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Abstract—Friend spam, adversarial invitations sent to social
network users, exposes victims to a suite of privacy, spear
phishing and malware vulnerabilities. In this paper, we use the
location history of users to detect friend spam. We posit that the
user trust in friends is associated with their co-location frequency.
We exploit this hypothesis to introduce GeoPal, a framework
that carefully accesses the potentially sensitive location history
of users to privately prove their past location claims, and to
privately compute and update fuzzy co-location affinities with
other users. We build GeoPal on PLP, a protocol we develop to
privately collect proofs of user past locations.

We confirm our hypothesis through a user study with 68
participants: 57% and 70% of the friends never met in person
are not remembered and are not talked to, respectively, by the
participants. In contrast, 86% of the friends met daily or weekly
are either family, close or regular friends. We highlight the
relevance of friend spam: 75% of the participants have at least
one friend whom they do not recall. We show that GeoPal is
practical: a Nexus 5 can process more thank 20K location proofs
per second.

I. INTRODUCTION

Friend spam attacks [1]–[3] are friend invitations sent by

attackers to the social network accounts of victims. Once

accepted, the invitations enable the attackers to collect private

information from the accounts of victims (including profiles,

locations visited, friend lists), and perform subsequent attacks

such as spear phishing [2] and malware dissemination [4], [5].

Friend spam is effective. In a user study with 68 participants,
we observed that 75% (51) of the participants have declared

not to remember at least one of their 20 randomly selected

friends (see § V). While this percentage is likely to be larger

when considering all the friends, it is consistent with previous

work that showed that 47 to 77% of social network users

accept invitations from strangers [6]–[8].

Our user study also reveals that victim naivety plays a

part in the success of friend spam: only 38% and 37% of

the participants are uncomfortable or very uncomfortable with

accepting invitations from “anyone who is attractive” and from

“anyone who is my age”, respectively (see § V). Social net-

work profile information (e.g., age, photos, name) is however

easy to fabricate. In addition, social network mechanisms that

encourage users to accept as friends, people with whom they

share friends, can be exploited by adversaries to tailor their

accounts and improve the success rate of their friend spam [7].

Fig. 1. Distribution of types of friends for (a) friends never met in person
and (b) friends met daily or weekly, and of the topics of discussion for (c)
friends never met in person and (d) friends met daily or weekly.

In this paper, we posit the existence of a relationship

between social network trust and the frequency of physical

co-location. Specifically, we conjecture that users tend to trust

more the friends whom they have met or are meeting more

frequently in person. To evaluate this hypothesis, we have

developed GP.Quest, a mobile app questionnaire where users

need to classify Facebook friends according to co-location and

trust dimensions. Our study (with 68 participants) shows that

93.2% of the Facebook friends that were never met in person

are either not remembered, considered to be acquaintances

or non-friends (see Figure 1(a)). In contrast, 85.7% of the

Facebook friends met daily or weekly are either family, close

or regular friends (see Figure 1(b)). Furthermore, participants

do not talk or only chit-chat with 88.1% of the friends they

never met (see Figure 1(c)). However, the topics of discussion

with 80% of the friends met daily or weekly involve family,

personal, job and social matters (see Figure 1(d)).

We exploit this result, and the observation that physical co-

location with victims is hard to engineer by online adversaries,

to introduce GeoPal, a user transparent, location based, friend

spam detection framework. The mobile devices of GeoPal

users record locations visited throughout the day. GeoPal

leverages this “location history” to detect co-location events

and infer trust in social network friends.



The use of locations raises however privacy concerns. Out of

68 participants, only 1 said that they would make their location

information public (see § V). The indiscriminate sharing of

location information with inviters in social networks may thus

defeat the very goal of a friend spam detection solution. In

addition, revealing sensitive information (e.g., location history,

friends) to social network providers further exposes users to

significant risks, as providers have been shown to leak [9] and

even sell [10] user data to third parties.

Thus, the challenge is to infer trust based on locations, with-

out revealing sensitive information to potential adversaries. To

address this challenge, we first propose PLP, a private location

proof protocol. In PLP, the social network provider issues

proofs of location to mobile device users, without being able

to link users to their locations. Acquired proofs are stored on

the user’s mobile device, and are not shared with the provider.

Second, we introduce GeoPal, a set of protocols that enable

users to use the recorded proofs to prove past location claims

with a desired level of privacy (or precision), and to privately

compute and update co-location affinities with other users.

PLP and GeoPal essentially generate and process “fuzzy”

location proofs. They enable a user to prove for instance to

have lived in a city, by revealing location proofs recorded

at a city church, with only zip code level precision. They

further support imprecise co-location events, e.g., between

users present at neighboring venues within a time frame.

To achieve this, we introduce the notion of spatial and

temporal confusion zones, nested regions of set dimensions

with random coordinates, built around the user’s location

and time of presence. In addition, we propose the notion of

presence tokens, pseudo-random values generated and updated

periodically for supported venues, and revealed only to users

who can prove their presence. In summary, we provide the

following contributions:

• Trust vs. co-location frequency dependence. Conjec-

ture dependence between the trust people have in social

networking friends and their co-location frequency.

• GeoPal and PLP. Introduce GeoPal, a framework that

exploits this conjecture to detect friend spam with privacy

[§ IV-C]. GeoPal builds on PLP, a protocol we propose

to privately generate location proofs [§ IV-B].

• Validation. Verify the conjectured dependence through a

user study for GP.Quest, a mobile app that collects trust

in and co-location frequency with Facebook friends [§ V].
Show that on a Nexus 5 smartphone, GeoPal can process

more than 20,000 location proofs per second [§ VI].

Limitation. GeoPal and PLP do no protect against attackers

who are able to prove co-location with the victim. They do

however raise the bar, as online stalkers have to also become

physical stalkers. Specifically, attackers need to both guess the

locations frequented by their victims, and to either frequent

them or fabricate proofs of presence, see § IV-D.

II. RELATED WORK

Friend spam has been shown to be a source of significant

vulnerabilities [1], [2], [5], [11]. When studying the wall

Fig. 2. GeoPal architecture. The user’s mobile device privately captures and
stores proofs of locations visited. The collected proof history is stored on the
device and used to process friend invitations: privately prove past locations,
determine fuzzy co-location affinity with invited friends, and detect current
co-location with pending friends.

posts of 3.5 million Facebook users Gao et al. [2] discovered

more than 200K malicious posts with embedded URLs, with

more than 70% pointing to phishing sites. Stringhini et al. [1]

used “honey” profiles on 3 social network sites to study the

behavior of contacting spammers. Brown et al. [11] found that

in Facebook, attackers could send sophisticated context-aware

email to approximately 85% of users, including to people

with private profiles. The Koobface botnet [4] leveraged social

network zombies to generate accounts, befriend victims, and

send malware spam. Thomas and Nicol [5] showed that social

networks are slow to respond to such threats, leading to 81%

of vulnerable users to click on Koobface spam.

Cao et al. [12] proposed to detect the fake accounts behind

friend spam, by extending the Kernighan-Lin heuristic to

partition the social graph into two regions, that minimize the

aggregate acceptance rate of friend requests from one region to

the other. Wu et al. [13] utilized the posting relations between

users and messages to combine social spammer and spam

message detection. They extracted the social relations between

users and the connections between messages, and used them

as regularization terms over prediction results. The approaches

of [12], [13] leverage access to large social graphs. In contrast,

GeoPal makes local decisions, and leverages only information

made available to a user during friend invitations.

Querica and Hailes [14] used a hybrid friend and location

based approach to defend collaborative, mobile app users

against Sybil attacks: maintain and use information about

friendly and suspicious devices that the user encounters in

time, to decide if an individual is launching a Sybil attack

against it. A different flavor of friend spam attacks was

introduced by Huber et al. [15], who exploit the unprotected

communications between users and social networks.

Our Differences. Our work is the first to provide the ex-

perimental foundation for using co-location as a friend trust

predictor. In addition, GeoPal and PLP are the first solutions

that focus on the privacy dimension of friend spam detection.

III. SYSTEM & ADVERSARY MODEL

A. System Model

We consider an ecosystem that consists of a social network

provider and a set of subscribed users. Similar to systems like

Facebook and Yelp [16], we assume the provider, denoted by

S in the following, offers both social and geosocial services.



The users. Each subscribed user has a social networking

account. We assume subscribers have mobile devices equipped

with a GPS receiver and a Wi-Fi interface (present on most

smartphones). Users install and run on their devices a mobile

app, that we call “client”. Subscribed users receive initial

service credentials, including a unique user id; let IdA denote

the id of user A.

Check-in. Users can record their locations either explicitly,

e.g., by performing a a “check-in” operation provided by

services like Foursquare [17] or Yelp [16], or implicitly, where

their mobile device clients periodically record their location.

In the following, we use the term “check-in” to denote both

forms of location recording operations.

The provider. We build our work on semi-distributed, online

social networks [18]–[20]. Specifically, each client locally

stores and maintains its user’s data, including profile, friend

list, posts, and location history. For fault tolerance (e.g.,

if the device fails or is lost), the user should use backup

storage with consistency guarantees. The centralized social

network provider component retains however the following

functionality:

• Subscriber search & root of trust. The provider main-

tains an online directory listing current subscribers, their

contact information and public key certificates. Directory

searches can be performed privately, using an efficient

private information retrieval (PIR) technique [21], [22].

In the following, we assume all the communications

between user clients and the provider take place over an

anonymizer, denoted by Mix, e.g., Tor [23].

• Private user location validation. The provider verifies the

location claims made by users during check-in operations,

e.g., [24], [25]. For instance, [24] provides location

verifications while ensuring user anonymity: the provider

S can verify the validity of user reported locations/times,

without learning the user’s identity.

• Venue maintenance. The provider maintains data for a set

of system supported venues (i.e., businesses in Yelp [16]),

see § IV-A for details.

Friend invitations. We call the user that sends an invitation

the inviter and the user receiving the invitation, the invitee.

We denote by private information, user data (e.g., history

of locations, list of friends) that should not be learned by

strangers without the user’s explicit consent.

Cryptographic tools. We rely on cryptographic hash functions

H that are pre-image, second pre-image and collision resistant,

as well as a semantically secure public and private key cryp-

tosystem. We also use “one-more-forgery resistant” signatures:

an adversary with access to the signatures of k messages of

his choice, has only negligible advantage in fabricating a valid

signature for a challenge message.

B. Adversary Model

We consider external adversaries that launch friend spam

attacks. Such adversaries send friend invitations to specific

target users, from accounts they control. We assume that

adversaries are able to (i) register and control an arbitrary

Notation Definition

TkV,e Presence token for V during epoch e

V ic(V, e) Vicinity set: Tokens of venues near V during e

g Number of confusion zones
di, ti, i = 1..g Spatial and temporal confusion zone sizes

V , T Spatial and temporal confusion zones for V
KV ,KV i, i = 1..g Spatial encryption keys
Kt,Ktj , j = 1..g Temporal encryption keys
EV , ET Encrypted spatial and temporal confusion sets
1 ≤ α, τ ≤ g Spatial and temporal precision levels

TABLE I
GEOPAL AND PLP NOTATIONS.

Fig. 3. Illustration of spatial and temporal confusion zones for a check-in
point (x, y, t) shown in red (no height dimension considered). The confusion
zones are placed at random coordinates around the point.

number of fake user accounts as well as to (ii) reverse engineer,

modify and run corrupt, malicious versions of the mobile

client. In addition, we assume that the provider S is semi-

honest (honest but curious). Specifically, S will run its part of

the protocols correctly, however, it will attempt to learn private

subscriber information.

IV. GEOPAL: LOCATION BASED ACCOUNT VALIDATION

We introduce GeoPal, a location based friend invitation

verification framework. GeoPal consists of a mobile client, that

needs to be installed by subscribed users, and a social network

component. In the following, we first describe background

definitions and concepts, then introduce the private location

proof (PLP) protocol and develop verification protocols for

detecting friend spam with privacy assurances, see Figure 2.

A. Background

The provider S generates a public and private key pair. The

GeoPal client installed by subscribers stores S’s public key

and uses it to verify signatures generated by S.

Each client is responsible for storing the location history

of its user. Let ΠA denote the location history of a client

A. ΠA contains a separate proof for each “check-in” of A.

For simplicity of exposition, in the following we focus on two

dimensional spatial locations. We now introduce the confusion

zone concept.

Confusion zones. Let an integer g, real values d1 < .. < dg ,

and real values t1 < .. < tg be system parameters. We define

the set of spatial confusion zones for a check-in performed

at a venue V with location (x, y) at time t, as squares V =
{V1, .., Vg}, of dimensions d1, .., dg , where (x, y) ∈ V1 and

Vi ∈ Vi+1, ∀i = 1..g − 1. We define the temporal confusion



zones for time t, to be time intervals T = {T1, .., Tg} of length
t1, .., tg , where t ∈ T1 and Ti ∈ Ti+1, ∀i = 1..g − 1.
Figures 3(a) and 3(b) shows examples of spatial and tem-

poral confusion zones, for g=3. To prevent the identification

of the (x, y, t) coordinates, confusion zones are not centered

at the point (x, y, t).
Presence tokens and vicinity sets. GeoPal divides time into

fixed length epochs (e.g., 1 hour, 1 day long). For each

supported venue V and during each epoch e, the provider S

generates a random presence token, TkV,e. S reveals TkV,e
only to clients that are present at V during epoch e. For a

venue V at epoch e, let the vicinity set V ic(V, e), denote

the set containing presence tokens for a pre-defined set of

neighboring venues. At the beginning of each epoch e, for

each registered venue V , S generates a fresh random presence

token, TkV,e, then updates the vicinity set V ic(V, e) with the

new presence tokens of all of V ’s neighboring venues. Table I

summarizes our notations.

Fuzzy co-location. We say that a fuzzy co-location event

occurs between two users, when the users are located at

neighboring venues, within the same epoch.

B. PLP: Private Location Proofs

We present PLP, a private location proof protocol that

enables a client C to privately acquire a proof of location

at coordinates (x, y) at time t, during epoch e, i.e., t ∈ e.

The proofs are then accumulated by the client and used later

to demonstrate trustworthiness with invited friends, through

GeoPal’s protocols (see § IV-C). As previously mentioned,

we consider that S has verified C’s location, e.g., using [24].

Furthermore, all the communications between C and S take

place over an anonymizer (see § III-A).

The protocol works as follows. C generates a fresh random

key k and computes a verifiable pseudonym Ek(Id(C)). C
sends Ek(Id(C)), along with the venue identifier V , coordi-

nates (x, y), and time t to S. S performs the following steps:

1) Generate confusion zones. Generate the spatial confu-

sion zones V ={V1..Vg}, according to granularity levels

d1, .., dg . Specifically, for the i-th confusion zone Vi

(i = 1..g), generate random rxi < di and ryi < di values.

Then, generate the rectangle Vi defined by its upper left

and lower right corners, Vi = [(x − rxi, y + ryi), (x +
di − rxi, y − d+ ryi)], see Figure 3. Similarly, generate

temporal confusion zones T ={T1..Tg} according to gran-
ularity levels t1, .., tg . Specifically, for confusion zone Ti,

generate random ri, then generate Ti = [t−ri, t+ti−ri].
2) Generate spatial and temporal keys. Generate fresh,

one-time use keys KV and Kt. Generate a chain of

spatial encryption keys, KV i = Hi(KV ), i = 1..g and

a chain of temporal encryption keys Ktj = Hj(Kt),
j = 1..g. H is a cryptographic hash function and Hi(M)
denotes the application of H to M , i times.

3) Encrypt confusion zones. Use the spatial chain keys

to encrypt the spatial confusion set V , and produce

EV = {EKV i
(Vi)|i = 1..g}. That is, EV contains each

confusion zone Vi encrypted with the keyKV i. Similarly,

use the temporal chain keys to encrypt the temporal

confusion set T , producing ET = {EKtj
(Tj)|j = 1..g}.

4) Generate signature. Generate signature σV,t =
{SS(Ek(Id(C)), EV , ET )}, that binds C’s pseudonym to

the encrypted confusion sets.

5) Generate location proof. Generate

π(V, t) = (Ek(Id(C)), V, t, e, T kV,e, V ic(V, e),

k,KV ,Kt, V , T , EV , ET , σV,t).

Send π(V, t) to C. C adds π(V, t) to its location proof

history: ΠC = ΠC ∪ π(V, t).

C. PLP Based Account Validation

We now introduce GeoCheck, PFAS and GeoSignal, proto-

cols that build on PLP to validate the location information of

social network accounts. GeoCheck uses the confusion sets of

a user’s location proofs to validate the user’s location claims,

while protecting the user’s spatial and temporal privacy. The

PFAS (Private Fuzzy Affinity Score) protocol uses the PLP’s

location tokens and vicinity sets to privately and distributively

determine the past co-location frequency of GeoPal users. The

GeoSignal protocol enables users to update their co-location

affinity, in real time.

GeoCheck: Privacy Preserving Past Location Verification.

GeoCheck allows a client C to selectively reveal information

about it’s user’s past locations (e.g., places where C grew up,

went to school, lives, works), while retaining a desired level of

privacy. GeoCheck takes as input the user’s accepted spatial

(α ∈ {1..g}) and temporal (τ ∈ {1..g}) privacy levels. α and

τ can be negotiated by the client and the invited friend.

Let (V, t) be a location and time pair that C seeks to

reveal, with precision levels α and τ . Let π(V, t) ∈ ΠC

be the corresponding location proof of C. Thus, π(V, t) =

(Ek(Id(B)), V , t, e, TkV,e, V ic(V, e), k, KV , Kt, V , T , EV ,
ET , σV,t). GeoCheck proceeds as follows.

C computes KV α = Hα(KV ) and Ktτ = Hτ (Kt), the
keys that will enable the decryption of confusion zones Vα of

V and Tτ of T that have the desired α and τ precision levels.

C then sends Ek(Id(C)), k, KV α, Ktτ , EV , ET and σV,t to

the invitee, who then performs the following verifications:

• Use σV,t = {SS(Ek(Id(B)), EV , ET )} and the key

k, to verify that S’s signature binds C’s pseudonym

Ek(Id(C)) to the encrypted confusion sets EV and ET .
• Use the key KV α to decrypt the α-th entry from EV . Use
the key Ktτ to decrypt the τ -th entry from EV . Verify
that the resulting Vα and Tτ are within the space and

time window claimed by C in its profile.

If either verification fails, the protocol is aborted.

PFAS: Private Fuzzy Affinity Score. PFAS enables an inviter

C to reveal to an invitee I , their “fuzzy affinity” score:

their number of past fuzzy co-location events. PFAS provides

privacy assurance to both I and C: C does not learn anything

from the process, while I only learns the affinity score, but not

the locations visited by C or details of the co-location events.

The PFAS protocol consists of the following steps.



Let ΠC and ΠI denote the location proof history sets of the

inviter and the invitee, respectively.C and I agree on a random

blinding factor u (using a pre-commitment step). The inviter

C initializes an empty set P . For each proof π(V, t) ∈ ΠC , C

retrieves the vicinity set V ic(V, e). For each token TkV ′,e ∈
V ic(V, e) corresponding to a venue V ′ in the vicinity of V ,

C computes the value H(u, TkV ′,e) and inserts it in the set

P (without duplicates).

C generates a value r uniformly at random from [1..maxr],
where maxr is a system parameter. If P has less then r

elements, C generates r − |P | random values (of the same

bit size as the output of the hash function H) and adds them

to P . The value r and the padding step are used to hide the

total number of check-ins of the inviter C from the invitee I .

C randomly permutes the set P and sends it to I .

For each entry in its location proof history π(V, t) = ΠI ,

the invitee I retrieves the presence token TkV,e and computes

H(u, TkV,e). The affinity score for I and C is equal to the

number of such values H(u, TkV,e) contained in P .

GeoSignal: Private co-location signals. We introduce the

concept of probation friend lists: Each client C maintains

a list of accounts that have sent a friend invitation to C’s

user, but who have a low co-location affinity score with C.

“Probation” friends can be provided restricted access to the

sensitive information in C’s account.

The GeoSignal procedure leverages location proofs to en-

able C to adjust its co-location affinity score with its probation

friends, as well as with friends that have C in their probation

lists (i.e., users who C has invited). Specifically, for each of its

probation friends, the client C generates a public and private

key pair, and shares the public key with the probation friend.

GeoSignal is executed by C once per epoch, after C obtains

the proof π(V, t) for its current location V at time t in epoch

e. GeoSignal uses the presence token TkV,e from π(V, t). The
communications take place over an anonymizer. C performs

the following steps:

1) Turn on the Wi-Fi network interface and set up an ad hoc

network with a randomly generated SSID, ssidC .

2) Notify friends. Use TkV,e to produce a symmetric

key, e.g., K = H(TkV,e). Send to each friend A

whose probation list contains C, the message M =
EK(Id(C), V, Tc, ssidC). Tc denotes the current time.

3) Detect co-location with probation friends. From each

of its currently active probation friend B, C receives

a message M (see step 2 above). C uses the key

K = H(TkV,e) of its current location to decrypt M .

It then verifies that the result contains Id(B), followed
by the location and current time, and a random value

ssidB . It then verifies that a Wi-Fi network with this id

is locally accessible. If either verification fails, C discards

the message. Otherwise, it increments the affinity score of

B. If the score exceeds a desired threshold, C promotes

B to a full friend status.

D. Analysis

In the following, we consider an adversary A that controls

the provider S and a set of users, including a user B. A
interacts with a challenger C that controls a user C.

Privacy of the invitee. If A and C run GeoPal through the

users they control, B and C respectively, then A does not

learn location information from C. To see why this is the

case, we observe that during GeoCheck and PFAS, the flow

of information is just the reverse, and A only learns the result

of the protocols (i.e., success or failure). During GeoSignal,

A sends B’s location encrypted with material generated from

B’s location. C can decrypt this data only if co-located with

B. A cannot infer C’s location since C’s location is encrypted

with keys that are not available to A.

Correctness of the inviter. GeoPal ensures the correctness

of the inviter B. Specifically, the PLP protocol ensures that

clients cannot obtain presence tokens for venues they have not

visited. This, coupled with the “one-more-forgery” property of

the signature of S on σV,t enables C to verify that (i) B has

been at location V at time t and that (ii) the sets EV and ET
are bound to B’s identity.

In particular, during GeoCheck, C verifies first the signature

of S on each of B’s revealed HB entries. Second, it verifies

that the encrypted sets EV and ET were generated for B. The

encrypted sets EV and ET , along with the keys KV α and Ktτ

enable C to verify B’s location with a pre-defined spatial and

temporal precision.

During PFAS, B cannot fraudulently boost its location

affinity with C: the random presence tokens can only be

known by either party if they checked-in at the corresponding

locations. Similarly, during GeoSignal, the presence tokens

TkV,e prevent B from claiming a fake current location. In

addition, the detection of B’s ssid enables C to verify its co-

location with B.

Friend spam protection. GeoPal protects against friend spam:

An inviter that does not know the invitee will need to both

guess the locations frequented by the invitee, and also be

present at those locations during the same epochs with the

invitee. GeoCheck fails for inviters that cannot prove their

past location claims. PFAS fails for inviters with insufficient

past locations in common with the invited user. GeoSignal

promotes a probation friend only if the friend can prove real

time co-location that exceeds a threshold value.

V. USER STUDY: TRUST VS. CO-LOCATION

We now introduce the tool we have developed to evaluate

our conjecture of a relationship between trust and co-location

frequency, then detail a user study we performed, and present

its results.

A. GP.Quest

We have built GP.Quest, a mobile app designed to deliver

a set of questions that capture the user’s trust and co-location

frequency with friends. GP.Quest requires users to login

using their Facebook credentials. GP.Quest uses Facebook’s

mobile API to retrieve information from a random subset of



(a) (b)
Fig. 4. Snapshots of GP.Quest questions designed to capture (a) the user’s
trust in the friend, and (b) co-location events and habits with the friend.

friends (name and thumbnail photo). For each selected friend,

GP.Quest presents the user with 4 questions, organized in 2

screens, as illustrated in Figure 4.

Specifically, two questions seek to capture the user’s trust

in the friend. In the first question, the user needs to select

the relationship with the friend, that can be exactly one of

“Family”, “Close Friend”, “Regular Friend”, “Acquaintance”,

“Other” and “Don’t Recall”. In the second question, the user

needs to select discussion topics that are possible with the

friend, from among “Job”, “Social Life”, “Family”, “Personal

Life”, “We Don’t Talk” and “Chit Chat”. The user can select

any number of topics to answer the second question.

The remaining 2 questions seek to extract the user’s co-

location frequency with the friend. First, the user needs to

describe the present co-location frequency. The possible an-

swers are presented in decreasing order of frequency, “Daily”,

“Weekly”, Monthly”, “Yearly”, “Just Once”, and “Never”. The

second question determines if the user has met this friend more

frequently in the past. In both questions, the user can only

select one answer.

B. Questionnaire

We have developed a questionnaire to determine background

information of the participants. In addition to gender and age,

the questions include the type of device used by participants to

connect to Facebook, the location, frequency and duration of

their Facebook access, reasons for using Facebook, the types

of information they feel comfortable sharing, and the people

from whom they feel comfortable accepting friend invitations.

C. Procedure and participants

Each participant used GP.Quest, implemented as an Android

app, on a Nexus 5 device. Following the GP.Quest session,

the participant filled out the above questionnaire. We have

recruited participants through class and e-mail announcements,

Fig. 5. Pie charts showing the distribution of the type of relationships with
Facebook friends, categorized by co-location patterns with those friends that
(a) were never met in person, (b) were only met once, (c) are no longer met
in person, (d) are met yearly, (e) are met monthly, and (f) are met daily or
weekly. We observe that an increase in the frequency of co-location generates
a decrease in the the percentage of “don’t recall” friends, and an increase in
the percentage of “family” and “close friends”.

as well as campus ads. Of the 69 recruited participants, 68 (57
male, 11 female; 18-50 years old, M=21, SD=4.91) completed

the user study session.

Ethical considerations. We have worked with the Institutional

Review Board (protocol number IRB-14-0168) at FIU to

ensure an ethical interaction with the participants.

D. GP.Quest Study Results

We have used the data collected from the GP.Quest user

study to investigate the relationship between friend co-location

frequency and trust. In the following, we focus separately on

two dimensions of trust, (i) the type of friend relationship de-

clared by the user, and (ii) the topics of discussion considered

by the user with the friend.

Co-Location frequency vs. friend relationship. Figure 5

shows the pie chart friend relationship distributions for friends

categorized according to the frequency of co-location. Specif-

ically, Figure 5(a) shows the relations declared for friends

that were never met in person. A majority of such friends

were either reported as “don’t recall” (57%), “other” (13%)

or “acquaintance” (23%), while only (6.2%) of such friends

were reported as “family”, “close friend” or “regular friend”.

Figure 5(b) shows the relationship distribution for friends

that were only met once. The distribution already differs, with

“acquaintance” being the most popular relationship (65.2%),

followed by ‘don’t recall” (14.2%) and “other” (7.7%). Fig-

ure 5(c) shows the plot for friends no longer met in person,

but who used to be met more in the past. We observe a

significantly smaller percentage of such friends labeled as

“don’t recall”. Again, a majority are labeled as either “ac-

quaintance” (58%) or “other” (8%). However, we notice that

the participants did not specify the relationship for 25% of

these friends.

The distributions of the infrequently met friends are in

sharp contrast with friends met yearly, monthly, weekly or

daily. 63.5% of the friends met yearly, see Figure 5(d), are
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Fig. 6. Mosaic plot showing the relation between co-location and friend rela-
tionships. The size of a rectangle denotes the probability of the corresponding
co-location frequency and the conditional probability of the corresponding
friend relationship. Pearson’s chi2 test reveals that co-location frequency and
friend relationship types are not independent.

labeled either “family”, “close friend” or “regular friend”.

Similarly, 85.2% and 85.7% of the monthly (Figure 5(e)) and

weekly/daily (Figure 5(f)) met friends are labeled as “family”,

“close” or “regular friends”.

Figure 6 further explores the relation between the co-

location frequency and friend relationship types, both cate-

gorical variables. We have used Pearson’s χ2 test to test the

dependency between the two categorical variables [26]. The

standard residuals (shown as multiple of standard deviations)

indicate the importance of the cell to the χ2 value. Since the

observed level of significance is extremely low (p-value is

2.2× 10−16) we reject the null hypothesis and conclude that

there exists a dependency between co-location frequency and

friend relationships.

Co-Location frequency vs. discussion topics. Figure 7 shows

the topics of discussion considered by the participants with

their friends, grouped on the friend relationship and co-

location frequency categories. We observe that participants

tend to not talk or only consider inconsequential topics of

discussion with friends never met in person. As the co-location

frequency increases, the distribution of the topics of discussion

becomes more balanced. We also observe that participants

have very few friends met weekly or daily, with whom they

do not speak. We also note that the type of relationship

influences the topics of discussion, across co-location fre-

quency types. For instance, participants discuss more sensitive

topics with close friends, for multiple co-location frequency

types. However, as the co-location frequency increases, such

sensitive topics become more prevalent, see the evolution from

Figure 7(a)-Figure 7(c).

Figure 8 reinforces this result, showing the distribution of

the topics of discussion considered with friends, based on their

co-location frequencies. Figure 8(a) reveals that participants do

not talk to or only chit-chat with 88.1% of the friends they

never met. The percentage of friends with whom participants

Fig. 8. Pie charts showing the distribution of the discussion topic types
considered with Facebook friends (shown as colored pie sectors), categorized
by co-location patterns with those friends that (a) were never met in person,
(b) were only met once, (c) are no longer met in person, (d) are met yearly, (e)
are met monthly, and (f) are met daily or weekly. An increase in the frequency
of co-location generates a decrease in the percentage of “don’t talk” and “chit
chat”, and a consistent increase in topics that include the participant’s job,
social life, family and personal issues.
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Fig. 9. Mosaic plot showing the relation between co-location and topics
of discussion. We observe a dependency between co-location frequency and
the quality of the topics of discussion. Pearson’s chi2 test confirms this: the
co-location frequency and the discussion topics are not independent.

do not talk decreases significantly as the frequency of co-

location increases: participants do not talk to only 0.8%
of the friends with whom they meet daily or weekly (see

Figure 8(f)). In contrast, the percentage of friends with whom

participants consider more sensitive topics of discussion (e.g.,

“family” and “personal” matters), increases consistently with

co-location frequency, from 2.3% for friends never met in

person (Figure 8(a)), to 35.7% for friends met daily or weekly

(Figure 8(f)).

Figure 9 illustrates the relation between the co-location

frequency and discussion topics with friends. Pearson’s χ2

test reveals a close to 0 level of significance (p-value is

2.2×10−16). Thus, we reject the null hypothesis and conclude

that there exists a dependency between a participant’s co-

location frequency and discussion topics with friends.
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Fig. 7. Distribution of topics of discussions, per relationship type, considered with friends (a) never met in person, (b) met yearly, and (c) met weekly or
daily. The sensitivity of the topic of discussion increases both with the quality of the friend relationship and the co-location frequency.

Conclusions. We observe a significant relation between fre-

quency of co-location and trust. Pearson’s χ2 test shows a

dependency between co-location frequency and both the type

of friend relationship and the topics of discussion. Specifically,

friends that were never or only infrequently met are mostly not

remembered or form lower quality friend relationships (e.g.,

“other”, “acquaintance”). However, frequently met friends

form more significant relationships. Similarly, participants

mostly either do not communicate or choose shallow topics

of discussion with infrequently met friends, but consider

more substantial topics of conversation with friends that they

frequently meet.

E. Questionnaire Results

Facebook access. 88% (60) of the participants use mobile

phones to connect to Facebook, while 75% (51) also use

laptops, 48% (33) use desktops, and 35% (24) use tablets. Of

the 60 mobile device users, 45% (27) said they use Android

while the remaining 55% (33) said they use iPhone devices.

In addition, 88% (55) of the participants said that they access

Facebook from home, 60% (41) said they do it everywhere,

53% (36) from school, and 13% (9) from public libraries.

73% of the participants said they access Facebook at least

every couple of days, with 21% declaring continuous access

throughout the day. 93% (63) of the participants said that they

spend less than 30 minutes, while only 5% (4) participants

said they spend 1-2 hours.

Location service. Only 15% (10) participants responded that

their Facebook location service is activated, while 71% (48)
said it is not activated, and 15% (10) were not sure. 90% of

participants said they know how to activate/deactivate their

Facebook location service, while 10% (4) said they do not.

Information sharing. While between 56 − 68% (37 − 45)
of participants said they access Facebook in order to keep

updated on (each of) family, friends, people known personally,

and general events, 17% (11) of the participants said they do

it to keep updated on people they only met online. The partic-

ipants were well aware of their location privacy. When asked

with whom do they feel comfortable sharing their current or

recent locations, only 1 participant admitted to making this

information public, and 1 participant said to use Facebook’s

default settings. Similarly, 1%, 6%, 15%, 16% and 24% of

participants said they make public or use Facebook’s defaults

for personal information, life events, wall posts, photos, and

friend lists, respectively.

Access frequency vs. location sharing. We conjecture that

there exists a relationship between the frequency of user access

to Facebook and the user’s location sharing practices. The

likelihood test performed using these categorical variables

revealed a p-value of 0.043, thus we conclude that there exists
an association between these variables.

Accepting friend invitations. Few people said they would

be uncomfortable or very uncomfortable accepting friend

invitations from “family” (6%), “friends” (0%), or “acquain-

tances” (7%). Conversely, only 3% of the participants said to

be comfortable or very comfortable accepting “any” friend

invitation. However, only 38% (26) and 37% (25) of the

participants said they uncomfortable or very uncomfortable

with accepting invitations from “anyone who is attractive” and

from “anyone who is my age”, respectively.

Questionnaire conclusions. The 68 participants are active

Facebook users. While most seem to be concerned about their

privacy, in particular their sharing practice in Facebook, a

surprisingly high percentage of users are vulnerable to friend

spam initiated from attractive and similar accounts.

VI. OVERHEAD EVALUATION

We have implemented GeoPal in Android and have tested

it on (i) an early generation Motorola Milestone smartphone

featuring an ARM Cortex A8 CPU @ 600 MHz and 256MB

RAM and (ii) a Nexus 5 with a Quad-core 2.3 GHz CPU and

2GB RAM. We have used industrial strength crypto: RSA with

2048 bit keys for signatures, AES for symmetric encryption

and SHA-512 for cryptographic hashes.

Figure 10 shows the results of our experiments on the

smartphones: the time taken by GeoCheck to verify 1000
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location proofs (1st column for each device), for PFAS to

process 10,000 location proofs (2nd column) and for GeoSig-

nal to process 1000 probation friends (3rd column) and 1000

friends in whose probation list it is (4th column). At 1.5ms per

location proof (on Nexus 5), GeoCheck imposes a negligible

overhead. This is especially the case as in real life users

have only a few key locations in their profiles. PFAS is also

reasonable: Even if a device collects 1 location proof per

minute, a Nexus 5 can process the resulting 525,000 location

proofs collected over 1 year, in roughly 26s. GeoSignal’s 2nd

step (0.5s on Nexus 5) is more efficient than its 3rd step (4.5s

for 1000 probation friends), as encryption with the public key

is more efficient than decryption.

VII. CONCLUSIONS

In this paper we have proposed and validated the hypothesis

of association between a social network user’s trust in a

friend and their co-location frequency. We have leveraged this

result to introduce GeoPal, a privacy preserving framework for

detecting friend spam attacks. We have built GeoPal on PLP,

a protocol that issues proofs of location with privacy. We have

shown that GeoPal is efficient, being able to process more than

20K location proofs per second. Future work plans include

developing visual warnings that incorporate the outcome of

GeoPal verifications, and performing user studies to validate

its ability to block friend spam.
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