i = 1..l, C needs to run CheckIn on behalf of client Cci ,

at venue Vi. C verifies that the time between two consecutive

requests for the same client is sufficient to enable the client to

travel the distance between the corresponding venues. If this

condition is not satisfied, C ignores the request. Otherwise, it

executes CheckIn(Cci(Idci , Vi, Ti, pubA),A(privA)). After
processing the l requests, C makes sure that the distance

between both C0 and C1’s last check-ins to venue Vl+1 can

be physically traversed between the time of their last check-

ins and the current time. If the verification fails, C stops

the game. Otherwise, C generates a bit b ∈ {0, 1} and runs

CheckIn(Cb(Idb, Vl+1, Tl+1, pubA,A(privA)). A outputs a

bit b′. A solution provides CI-IND if the advantage of A in

the CI-IND game, Adv(A) = |Pr[b = b′]−1/2|, is negligible.
CI-IND Intuition. The above definition models the claim of

an adversary of being able to distinguish the client executing
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a CheckIn protocol. For this, the challenger allows the

adversary to request it to perform a number of CheckIn
operations on behalf of C0 and C1, two clients controlled by

the challenger. The adversary also specifies the location where

the check-in is to take place. Then, the challenger chooses

privately one of the two clients and performs a CheckIn on

its behalf, at a venue chosen by the adversary. The adversary

wins if it is able to guess the client that has performed the

check-in, with probability significantly higher than 1/2. We

note that the challenger verifies the feasibility of the check-

ins: the fact that the adversary is not trying to win the game

by making it impossible for a client to succeed in a check-in

at a location.

In a second, StatVerify-Indistinguishability game, the adver-

sary (e.g., service provider) should be unable to distinguish

between clients running StatV erify, even if the adversary is

able to trace client CheckIn executions.

StatVerify Indistinguishability (SV-IND).A generates public

information pubA and sends it to C but keeps the private infor-

mation privA secret. The game has two steps. In the first step,

A generates k = 2s new bits c1, .., ck such that s of them are

0 and s of them are 1. A also generates k venue ids, V1, .., Vk,

Vi ∈ V , i=1..k. A sends c1, .., ck and V1, .., Vk to C. For each
i=1..k, C runs CheckIn(Cci(Idci , Vi, T, pubA),A(privA)),
only if the time between the previous CheckIn of client Cci

and Ti is sufficient to enable Cci to travel the distance between

the venue of the previous CheckIn and Vi. At the end of

this step, C verifies that C0 and C1 have performed the same

number of check-ins at any venue V1, .., Vk. If this verification

does not succeed, C stops the game. In the second step, A
sends to C a venue id V ∈ V , such that the distance between

the venue of the last CheckIn of client Cj (j=0,1) and V
can be physically traversed from the time of that CheckIn
to the current time. C generates a bit b ∈ {0, 1} and runs

StatV erify(Cb(Idb, V, T, pubA),A(privA). A outputs a bit

b′. A solution is said to provide SV-IND if the advantage of

A, Adv(A) = |Pr[b = b′]− 1/2|, is negligible.
SV-IND Intuition. The SV-IND game models the inability of

A, that controls the entire system with the exception of two

clients C0 and C1, controlled by C, to guess the identity of

the client (C0 or C1) performing a StatV erify operation. For

this, in an initial step, A is allowed to request C to perform

CheckIn operations and specify the identity of the client and

the venue where the check-in is to be performed. At the end

of this step, C verifies that the two clients are equivalent:

they have the same (badge) status at all the venues requested

by A. A secretly chooses one of the clients and executes

StatV erify on its behalf for one of the venues chosen by

A. A wins if it is able to guess the identity of the client with

probability significantly larger than 1/2.

The following property models the ability of the server to

collect venue-based statistics:

Provider Usability. The service provider can count the

CheckIn executions for any venue as well as list the issued

badges and mayorships.

2) Client Side: The client is assumed to be malicious.

Malicious clients can be outsiders that are able to corrupt

existing devices or may be insiders, i.e., subscribers, users

that have installed the client. Malicious clients can try to

cheat on their location (claim to be in a place where they

are not [11]), attempt to prove a status they do not have,

or disseminate credentials received from the server to other

clients. The latter case includes any information received from

the server, certifying presence at a specific location.

Our solutions are not designed to handle private venues,

venues that uniquely identify the user performing a check-in

there (e.g., the user’s home).

In the following game, k is a system parameter that denotes

the number of check-ins a user needs to perform in order to

acquire special status (a badge).

Status Safety. The challenger C controls the service provider

and the adversary A controls any number of clients. The

challenger runs first the Setup protocol and provides A with

its public parameters. A runs Subscribe any number of times

to generate clients. A then runs CheckIn with C for any

number of venues, but at most k − 1 times for any venue. A
runs StatV erify with C. The advantage of A is defined to be

Adv(A) = Pr[StatV erify(C(paramsC), S(privS)) = 1].
We say that a solution is status safe if Adv(A) is negligible.

Token Non-distributability. No client or coalition thereof can

use the same set of tokens more than once.

Token-Epoch Immutability. No client or coalition thereof can

obtain more than one token per site per epoch.

IV. TOOLS

Hash functions and HMACs. We use cryptographic hashes

that are easy to compute and are (i) pre-image resistant, (ii)

second pre-image resistant and (iii) collision resistant. Let

H(M) denote the hash of message M . Pre-image resistance

means that given a hash value h it is hard to find any message

M such that H(M) = h. Second pre-image resistance means

that given a message M1, it is hard to find another message

M2 such that M1 6= M2 and H(M1) = H(M2). Collision
resistance means that it is hard to find any two messages M1

and M2 such that M1 6= M2 and H(M1) = H(M2).
We also use hash based message authentication codes,

HMACs, that rely on cryptographic hashes and keys to au-

thenticate messages [35]. Let HMACK(M) denote the keyed
message authentication code of message M . Two parties

sharing a key K , can use the string M,HMAC(K,M)
to authenticate message M : only someone knowing key K
can generate HMAC(K,M) and verify its authenticity for

message M .

Signatures and blind signatures. We rely on unforgeable

signature schemes. Let SigX(M) denote the signature of a

message M by participant X . Unforgeability is defined in

terms of security “against one-more-forgery”, where the user

engaged in l runs of the signature algorithm with the signer

cannot obtain more than l signatures. We also make use of

blind signatures [36], [37] that have the standard (i) blindness

and (ii) unforgeability properties. Blindness means that the

signer cannot learn information about the signed messages.

Anonymizers. We assume the existence of a network

anonymizer, Mix, such as Tor [38]. Anonymizers or mix-

nets [38], [39] are tools that make communication untraceable
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and unlinkable. Untraceability implies the infeasibility of

finding the identity of the issuer of a given set of messages.

Unlinkability implies the infeasibility of discovering pairs of

communicating entities. Existing popular anonymizing tools

include onion routing Tor [38] and Crowds [39].

Anonymous authentication. The authentication step allows

the user to prove to the server that it is a subscriber. We rely

on anonymous authentication techniques with revocation and

identity escrow, e.g., [40], performed over Mix, to enable

users to anonymously prove their service subscriber status.

The solutions proposed by Boneh and Franklin [40] allow a

user to prove in zero knowledge its membership to arbitrary

subsets of users while allowing an escrow agent to reveal the

identity of misbehaving users. We note that to minimize the

communication overheads, the ZK proofs can be made non-

interactive (e.g., the user computes the challenge based on

verifiable values such as the current time and server status).

The QR-Assumption. Given a large composite n = pq, where
p and q are safe primes and given n but not p and q, it is
computationally hard to decide if any value v, whose Jacobi

symbol (v|n) is 1, is a quadratic residue or not. v is a quadratic

residue if there exists a value y such that y2 = v mod n.
Symmetric Private Information Retrieval. A private in-

formation retrieval (PIR) protocol allows a user to retrieve

an item from a server in possession of a database without

revealing which item she is retrieving. Symmetric PIR (SPIR),

introduces the additional restriction that the user may not learn

any item other than the one she requested [41], [42].

Zero knowledge (ZK) proofs. ZK proofs are protocols that

enable a prover, claiming to know that a statement is true,

to prove this fact to a verifier, without allowing the verifier

to learn any information that would allow her to prove the

statement to anyone else. A ZK proof protocol needs to satisfy

completeness, soundness and ZK properties. Completeness

means that if the statement is true, an honest verifier will be

convinced of this fact by an honest prover. Soundness means

that if the statement is false, a cheating prover can convince the

honest verifier that it is true only with negligible probability.

ZK means that if the statement is true, even a cheating verifier

learns nothing except this fact.

Notation. x ∈R X is the random choice of x from set X .

V. GEO-BADGE

GeoBadge is a private protocol that allows users to prove

having visited the same location k times (see Figure 3 for

a high level diagram). The set of supported k values is pre-

defined, e.g., k = 1 for “Newbie”, k = 10 for “Adventurer”, k =

25 for “Explorer”, etc, and is known by all client applications.

At the end of the section we show how to adapt this solu-

tion to support T-Badges. GeoBadge works as follows: each

subscribed client contacts the provider over the anonymizer

Mix, authenticates anonymously, proves its current location

and obtains a blindly signed, single use nonce and a share of a

secret associated with the current venue. When k shares have

been acquired, the client is able to reconstruct the secret, which

is the proof required for the badge. The single use nonces

prevent users from distributing received shares (or proofs).

Fig. 3. High level overview of a private badge protocol.

GeoBadge extends Geo and provides the skeleton on which

we build the subsequent solutions. For instance, the anony-

mous authentication and location verification functions are

only described for GeoBadge and inherited by FreqBadge and

MPBadge. Each client maintains a set Tk, storing all the

tokens accumulated during CheckIn runs. When the client

accumulates enough tokens in Tk to achieve special status,

it runs StatV erify, aggregating the tokens in Tk. In the

following we instantiate each protocol, executed between a

client C and the GSN provider S.

Setup(S()): Executed once in the beginning, by S. S generates

a large prime modulus p that will be used to compute secret

shares and publishes p. S generates a random key K , that will

be used for authentication purposes. K is kept secret by S.

For each badge that requires k check-ins, S generates two

large primes pk and qk such that qk|(pk − 1). Let Gqk be the

unique subgroup of Z
∗
pk

of order qk. Let gk be a generator

of Gqk . S generates a fresh, random geo-badge GBk and

computes the commitment value CMTk = gGBk

k ∈ Gqk . For

each supported badge, S publishes pk, qk, gk and CMTk, but

keeps secret GBk.

RegisterVenue(O(V ), S(privS)): The owner O that registers

venue V , sends to S its public key. For each new venue V ,

for which the service provider offers badges (after k CheckIn
runs) S generates a secret MV randomly. S uses a threshold

secret sharing solution to compute shares of MV , by generat-

ing a polynomial Pol of degree k − 1 whose free coefficient

is MV : Pol(x) = MV +c1x+c2x
2+ ...+ck−1x

k−1. S keeps

Pol’s coefficients secret but publishes the degree k and the

verification value V erV = H(HMACK(V )MV mod p). A
client that reconstructs V erV , has proof of having achieved

the special status (GeoBadge). S stores Pol’s coefficients for
V , along with the public key of V ’s owner.

Subscribe(C(), S(pubS , privS)): The communication in this

step is performed over Mix, to hide C’s location from S. C
runs the setup stage of the Anonymous Authentication protocol

of Boneh and Franklin [40] to obtain tokens that allow it later

to authenticate anonymously with the server.

CheckIn(C(Id, V, T, pubS), S(privS)): Let (current) time T
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be during epoch e. The following actions are performed by a

client C and the service provider S:

• Anonymous Authentication: C runs the anonymous au-

thentication procedure of Boneh and Franklin [40] to prove to

S that it is a subscriber. This step is performed over Mix.

• Location Verification: C runs a location verification pro-

tocol [43] to prove presence at V .

• Token Generation: C generates a fresh random value

R and sends the blinded R to S, as Obf(R) (obfuscated

for instance using a modular multiplication, see Chaum’s

work [36] on blind signatures). S computes xe = H(e) mod p
and ye = Pol(xe) mod p. S sends to C the tuple

(xe, ce, SigS(Obf(R))), where ce = HMACK(V )ye mod p
and the last field denotes the blindly signed R. C “unblinds”

the signed nonce (see [36]), obtains se = SigS(R) and stores

(xe, ce, se) into the set Tk.

StatVerify(C(Id, V, k, T k, pubS), S(privS , k)): Let Tk =

{(x1, c1, SigS(R1)), .., (xk, ck, SigS(Rk))}. Let lj(x) =
Πm=1..k,m 6=j

x−xm

xj−xm
mod p be the Lagrange coefficients. The

following steps are executed, over Mix:

• C computes SS = Σj=1..kcj lj(0). C verifies that

H(SS) = V erV (see the Correctness property in Sec-

tion V-A). If the verification fails, C outputs -1 and stops.

Otherwise, it sends SS, along with the set of signed nonces,

(SigS(R1), .., SigS(Rk)) and the venue V to S.

• S verifies that (i) the k random values are indeed signed

by it, (ii) that R1, .., Rk are unique and have not been used

before and (iii) that H(SS) = V erV . If either verification

fails, S outputs -1. Otherwise, S stores the values R1, .., Rk,

then sends the badge GBk (see Setup) to C (over Mix).

ProveBadge(C1(pubS, GBk, V, pk, qk, gk),
C2(pubS, V, pk, qk, gk), S(privS , V, CMTk): C2 retrieves

CMTk from S. C1 and C2 engage in a zero knowledge

protocol where C1 proves knowledge of the GBk, the

discrete logarithm of CMTk, for instance, using Schnorr’s

solution [44].

A. Analysis

We now prove several properties of GeoBadge.

Correctness.: The following holds due to Lagrange

interpolation:

SS =

k∑

j=1

cj lj(0) = HMACK(V )

k∑

j=1

Pol(xj)lj(0)

= HMACK(V )Pol(0) = HMACK(V )MV

We consider modified versions of the CI-IND and SV-IND

games of Section III-D, where all the venues (chosen by A)

are identical. We now introduce the following results:

Theorem 1: GeoBadge is CI-IND.

Proof: (Sketch) Following the CI-IND game, A’s view

consists of the outcome of l + 1 anonymous authentication

procedures and l + 1 blinded random values. The blinded

random values are information theoretical secure. Then, if A
can distinguish between C0 and C1 in the last step of the game,

we can build an adversary that has a non-negligible advantage

against either (i) the anonymous authentication solution of

Boneh and Franklin [40] or (ii) the untraceability property

of Mix.
Theorem 2: GeoBadge is SV-IND.

Proof: (Sketch) At the completion of the SV-IND game

C can reconstruct the SS values for both C0 and C1. A has

published a pre-commitment for SS – V erV . Note that C’s
verification of H(SS) = V erV prevents A from guessing

b based on the value C reconstructs during StatV erify.
Thus, if the adversary has non-negligible advantage in the

SV-IND game then we can also build an adversary that has

non-negligible advantage against either (i) the untraceability

property of Mix, (ii) the blindness property of the blind

signature algorithm, or (iii) the information theoretic security

of the threshold secret sharing mechanism.

Theorem 3: GeoBadge provides Status Safety.

Proof: (Sketch) The use of a location verification solu-

tion [43] prevents the attacker from falsely claiming presence

at V . Then, if there exists an adversary that has non-negligible

advantage in the Status Safety game we can build an adversary

that has a non-negligible advantage against (i) the pre-image

resistance property of hashes (inverting V erV = H(SS)) or
(ii) the information theoretic threshold secret sharing technique

(including combining shares generated at multiple sites).

GeoBadge also provides the Token Non-Distributability

property. The single use, server signed random nonces prevent

more than one run of StatV erify for a given set of tokens.

The Token-Epoch Immutability property holds since the pair

(xe, ce) is a deterministic function of e.

B. The Touring Badge (T-Badge)

The “adventurer” badge is unlocked when the user checks-in

at k different locations. GeoBadge can be easily modified to

support this functionality: the provider assigns one share (one

point of the polynomial Pol) to each participating venue. The

free coefficient of Pol is the secret which unlocks the badge.

Whenever a user checks-in at one venue, it receives the share

associated with the venue. After visiting k venues, the user has

k shares and can reconstruct the secret and unlock the badge.

Note that multiple check-ins at the same venue will retrieve the

same share, thus forcing the client to visit k different venues.

We note that multiple users could collude and combine their

shares to obtain an “adventurer” badge, while none of them

in isolation satisfies the condition. However, users may lack

incentives for this attack: only one of the participants would

receive the badge while the others waste their shares.

VI. FREQBADGE

Using the Foursquare terminology, the user that has run

CheckIn the most number of times, at a venue SV , within

the past m epochs, becomes the mayor of the place. Let

MrV denote the number of check-ins (at V ) performed by

the current mayor of V .

We introduce FreqBadge = {Setup, RegisterV enue,
MaintainV enue, MaintainBadge, Subscribe, CheckIn,
StatV erify, ProveBadge}, a solution that extends Geo
with two protocols: MaintainV enue and MaintainBadge.
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(a) (b) (c)

Day 5 MrV = 3 Day 6 MrV = 3 Day 7 MrV = 3

C
1

C
2

Fig. 4. Example timeline of mayorship evolution. C1 and C2 denote
two clients that compete for mayorship at the same venue. Each bin
denotes one day. A black or gray rectangle overlapping a day denotes
a check-in performed by a client during that day.

FreqBadge allows clients to prove having performed any

number of check-ins, not just a pre-defined value. The check-

ins are time constrained: clients have to prove that all check-ins

have occurred in the past m epochs. Furthermore, client issued

proofs can be published by the provider to be verified by any

third party, without the risk of being copied and re-used by

other clients.

A. Overview

FreqBadge achieves these features in the following way. In

the MaintainV enue protocol, the service provider generates

exactly one fresh token per epoch, for each supported venue

V . When a client runs CheckIn at V , it receives V ’s token for

the current epoch. The client stores the tokens accumulated for

V in the set TkV . At any time, for any venue V , the provider

publishes and makes available upon request to any client, two

values, (i) MrV , the number of tokens that the mayor of V
has proved to have accumulated in the past m epochs, and

(ii) CMTV , a badge commitment value whose true nature we

will reveal later.

If, during a CheckIn run, a client’s number of tokens,

|TkV |, exceeds the currentMrV , StatV erify is invoked. The

provider maintains a queue of StatV erify requests: each new

request is placed at the end of the queue and each request is

processed in the order in which it was received. StatV erify
succeeds only if the client is able to prove to the provider that

it knows at least MrV +1 out of the m tokens given in the past

m epochs for that venue. The proof is in zero knowledge. If

the proof succeeds, it is published by the provider, along with

an increased MrV value, reflecting the new mayor’s number

of tokens. The provider then issues a private FreqBadge badge

to the client, and publishes CMTV , a commitment value for

this badge.

If multiple clients initiate the StatV erify protocol simul-

taneously, with the same number of tokens, only the first

becomes the mayor: after the completion of the first client’s

StatV erify protocol, the MrV value is incremented. The

second client’s StatV erify will not succeed, since its number

of tokens does not exceed (but only equals) the new MrV
value. However, since the proof is in zero knowledge, the

second client can safely reuse its tokens - they have not been

revealed to the provider.

If a client needs to prove ownership of the FreqBadge

for a venue V , it invokes the ProveBadge protocol. The

ProveBadge is used to prove knowledge of the badge against

Fig. 5. Diagram of FreqBadge.

CMTV , in zero knowledge, that is, without the client actually

revealing the badge.

The MaintainBadge protocol is executed once per epoch

by each active client C. For each venue V where C has

performed a CheckIn, C removes from the token set TkV
any token it has received m epochs ago. It then contacts the

provider to obtain the updated MrV value. If |TkV | > MrV ,
C initiates the StatV erify protocol for V : it has become the

mayor of V .

Example. Figure 4 shows an example of mayorship changes

for a venue where two clients C1 and C2 contend for the

position. m, the number of days over which the CheckIn
tokens are counted, is set to 5. After the first 5 epochs

(Figure 4(a)), C1 is the mayor, with 3 CheckIn executions

compared to C2’s only 2. Thus, MrV is set to 3. At the

beginning of the 6th epoch (Figure 4(b)), the provider sets

MrV to 2. When C1 is online, it runs MaintainBadge,
detects it still has 3 tokens, thus exceeding MrV , invokes
StatV erify and maintains its FreqBadge. MrV is then set

back to 3. During the epoch, C2 performs a new CheckIn.
However, since its number of tokens does not exceed the MrV
value, it does not become the new mayor.

We note that if C1 is not online during the 6th epoch, C2

can become a mayor only after performing the new CheckIn
at V . At that time, C2 has 3 tokens and MrV = 2.

At the beginning of the 7th day (Figure 4(c)), MrV is set

to 2 and C1 expires its least recent token. At this point, C1 is

still the mayor, since it has MrV tokens: 2. However, as soon

as C2 comes online and runs MaintainBadge, it detects that
its number of tokens exceeds MrV , invokes StatV erify and

becomes the new mayor of V .

B. The Solution

We now describe each protocol of FreqBadge, illustrated in

Figure 5.
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Setup: The server generates two large safe primes p and q
and the composite n = pq. Let N denote n’s bit length. S
publishes n and keeps p and q secret.

RegisterVenue(O(V ), S(privS ,MrV )): For a newly regis-

tered venue V , S generates a new random seed rV and uses

it to initialize a pseudo-random number generator GV . S also

generates two large primes pV and qV such that qV |(pV − 1).
Let GqV be the unique subgroup of Z∗

pV
of order qV . Let gV

be a generator of GqV . S publishes pV , qV and gV . S also

sets MrV to 0: the venue has no mayor yet.

MaintainVenue(S(privS)): The protocol is run by the

provider S at the beginning of each epoch ei. S generates

a fresh random token ti, using GV , and publishes t2i mod n.
S decrements MrV := MrV − 1.
MaintainBadge(C(Id, pubS, ei), S(privS , ei): The protocol

is run at the beginning of each epoch ei by each active client

C, for each venue V where C has performed a CheckIn. Let
TkV denote the set of tokens received by C at V . C performs

the following two actions:

• Remove from TkV the token (if any) obtained during

epoch ei−m.

• Request from S the current MrV value. To pre-

vent S from learning the venues where C has checked-

in, this operation is done either over Mix, or us-

ing a PIR protocol. If |TkV | > MrV , C invokes

StatV erifyC(Id, V, |TkV |, T kV , pubS), S(privS)).

CheckIn(C(Id, V, T, q, pubS), S(privS)): Inherits the

Anonymous Authentication and Location Verification steps

from GeoBadge. If they succeed, let time T be within

epoch ei, when the provider’s published token value is

t2i mod n. S sends to C the value ti, the square root of

the value published for the epoch ei, along with MrV ,
the number of tokens of the current mayor of V . C
stores ti in the set TkV . If |TkV | > MrV , C invokes

StatV erify(C(Id, V, |TkV |, T kV , pubS, ei), S(privS , ei)).
All communication takes place over Mix.
StatVerify(C(Id, V, k, T kV , pubS, ei), S(privS , ei)): All

communication in this step is done over Mix. C sends k to

S. If k ≤ MrV , S rejects the request and the protocol stops.

Otherwise, without loss of generality, let TkV = {t1, .., tk}
be the set of all tokens retrieved by C from S for the venue

V in the past m epochs. Let T 2 = {t21, t
2
2, .., t

2
m} denote the

corresponding published values. Note that the membership of

T 2 changes during every epoch. The client and the server run

the following steps s times (ZK proof of the client knowing

k square roots of values from T 2). If successful, at the end

of the s steps S will be convinced with probability 1− 2−s.

• C generates y1, .., ym ∈R {0, 1}N and a random permu-

tation π1. C computes the set M = π1{t
2
1y

2
1 , .., t

2
my2m} and

sends it to S. C needs not know t1, .., tm to compute M .

• C generates z1, .., zk ∈R {0, 1}N and a random permu-

tation π2 and computes the set Proof = π2{t1z1, .., tkzk},
which it sends to S.

• S flips a coin b and sends it to C.

• If b=0, C sends y1, .., ym to S, which then verifies that for

every t2i ∈ T 2, t2i (yi)
2 occurs once in M .

• If b=1, C generates and sends A = π2{a1 =

z−1
1 y1, .., ak = z−1

k yk}. S verifies that for every pi ∈ Proof
and corresponding ai, (piai)

2 occurs in M once.

If any step fails, S outputs -1 and stops. Otherwise, S
generates a fresh, random “mayor” badge FBV for venue V
and computes a commitmentCMTV = gFBV

V ∈ GqV . S sends

FBV and the signed commitment, SigS(CMTV , ei) to C and

publishes CMTV . Finally, S updates MrV to the value k.
To reduce delays, the ZK proof can be non-interactive – in

the standard way, by making the challenge bits depend in an

unpredictable way on the values sent to the server. This allows

C to send the entire proof at once.

ProveBadge(C1(pubS , FBV , V, pV , qV , gV ),
C2(pubS , V, pV , qV , gV ), S(privS , V, CMTV ): This protocol
enables client C1 to prove “mayorship” of a venue V to

another client C2. C2 retrieves CMTV from S. C1 and

C2 engage in a zero knowledge protocol where C1 proves

knowledge of the discrete logarithm of CMTV , for instance,

using Schnorr’s solution [44].

C. Analysis

Theorem 4: The StatV erify protocol of FreqBadge is a

zero knowledge proof system of k square roots from T 2.

Proof: (Sketch) To see that FreqBadge is a proof system,

we need to prove completeness and soundness.

Completeness – an honest server will be convinced by an

honest client of the correctness of the proof. If b=0, S is

convinced that M is obtained from T 2 by multiplication with

quadratic residues, y2i . That is, for each ti ∈ T 2, t2i y
2
i ∈ M .

If b=1, S is convinced that C knows the square roots of k
elements in M . This is because C can provide ai values that
satisfy (piai)

2 = (tiziz
−1
i yi)

2 = t2i y
2
i ∈ M . In conjunction,

these two cases prove to S that C knows the square roots of

k elements from T 2 with probability 1− 2−s.

Soundness – if the statement is false, no cheating client

can convince an honest server that the statement is true,

except with small probability. Without loss of generality, let

us assume that C knows only k − 1 square roots of T 2,

t1, .., tk−1. If C expects the challenge to be b = 0, C generates

y1, .., ym as in the protocol, builds M correctly but generates

Proof = π2{t1z1, .., tk−1zk−1, zk}, where zk is random. If

the challenge ends up being b = 1, C has to produce one aj
value that is equal to yjz

−1
j (t2j )

1/2, for one j ∈ k..m. Due

to the QR-Assumption, C is unable even to tell whether any

t2j is a quadratic residue or not. If C expects the challenge to

be 1, it builds M = π1 = {t21w
2
1 , .., t

2
k−1w

2
k−1, w

2
k, .., w

2
m},

where the wi’s are random. It then build Proof to be

Proof = π2{t1z1, .., tk−1zk−1, zk}. If b = 1, C can provide

square roots for k values in M . If b = 0 however, C has

to produce m − k + 1 values yj such that yj = wj(t
−2
j )1/2,

which contradicts again the QR-Assumption. The chance of a

cheating client to succeed after s repetitions is 2−s.

Zero Knowledge. The proof follows the approach

from [45], [46]. Specifically, let S∗ be an arbitrary, fixed,

expected polynomial time server Turing machine. We generate

an expected polynomial time machine M∗ that, without being

given access to a client C (or the square roots of any elements

from T 2), produces an output whose probability distribution
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is identical to the probability distribution of the output of

< C,S∗ >.

M∗ is built by using S∗ as a black box. For each of the s
steps of the protocol, M∗ flips a coin a and builds the sets

M and Proof anticipating that the challenge bit b will equal

a. It then feeds these values to S∗, which then outputs b. If
b = a, M∗ outputs the transcript of the transaction and moves

to the next step. Otherwise, it repeats the current step. M∗

terminates in expected polynomial time (each of the s steps

is executed on average twice). The probability distributions of

the output of < C,S∗ > and of M∗ are identical, which is

proved by induction.

Similar to the analysis of the GeoBadge protocol, here we

also consider modified versions of the CI-IND and SV-IND

games of Section III-D, where all the venues (chosen by A)

are identical. We now introduce the following results:

Theorem 5: FreqBadge is CI-IND and SV-IND.

Proof: (Sketch) The CI-IND proof is inherited from

GeoBadge: CheckIn protocol differs solely in the provider’s

issuance of a square root value. For the SV-IND proof: A
can learn user information through (i) the proof and (ii) from

the communication medium. However, Theorem 4 shows that

StatV erify is a ZK system. Furthermore,Mix provides com-

munication untraceability and unlikability (see Section IV).

Theorem 6: FreqBadge provides Status Safety.

Proof: (Sketch) Results directly from Theorem 4:

StatV erify is a proof system of having k square roots from

T 2. A cheating client can succeed with probability 2−s, where

s is the number of proof iterations.

FreqBadge trivially provides the token-epoch immutability

property, as S issues a single token per venue per epoch.

FreqBadge does not provide token non-distributability. Intro-

ducing the blindly signed nonces of GeoBadge in FreqBadge

to address this problem would not make sense: S would be

able to link two different runs of StatV erify and break the

SV-IND property.

VII. E-BADGE

The level 1 e-Badge is unlocked when the user checks-in

at k different locations having a common background (e.g.,

“swimmie”, “wino”, “pizzaiolo”, see Section III-C). Each

subsequent level of the e-Badge is reached when the user

checks-in at k new venues.

Solution Overview.: For each e-Badge, supporting L
expertise levels, the provider generates 2L−1 secrets. Level 1

has only one secret, called the outer secret. Each level L > 1
has 2 secrets, the outer and inner secret. The outer secret of

level L is the xor between the inner secret of level L and the

outer secret of level L − 1. To achieve expertise level L, a
client needs to recover its outer secret.

The provider assigns a share of each of the L inner secrets

to each qualifying venue. Thus, a venue receives L shares,

each of a different secret. When a user subscribes, it receives

k request tokens, blindly signed by the provider. The request

tokens enable the client to contact k different venues and

collect k shares for the next desired level. Request tokens

cannot be reused, thus preventing a user from collecting more

than k shares. Since they were blindly signed, the provider

cannot link the request tokens to clients.

During CheckIn, the client uses a symmetric PIR protocol

to privately collect a single share, without leaking the level

desired. When the client recovers k shares of the inner secret of

the next level, it reconstructs the inner secret. It then combines

it with the outer secret of its current level of expertise and

recovers the outer secret of the next level. When the client

reaches level L, it receives a new set of blindly signed request

tokens, to enable it to acquire the next level (L + 1) of

expertise. We now detail each protocol of e-Badge.

Setup(S(L)): L is the number of expertise levels supported by

the provider. S chooses a large prime p and generates a random
keyK . Similar to the Setup of GeoBadge, S generates a group

G, with generator g. S publishes p, g and G and keeps K
secret. For each supported e-Badge, S generates a list of outer

secrets LV = {M1, ..,ML}, one for each supported expertise

level, as follows:

• For level 1, generate a random value M1. Use a threshold

secret sharing solution to compute shares of M1: generate a

polynomial Pol1 of degree k − 1 whose free coefficient is

M1. Generate a random e-Badge for level 1, eB1 and the

commitment CMT1 = geB1 ∈ G. Keep Pol1’s coefficients

and eB1 secret. Publish the degree k and the verification

value V er1 = H(M1.HMACK(V ) mod p). Store Pol1’s
coefficients. Publish CMT1.

• For each subsequent level L, generate a random value as

the outer secret ML. Define the inner secret ML = ML ⊕
ML−1. That is, the outer secret of level L is the bitwise xor

of the inner secret of level L and the outer secret of level L−1.
Use a threshold secret sharing solution to compute shares of

ML (generate a polynomial PolL of degree k− 1 whose free

coefficient is ML. Keep PolL’s coefficients secret. Publish

the verification value V erL = H(ML.HMACK(V ) mod p).
Store PolL’s coefficients. Generate a random e-Badge for level

L, eBL, and the commitment CMTL = geBL ∈ G. Keep eBL

secret but publish CMTL.

RegisterVenue(O(L, V, pubO), S(privS)): The owner O that

registers venue V sends to S its public key, pubO. S stores

pubO along with V . If V qualifies to provide an e-Badge,

S generates a share of a secret from each expertise level:

Generate xV = H(V ) mod p and yi = Poli(xV ) mod p,
for all i = 1..L. S stores [xV , yi], ∀i = 1..L, the shares of the
secrets M1,M2, ..,ML along with V .

Subscribe(C(), S(pubS , privS)): The communication in this

step is performed over Mix, to hide C’s location from S. C
runs the setup stage of the Anonymous Authentication protocol

of Boneh and Franklin [40] to obtain tokens that allow it later

to authenticate anonymously with the server. Furthermore,

C generates k random request tokens rt1, .., rtk . C and S
engage in a blind signature protocol where S blindly signs

each request token for C. C stores SigS(rt1), .., SigS(rtk)
associated with the corresponding badge.

CheckIn(C(Id, V, T, pubS, L), S(privS)): Let us assume that

C has an e-Badge at level L − 1 and needs to acquire level

L. The communication between the check-in client C and S
takes place overMix. If the venue V qualifies for an e-Badge,
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C sends a yet unused, provider signed, request token to S. S
verifies its signature on the token and the fact that the token has

not been used before (at any other venue). If the verifications

fail, S returns -1. Otherwise, C and S engage in a symmetric

private information retrieval protocol [41], [42], allowing C to

retrieve a single share of the e-Badge, for the level L: (XV ,

yL). C stores the share (XV , yL) along with the current secret

for the level L− 1 of the e-Badge, ML−1. The set Tk stores

these values.

StatVerify(C(Id, V, k, T k, pubS, L), S(privS)): Let us as-

sume that C holds expertise level L−1 for the e-Badge and has
performed k more check-ins at qualifying venues. Thus, C has

a set Tk storing k shares of the inner secret ML. C repeats the

steps of StatV erify of GeoBadge (over Mix) to reconstruct

the inner secret ML. It then retrieves ML = ML⊕ML−1 and

presents the value to S. S verifies the correctness of the value.

If correct, it sends eBL to C, certifying e-Badge expertise level

L. S and C engage in a protocol enabling S to blindly sign

k new request tokens for C.

Due to lack of space, we omit the details of ProveBadge
that trivially extends the corresponding protocol of GeoBadge,

with the exception that each expertise level has a different

secret badge and corresponding commitment value.

A. Analysis

Correctness is straightforward: a client at expertise level

L − 1, following the protocol correctly is able to retrieve k
shares of ML and then recover ML.

Theorem 7: e-Badge is CI-IND.

Proof: (Sketch) The communication between C and S
during CheckIn takes place over Mix. C reveals a blindly

signed request token not used before in order to perform this

operation. C uses a SPIR protocol to retrieve only one share

of the secret needed. An adversary A with non-negligible

advantage in the CI-IND game has the same advantage against

either (i) the untraceability property of Mix, (ii) the blindness
property of the blind signature algorithm, or (iii) the SPIR

protocol in guessing the level accessed by C with probability

higher than 1/L.

Theorem 8: e-Badge is SV-IND.

Proof: (Sketch) At the completion of the SV-IND game,

C is able to reconstruct the secrets of both client C0 and C1

(for the same level). According to CI-IND, the adversary A is

unable to identify clients performing CheckIns. During the

final StatV erify run of the SV-IND game, C reveals only the

outer secret of the level it wants to achieve, but no intermediate

values. Thus, if A has an advantage in the SV-IND game, it has

the same advantage against the (i) untraceability property of

Mix or (ii) the information theoretic security of the threshold

secret sharing solution and the xor operation.

Theorem 9: e-Badge provides Status Safety.

Proof: (Sketch) The use of a location verification pro-

tocol [43] prevents A from retrieving a share without being

present at the venue. The use of the threshold secret sharing

solution prevents A from reconstructing the secret of a level

without completing k additional CheckIn operations.

VIII. MULTI-PLAYER: MPBADGE

The multi-player badge is issued when a user presents a

proof of co-location and interaction with k − 1 other users at

a venue V . k is a parameter that may depend on the venue V .

This models a simplified form of the “Player Please!” badge

of Foursquare, that is acquired when the user checks-in at the

same location with 3 members of the opposite sex. We now

present MPBadge, a privacy preserving solution that provides

the co-location functionality of “Player Please! (Heart)” but

without modeling the gender of the participants.

MPBadge relies on threshold secret sharing, where each

client is able to provide a share of the secret. k unique shares

generated at the same venue in the same epoch (see protocol

MPCheckIn) can be combined to produce a signed co-

location proof. An additional difficulty here lies in the ability

of an anonymous user to cheat: run CheckIn multiple times

in the same epoch, obtain k signature shares and generate by

itself the co-location proof. We solve this issue by allowing a

user to run CheckIn only once per venue per epoch - using

the blind signature generation, BSGen, protocol (see below).

Setup: The server S generates two large safe primes p and

q and the composite n = pq. Let N denote n’s bit length. S
publishes n and keeps p and q secret.

RegisterVenue(O(), S(privS)): Perform the following steps:

• S stores a key table KT , indexed by venues and epochs.

KT [V, e] contains a unique key, used only for signing values

for a venue V during epoch e. Let v denote the total number

of venues supported.

• For each venue V and epoch e, S generates a value

MV,e ∈R {0, 1}N and a random polynomial PolV,e with

degree k−1, whose free coefficient is MV,e. MV,e and PolV,e
are secret.

Subscribe(C(), S(pubS , privS)): Inherited from GeoBadge.

BSGen(C(Id, e, pubS), S(privS)): Executed once per epoch

e by each client C (when active) with provider S, over an

authenticated channel. C generates v random values, one for

each venue in the system, R1, .., Rv. C and S engage in a

blind signature protocol, where each Ri is blindly signed by

S with KT [Pi, e]. S records the epochs when C has executed

this step and returns -1 if C attempts to run this step twice for

the same epoch. Otherwise, the client obtains SigKT [Pi,e](R),
∀i = 1..v.
CheckIn(C(Id, V, T, n, pubS), S(privS)): C and S run the

Anonymous Authentication and Location Verification steps of

GeoBadge. If they succeed, C sends R,SigKT [V,e](R) to S
over Mix – the values correspond to the venue V and epoch

e where C runs CheckIn. S verifies that (i) R has not been

used before and (ii) the validity of its signature. If either step

fails, S returns -1. Otherwise, S stores R and generates a share

of MV,e: (xe, ye), where xe is random and ye = PolV,e(xe).
S sends (xe, ye) to C as a reply overMix, and C stores them.

MPCheckIn(C1(Id1, V, T, xe,1, ye,1),..,Ck(Idk, V, T, xe,k, ye,k)):
This step is executed when k clients C1,..,Ck are co-located.

It enables them to build a co-location proof for V during

epoch e (containing current time T ). After performing

a CheckIn at venue V and epoch e, let (xe,i, ye,i) be

Ci’s share of MV,e. Each device Ci generates a random
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MAC and IP address which it uses to setup an ad hoc

network with co-located devices and also during subsequent

communications. Each device Ci generates the message

M = (“MPBadge′′, V, e). Ci generates σe,i = Mye,i mod n
and sends a multicast packet to all other devices containing

the tuple (xe,i, σe,i, Ri, SigV,e(Ri) mod n). Ri is the value

that Ci has had the server blindly sign, SigV,e(Ri). Each

client stores received tuples in its set Tk.
StatVerify(C(Id, V, k, T k, e, pubS), S(privS)): Without loss

of generality, let Tk = {(xe,i, σe,i, Ri, SigV,e(Ri)}, ∀i =
1..k. C and S run the following steps:

• C computes σ =
∏k

i=1 σ
li(0)
i = MΣiye,ili(0) = MMV,e .

C sends σ, Ri, SigV,e(Ri), for all k Ri values received from

co-located clients to S over Mix.

• S verifies that (i) the time when the communication of the

previous step has been initiated is within epoch e, (ii) that

(“MPBadge′′, V, e)MV,e = σ and (iii) that all SigV,e(Ri)
signatures verify for venue V during epoch e. S checks

that the exact set of k revealed blind signatures has not

been used before more than k-1 times: S records the set of

k blind signatures and allows it to be used only k times.

Subsequent uses of the tokens are allowed, as long as the

newly revealed set contains at least one fresh blind signature.

If any verification fails, S outputs -1 and stops. Otherwise, S
generates an MPBadge: SigS(“MPBadge′′, V, e, Tc), where
Tc is the time of issue, and sends it over Mix to C.

A. Analysis

We extend the CI-IND game to also include the

MPCheckIn procedure: the adversary controls all clients

except two clients C0 and C1, that are controlled by the

challenger. The challenger then flips a coin b and runs

CheckIn followed by MPCheckIn with A for client Cb.

A’s advantage is defined the same, as the advantage over 1/2

in guessing the value of b. We introduce the following results.

Theorem 10: MPBadge is CI-IND.

Proof: (Sketch) The blind signature generation step of

CheckIn, executed at most once per epoch by any challenger

controlled client, over an authenticated channel, retrieves a

server signed nonce for each site registered in the system.

During the subsequent token generation step, performed over

Mix, the challenger reveals one signed nonce, along with the

site of interest. If the adversary can link the blind signature

and token generation steps with a non-negligible advantage

(thus linking client to location) we can build an adversary that

has the same advantage against (i) the blindness property of

the blind signature scheme or (ii) the untraceability property of

Mix. During MPCheckIn, the challenger sends an “identity

neutral” message over Mix to A. Thus, any advantage of

A can be converted into a similar advantage against the

untraceability of Mix.
Theorem 11: MPBadge is SV-IND.

Proof: (Sketch) Since we just proved that MPBadge
is CI-IND, the adversary’s advantage can only be from the

StatV erif function. The communication in StatV erif is

performed over Mix and contains an “identity neutral” σ
value along with k pairs of random nonces and associated
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Fig. 6. GeoBadge dependence on (a) modulus size, (b) k, the check-in count.

adversary generated blind signatures. The k pairs have been

generated during MPCheckIn step, thus the adversary has

no advantage from them. If at least one nonce is fresh (never

used before), an adversary with an advantage in the SV-IND

game following the StatV erif run can be used to derive an

advantage against either (i) the blindness of signature scheme,

(ii) the untraceability of Mix or (iii) the secure threshold

signature scheme.

MPBadge is safe: If an adversary controls at most k − 1
clients at a venue V , its advantage in the Safety game

can be transformed into advantage against the information

theoretical secure threshold secret sharing solution used to

generate threshold signatures. MPBadge provides Token Non-

Distributability, since StatV erify succeeds only if C pro-

vides a set of blindly signed nonces, at least one of which has

never been used before.

IX. EVALUATION

We have implemented GeoBadge, FreqBadge and MPBadge

in Android and Java and have tested the client side on the

Nexus One smartphone and the server side on a 16 quadcore

server featuring Intel(R) Xeon(R) CPU X7350 @ 2.93GHz

and 128GB RAM. We have stress-tested the server side by

sequentially sending multiple client requests. All the results

shown in the following are computed as an average over at

least 10 independent runs.

GeoBadge: We study the most compute-intensive functions

of GeoBadge: Setup, the GSN provider side of CheckIn,
the client and provider sides of StatV erify. We investigate

first the dependence on the modulus bit size. The Setup cost,

a one time cost for the GSN provider, ranges from 277ms for

512 bit keys to 16.49s for 2048 bit keys.

Figure 6(a) shows the performance of the remaining three

components in milliseconds (ms) using a logarithmic y scale.

The x axis is the modulus size, ranging from 512 to 2048

bits. The value of k, the number of CheckIn runs required to

acquire the badge is set to 50. On a single core, the CheckIn
cost is 13ms even for a 2048 bit modulus size. The cost of the

provider side of StatV erify is almost constant for different

key bit sizes, also around 13ms – on an OpenSSL sample,

the cost of performing one signature verification for 2048

bit is 0.1ms, thus dwarfed by the cost of string operations.

Thus, the provider can support more than 4800 CheckIn
or StatV erify runs per second, or more than 412 million
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operations per day. The client side of StatV erify takes 16.5s

for 2048 bit keys, on Nexus One.

Figure 6(b) shows the performance dependency of the same

protocols on k, the number of check-ins required, when the

key size is set to 1024 bits. The client StatV erify takes up to

21s when k = 100. The provider components are much faster:

the StatV erify takes less than 27ms, allowing the provider

to support more than 2400 such operations per second (more

than 207 million ops per day). The CheckIn cost is even

smaller, less than 10ms for k=100, allowing more than 6500

simultaneous check-ins, or more than 560 million check-ins

per day. In conclusion, GeoBadge imposes small overheads on

the GSN provider – thousands of CheckIn and StatV erify
can be performed per second. The client side overhead is

reasonable as achieving special status is not a time constrained

operation and can be performed in the background.

FreqBadge: In the next experiment we studied FreqBadge.

We have first tested key bit sizes ranging from 512 to 2048.

A one time occurrence for the GSN provider, the Setup cost

ranges from 227ms to 1.5s and is negligible. Figure 7(a) shows

the performance of CheckIn (server side) and StatV erify
(client and server side) in ms, as a function of the key bit

size. The y axis shows the time in ms, in logarithmic scale.

s, the number of proof rounds is set to 40, m, the number

of past epochs is set to 60 and k, the number of CheckIn
runs is set to 30. The client side StatV erify, executed on

the Nexus One platform , requires between 1.7s to 7.5s.

Since the provider is the bottleneck, the sensitive operations

are CheckIn and the provider side of StatV erify. These
operations are fast: Requiring one table lookup and a signature

generation, CheckIn takes 4.8ms. On a 16 quadcore server,

the provider can support more than 13,000 check-ins per

second - more than 1.1 billion ops per day. The provider side

of StatV erify is less compute intensive than the client side:

it ranges from 36ms to 309ms (for 2048 bit keys).

We further evaluate the dependency of StatV erify (client

and server side) on the value of k when the modulus size N
is 2048, m=60 and s=40. Figure 7(b) shows that the server

side exhibits small linear increases with k, and is only 372ms

when k = m = 60. The server can support roughly 170

simultaneous StatV erify runs per second or 14.5+ million

per day. The client side overhead is around 13.8s even for

60 check-ins. Finally, Figure 8(a) shows the dependency of

StatV erify on the value of s, the number of proof sets. N
is set to 2048, m is set to 60 and k is set to 30. Even for 100

proof iterations, the cost is 633ms for the provider, enabling

6+ million daily runs. A client requires 21.2s to generate 100

proofs.

MPBadge. Finally, we study the dependence of the overhead

of several MPBadge procedures on k, the number of partic-

ipants. We set the modulus size to 2048 bits and range k
from 5 to 25. Figure 8(b) shows the performance of the server

side CheckIn, the client and server sides of StatV erify
and the client side of MPCheckIn. On a single core the

server side CheckIn overhead is around 1.6ms and the server

side StatV erify is 37ms even for 25 participants. Thus, the

provider can support 10,000 CheckIns and 432 StatV erifys
per second. The MPCheckIn overhead on a smartphone is

around 290ms, while the client side StatV erify ranges from

230ms for 5 participants to 6.9s for 25 participants.

X. CONCLUSIONS

In this paper we have studied privacy issues concerning

popular geosocial network features, check-ins and badges.

We have proposed several private protocols including (i)

GeoBadge and T-Badge, for acquiring location badges, (ii)

FreqBadge, for mayorship badges and (iii) MPBadge, for

multi-player badges. Furthermore, we have devised e-Badge,

a novel protocol that allows users to privately build expertise

badges. We showed that GeoBadge, FreqBadge and MPBadge

are efficient. The provider can support thousands of CheckIns
and hundreds of StatV erifys per second. A smartphone can

build badges in a few seconds.
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