
1

A Longitudinal Study of Google Play
Rahul Potharaju∗, Mizanur Rahman†, Bogdan Carbunar†

∗Cloud and Information Services Lab, Microsoft
†Florida International University

Abstract—The difficulty of large scale monitoring of app
markets affects our understanding of their dynamics. This is
particularly true for dimensions such as app update frequency,
control and pricing, the impact of developer actions on app
popularity, as well as coveted membership in top app lists. In this
paper we perform a detailed temporal analysis on two datasets
we have collected from the Google Play Store, one consisting
of 160,000 apps and the other of 87,223 newly released apps.
We have monitored and collected data about these apps over
more than 6 months. Our results show that a high number of
these apps have not been updated over the monitoring interval.
Moreover, these apps are controlled by a few developers that
dominate the total number of app downloads. We observe that
infrequently updated apps significantly impact the median app
price. However, a changing app price does not correlate with
the download count. Furthermore, we show that apps that attain
higher ranks have better stability in top app lists. We show that
app market analytics can help detect emerging threat vectors, and
identify search rank fraud and even malware. Further, we discuss

the research implications of app market analytics on improving
developer and user experiences.

I. INTRODUCTION

The revolution in mobile device technology and the emer-

gence of “app markets”, have empowered regular users to

evolve from technology consumers to enablers of novel mobile

experiences. App markets such as Google Play provide new

mechanisms for software distribution, collecting software writ-

ten by developers and making it available to smartphone users.

This centralized approach to software distribution contrasts the

desktop paradigm, where users obtain their software directly

from developers.

Developers and users play key roles in determining the

impact that market interactions have on future technology.

However, the lack of a clear understanding of the inner

workings and dynamics of popular app markets, impacts both

developers and users. For instance, app markets provide no

information on the impact that developer actions will likely

have on the success of their apps, or guidance to users when

choosing apps, e.g., among apps claiming similar functionality.

This situation is exploited however by fraudulent and mali-

cious developers. The success of Google Play and the incentive

model it offers to popular apps 1, make it an appealing target

for fraudulent and malicious behaviors. Fraudulent developers

have been shown to attempt to engineer the search rank of

their apps [34], while malicious developers have been shown

A preliminary version of this paper appears in ASONAM 2015.
This research was supported in part by NSF grants 1527153, 1526494 and

1450619, and by DoD grant W911NF-13-1-0142.
1Google offers financial incentives for contribution to app development,

by making revenue sharing transparent for developers (70-to-30 cut, where
developers get 70% of the revenue).

to use app markets as a launch pad for their malware [26],

[28], [33], [20].

Contributions. In this article we seek to shed light on the

dynamics of Google Play, the most popular Android app

market. We report results from one of the first characteristic

studies on Google Play, using real-world time series data. To

this end, we have developed iMarket, a prototype app market

crawling system. We have used iMarket to collect data from

more than 470,000 Google Play apps, and daily monitor more

than 160,000 apps, over more than 6 months.

We use this data to study two key aspects of Google Play.

First, we seek to understand the dynamics of the market in

general, from an application and developer perspective. For

this, we evaluate the frequency and characteristics of app

updates (e.g., their effects on bandwidth consumption), and

use the results to determine if developers price their apps

appropriately. We show that only 24% of the 160,000 app

that we monitored have received an update within 6 months,

and at most 50% of the apps in any category have received

an update within a year from our observation period. We

conclude that market inactivity has a significant impact on

the price distribution. Therefore, while pricing is an important

and complex task, relying on statistics computed on the entire

population (as opposed to only active apps) may mislead de-

velopers, e.g., to undersell their apps (§VI-A). Also, we show

that typical app update cycles are bi-weekly or monthly. More

frequently updated apps (under beta-testing or unstable) can

impose substantial bandwidth overhead and expose themselves

to negative reviews (§VI-C).

To evaluate the developer impact, we first seek to verify our

hypothesis that a few developers control the app market supply.

Our analysis reveals however that developers that create many

applications are not creating many popular applications. In-

stead, we discovered that a few elite developers are responsible

for applications that dominate the total number of downloads

(§VII). Second, we evaluate the impact of developer actions on

the popularity of their apps. We show that few apps frequently

change prices, and with every subsequent software update,

a developer is more likely to decrease the price. However,

changing the price does not show an observable association

with the app’s download count(§VII).

A second key aspect of Google Play that we study is the

temporal evolution of top-k ranked lists maintained by the

market. Top-k lists reveal the most popular applications in

various categories. We show that a majority of apps in top-k

app lists follow a “birth-growth-decline-death” process: they

enter and exit from the bottom part of a list. Apps that attain

higher ranks have better stability in top-k lists than apps that

are at lower ranks (§VIII).

2

Impact of the study. A longitudinal study of Google Play app

metadata can provide unique information that is not available

through the standard approach of capturing a single app

snapshot. Features extracted from a longitudinal app analysis

(e.g., permission, price, update, download count changes) can

provide insights into fraudulent app promotion and malware

indicator behaviors. For instance, spikes in the number of

positive or negative reviews and the number of downloads

received by an app can indicate app search optimization cam-

paigns launched by fraudsters recruited through crowdsourcing

sites. Frequent, substantial app updates may indicate Denial of

Service (DoS) attacks, while permission changes can indicate

benign apps turning malicious see § IX-A. Features extracted

from a longitudinal app monitoring can be used to train

supervised learning algorithms to detect such behaviors.

In addition, a detailed longitudinal study of Google Play

apps can improve developer and user experiences. For in-

stance, app development tools can help developers optimize

the success of their apps. Such tools can integrate predictions

of the impact that price, permissions and code changes will

have on the app’s popularity, as well as insights extracted from

user reviews. In addition, visualizations of conclusions, and

analytics similar to the ones we perform in this paper, can help

users choose among apps with similar claimed functionality.

We include a detailed discussion of the applicability and

future research directions in app market analytics in §IX.

II. RELATED WORK

This article extends our preliminary work [10] with iMarket,

the market crawler we developed and used to collect the data,

new scores to evaluate the evolution and variability of top-k

lists and new experiments and evaluations.

Viennot et al. [35] developed PlayDrone, a crawler to

collect Google Play data. Their main finding is that Google

Play developers often include secret key information in the

released apps, making them vulnerable to attacks. They further

analyze the data and show that Google Play content evolves

quickly in time, that 25% of apps are clones, and that native

experience correlates strongly to popularity. The analysis is

performed over data collected for 3 non-contiguous months

(May/June 2013 and November 2013). In contrast, our analysis

is performed over apps monitored daily over more than 6

months. Furthermore, our analysis includes orthogonal app

market dynamics dimensions, that include the frequency and

cycles of app updates, the developer impact and control on the

app market, and the dynamics of top-k lists.

Zhong and Michahelles [40] analyze a dataset of Google

Play transactions, and suggest that Google Play is more of

a “Superstar” market (i.e., dominated by popular hit prod-

ucts) than a “Long-tail” market (i.e., where unpopular niche

products contribute to a substantial portion of popularity).

In addition, Zhong and Michahelles [40] show that certain

expensive professional apps attract disproportionately large

sales. This is consistent with our finding that a few developers

are responsible for the most popular apps.

Möller et al. [29] use an app they posted on Google Play

to study the correlation between published updates and their

actual installations. They show that 7 days after a security

update is published, almost half of the app’s users still use

an older, vulnerable version. Liu et al. [25] use a dataset of

1,597 ranked mobile apps to conclude that the “freemium”

strategy is positively associated with increased sales volume

and revenue of the paid apps. Moreover, they show that free

apps that rate higher contribute to higher revenue for the

paid version. We note that our work studies a multitude of

previously unanswered questions about Google Play, regarding

app update frequency and pricing appropriateness, and the

evolution of top-k lists.

Petsas et al. [30] explored mobile app markets in the context

of 4 providers, that do not include Google Play. They show

that the distribution of app popularity deviates from Zipf, due

in part to a strong temporal affinity of user downloads to app

categories. They show that on the markets they studied, paid

apps follow a different popularity distribution than free apps.

In contrast, our work exclusively analyzes Google Play, the

most popular Android app market. In addition, we focus on

different dimensions: (i) app update frequency and its effect on

app pricing and resource consumption, (ii) the control of the

market and the effect of developer actions on the popularity

of their apps and (iii) the evolution in time of top apps and

top-k app lists.

Xu et al. [39] use IP-level traces from a tier-1 cellular

network provider to understand the behavior of mobile apps.

They provide an orthogonal analysis of spatial and temporal

locality, geographic coverage, and daily usage patterns.

Security has been a theme in the large scale collection of

mobile apps. Previous work includes malware detection [42],

malware analysis [41], malicious ad libraries [19], vulner-

ability assessment [15], overprivilege identication [16] and

detection of privacy leaks [14]. While in this paper we focus

on the different problem of understanding the dynamics of

Google Play, we also introduce novel mobile app attacks.

III. GOOGLE PLAY OVERVIEW

App Distribution Channel: Google Play is the app distri-

bution channel hosted by Google. Each app submitted by

a developer gets an entry on the market in the form of a

webpage, accessible to users through either the Google Play

homepage or the search interface. This webpage contains

meta-information that keeps track of information pertaining

to the application (e.g., name, category, version, size, prices).

In addition, Google Play lists apps according to several cate-

gories, ranging from “Arcarde & Action” to “Weather”. Users

download and install apps of interest, which they can then

review. A review has a rating ranging from 1 to 5. Each

app has an aggregate rating, an average over all the user

ratings received. The app’s webpage also includes its usage

statistics (e.g., rating, number of installs, user reviews). This

information is used by users when they are deciding to install

a new application.

App Development: In order to submit apps to Google Play, an

Android developer first needs to obtain a publisher account for

a one-time fee of $25. The fee encourages higher quality prod-

ucts and reduces spam [18]. Google does not limit the number

3

Server Pool

(700 machines)

Proxy Pool

(230 proxies)
Proxy

Rotator

Server

Rotator

DISTRIBUTED CRAWLER

Request Queue

RESOURCE POOL

Scheduler

Ban Detection Engine

Loop Detection Engine

http request raw app html page

+

newly discovered

packages

Map-Reduce Parser
Assertion Checker/

Format Invalidator

PROCESSING ENGINE

hundreds of thousands

of raw html pages

SMARTPHONE MARKET

Formatted

Daily Snapshot

DATA MANAGEMENT

Backup ManagerArchived

Storage raw html

pages

Raw HTML

App Pages

Database Engine
SQL

Database

Fig. 1. Architecture of iMarket, the developed GooglePlay crawler. It consists
of a distributed crawler, processing engine and data management components.

of apps that can be submitted by developers. As a measure to

reduce spam, Google recently started the Bouncer [3] service,

which provides automated scanning of applications on Google

Play for potential malware. Developers can sell their apps for

a price of their choice, or distribute them for free.

Permission Model: Android follows the Capability-based [24]

security model. Each app must declare the list of capabilities

(permissions) it requires in a manifest file called Android-

Manifest.xml. When a user downloads an app through the

Google Play website, the user is shown a screen that displays

the permissions requested by the application. Installing the

application means granting the application all the requested

permissions i.e. an all-or-none approach.

IV. DATA COLLECTION

We use snapshot to refer to the entire state of the market

i.e., it contains meta information of all apps. We first describe

iMarket, our app market crawler, then describe the datasets

that we collected from Google Play.

A. The iMarket Crawler

iMarket, our prototype market crawling system (see Figure 1

for an overview) consists of three main components. First,

the Distributed Crawler component, which is responsible

for crawling the target market and collecting information on

various apps that are accessible from the current geographical

location. We initially leveraged hundreds of foreign proxies to

address challenge 3 above. However, we later decided to rely

only on local US-based proxies for stability reasons. While

this trades-off completeness for consistency, having continu-

ous information about a few apps improves the accuracy of

most statistical inference tasks compared to having discrete

information about hundreds of thousands of apps.

To seed our distributed crawler, we initially ran it using a

list consisting of about 200 randomly hand-picked apps from

different categories. To address Challenge 1, our app discovery

process is designed as follows: After retrieving each page, the

“Similar Apps” portion of the raw HTML page is parsed to

obtain a new list of packages. These packages are queued for

crawling and simultaneously appended to the previous day’s

package list. We have also detected a ban detection engine

in place that deactivates servers once it observes a threshold

number of “404 Not Found” messages (Challenge 2) from the

market provider.

The second component, the “Processing Engine” contains

a Map-Reduce Parser component that uses the map-reduce

paradigm [13] to handle parsing of hundreds of thousands of

raw HTML app pages. In the “map” stage, a chunk of files

(≈10K) are mapped onto each of the 700 machines and a

parser (written in Python) parses these HTML and extracts

the meta information. In the “reduce” stage, these individual

files are combined into a single file and de-duplicated to

maintain data integrity. This stage takes ≈1-1.5 hours. After

constructing the aggregate file, we address Challenge 3 using

the assertion checker that takes a best-effort approach to ensure

that all the information has been correctly parsed from the raw

files. Note that despite our best-effort approach, our dataset

still contained some missing information due to temporary

unavailability/maintenance of servers.

The third, “Data Management” component, archives the raw

HTML pages (≈14 GB compressed/day) in a cloud storage to

support any ad hoc processing for other tasks (e.g., analyzing

HTML source code complexity) and subsequently removed

from the main servers. To address Challenge 4, the formatted

daily snapshot (≈200 MB/day) is then inserted into a database

to support data analytics. We setup the relevant SQL Jobs

to ensure that indexes are re-built every two days — this

step significantly speeds up SQL queries. Our six months of

archived raw files consume ≈7 TB of storage and the database

consumes ≈400 GB including index files.

V. DATA

We used iMarket to collect two Google Play datasets, which

we call dataset.2012 and dataset.14-15.

A. Dataset.2012

We have used a total of 700 machines 2 for a period of

7.5 months (February 2012 - November 2012) to collect data

from 470,000 apps. The first 1.5 months are the “warm up”

interval. We do not consider data collected during this period

for subsequent analysis. Instead, we focus on a subset of 160K

apps for which we have collected the following data:

GOOGPLAY-FULL: We used iMarket to take daily snapshots

of Google Play store from April - November, 2012. For each

app, we have daily snapshots of application meta-information

consisting of the developer name, category, downloads (as

a range i.e., 10-100, 1K-5K etc.), ratings (on a 0-5 scale),

ratings count (absolute number of user ratings), last updated

timestamp, software version, OS supported, file size, price, url

and the set of permissions that the app requests. Figure 2(a)

shows the distribution of apps by category. While overall, the

2We have used 700 machines, each with a different IP address and from a
different subnet, in order to avoid getting banned during the crawling process.

4

Arcade & Action
Books & Reference

Brain & Puzzle
Business

Cards & Casino
Casual
Comics

Communication
Education

Entertainment
Finance

Health & Fitness
Libraries & Demo

Lifestyle
Media & Video

Medical
Music & Audio

News & Magazines
Personalization

Photography
Productivity

Racing
Shopping

Social
Sports

Sports Games
Tools

Transportation
Travel & Local

Weather

0 10000 20000 30000 40000 50000

Applications

C
a

te
go

ry Type

Free

Paid

(a)

Arcade&Action
Books&Reference

Brain&Puzzle
Business

Card&Casino
Casual
Comics

Communication
Education

Entertainment
Finance

Health&Fitness
Libraries&Demo

Lifestyle
Media&Video

Medical
Music&Audio

News&Magazines
Personalization

Photography
Productivity

Racing
Shopping

Simulation
Social

Sports
Tools

Transportation
Travel&Local

Trivia
Weather

0 2000 4000

Applications

C
a
te

go
ry

Free
Paid

(b)

Fig. 2. Distribution of free vs. paid apps, by category, for (a) dataset.2012 and dataset.14-15. The number of free apps exceeds the number of paid ones
especially in dataset.14-15. We conjecture that this occurs due to user tendency to install more free apps than paid apps. Since 2012, developers may have
switched from a direct payment model for paid apps, to an ad based revenue model for free apps.

Arcade & Action
Books & Reference

Brain & Puzzle
Business

Cards & Casino
Casual
Comics

Communication
Education

Entertainment
Finance

Health & Fitness
Libraries & Demo

Lifestyle
Media & Video

Medical
Music & Audio

News & Magazines
Personalization

Photography
Productivity

Racing
Shopping

Social
Sports

Sports Games
Tools

Transportation
Travel & Local

Weather

0
11/24/2012

365
1 yr

730
2 yrs

1095
3 yrs

1465
4 yrs

Age Since Last Update (in days)

C
a

te
go

ry

(a)

Arcade & Action
Books & Reference

Business
Cards & Casino

Casual
Comics

Communication
Education

Entertainment
Family
Finance

Health & Fitness
Libraries & Demo

Lifestyle
Media & Video

Medical
Music & Audio

News & Magazines
Personalization

Photography
Productivity

Brain & Puzzle
Racing

Shopping
Social

Sports
Tools

Transportation
Travel & Local

Weather

0 100 200 300 400

Age Since Last Update (in days)

C
a

te
go

ry

(b)

Fig. 3. Box and whiskers plot of the time distribution from the last update, by app category, for (a) dataset.2012: at most 50% of the apps in each category
have received an update within a year and (b) dataset.14-15: at most 50% of the apps in each category have received an update within 35 days. This may
occur since new apps are likely to have more bugs and receive more attention from developers.

number of free apps exceed the number of paid apps, several

popular categories such as “Personalization” and “Books &

References” are dominated by paid apps.

GOOGPLAY-TOPK: Google publishes several lists, e.g., Free

(most popular apps), Paid (most popular paid), New (Free)

(newly released free apps), New (Paid) (newly released paid)

and Gross (highly grossing apps). Each list is divided into

≈20 pages, each page consisting of 24 apps. These lists are

typically updated based on application arrival and the schedule

of Google’s ranking algorithms. Since we cannot be notified

when the list changes, we took hourly snapshots of the lists.

Our GOOGPLAY-TOPK consists of hourly snapshots of five

top-k lists (≈ 3000 apps) from Jul-Nov, 2012 (≈2880 hours

worth of data).

B. Dataset.14-15

Further, we have used a dataset of more than 87,000 newly

released apps that we have monitored over more than 6

months [32]. Specifically, we have collected newly released

apps once a week, from Google Play’s “New Release” links,

to both free and paid apps. We have validated each app based

on the date of the app’s first review: we have discarded apps

whose first review was more than 40 days ago. We have

collected 87,223 new releases between July and October 2014,

all having less than 100 reviews.
We have then monitored and collected data from these

87,223 apps between October 24, 2014 and May 5, 2015.

Specifically, for each app we captured “snapshots” of its

Google Play metadata, twice a week. An app snapshot consists

of values for all its time varying variables, e.g., the reviews, the

rating and install counts, and the set of requested permissions.

For each of the 2, 850, 705 reviews we have collected from the

5

87, 223 apps, we recorded the reviewer’s name and id, date of

review, review title, text, and rating.

Figure 2(b) shows the distribution of apps by category. With

the exception of the “Personalization” category, the number of

free apps significantly exceeds the number of paid apps. We

have observed that consistently through our collection effort,

we identified fewer top paid than free new releases. One reason

for this may be that users tend to install more free apps than

paid apps. Thus, not only developers may develop fewer paid

apps, but paid apps may find it hard to compete against free

versions. We note that free apps bring revenue through ads.

VI. POPULARITY AND STALENESS

We first evaluate the fraction of apps that are active, and

discuss the implications this can have on app pricing. We

then classify apps based on their popularity, and study the

distribution of per-app rating counts. Finally, we study the

frequency of app updates for apps from various classes and the

implications they can have on end-users. All the analysis pre-

sented in this section is performed using GOOGPLAY-FULL.

A. Market Staleness

An important property of a market is its “activity”, or how

frequently are apps being maintained. We say that an app is

stale if it has not been updated within the last year from the

observation period, and active otherwise.

The task of setting the app price is complex. However, rely-

ing on statistics computed on the entire population, as opposed

to only active apps, may mislead developers. For instance,

given that the listing price of apps forms a key component

of its valuation and sale, this becomes an important factor

for fresh developers trying to enter the market. Specifically,

the median price in our dataset is $0.99 when all apps are

considered and $1.31 when considering only active apps. This

confirm our intuition that developers that set their price based

on the former value are likely to sell their apps at lower profits.

Figure 3(a) shows the box and whiskers plot [8] of the

per-app time since the last update, by app category, for

dataset.2012. At most 50% of the apps in each category have

received an update within a year from our observation period.

For instance, most apps in Libraries & Demo have not been

updated within the last 1.5 years. Some categories such as

Arcade & Action, Casual, Entertainment, Books & Reference,

Tools contain apps that are older than three years.

Figure 3(b) plots this data for dataset.14-15. Many freshly

uploaded apps were uploaded more recently: 50% apps in each

category receive an update within 35 days, while apps in the

“Social” and “Tools” categories received updates even within

15 days. This is natural, as new apps may have more bugs and

receive more developer attention.

Several reasons may explain the lack of updates received by

many of the apps we monitored. First, some apps are either

stable or classic (time-insensitive apps, not expected to change)

and do not require an update. Other apps, e.g., e-books,

wallpapers, libraries, do not require an update. Finally, many

of the apps we monitored seemed to have been abandoned.

Class # download % Dataset.2012 % Dataset.14-15

Unpopular 0 – 10
3 74.14 77.55

Popular 10
3 – 10

5 24.1 18.43
Most-Popular > 10

5 0.7 4.00

TABLE I
Popularity classes of apps, along with their distribution. Dataset.14-15 has a

higher percentage of most-popular apps.

B. App Popularity

We propose to use the download count to determine app

popularity. Higher rating counts mean higher popularity but

not necessarily higher quality (e.g., an app could attract many

negative ratings). Including unpopular apps will likely affect

statistics such as update frequencies: including unpopular apps

will lead to a seemingly counter-intuitive finding, indicating

that most apps do not receive any updates. Therefore, we

classify apps according to their popularity into three classes,

“unpopular”, “popular” and “most-popular”.

Table I shows the criteria for the 3 classes and the distri-

bution of the apps in dataset.2012 and dataset.14-15 in these

classes. The newly released apps have a higher percentage of

unpopular apps, however, surprisingly, they also have a higher

percentage of “most-popular” apps. This may be due to the

fact that the newly released apps are more recent, coming at a

time of higher popularity of mobile app markets, and maturity

of search rank fraud markets (see § IX-A).

Figure 4 (top) depicts the distribution of rating counts of

apps from dataset.2012, split by categories. We observe that

the Business and Comics categories do not have any apps in the

Most-Popular class, likely because of narrow audiences. From

our data, we observed that the median price of apps ($1.99)

in these categories is significantly higher than the population

($1.31) indicating lower competition. The population in other

categories is quite diverse with a number of outliers. For

instance, as expected, “Angry Birds” and “Facebook” are most

popular among the Most-Popular class for Arcade & Action

and Social categories, respectively. On the other hand, the

distribution is almost symmetric in case of Unpopular except

Business and Medical categories where there are a number

of outliers that are significantly different from the rest of the

population. We found that these are trending apps — apps that

are gaining popularity. For instance, the free app “Lync 2010”

from “Microsoft Corporation” in Business has 997 ratings. In

case of Popular, the distributions for most of the categories

are symmetric and span roughly from 1, 000 to 100K ratings

where 75% of apps have less than 10, 000 rating counts except

Arcade & Action category.

Figure 4 (bottom) shows the same distribution for the apps

in dataset.14-15. We emphasize that the distribution is plotted

over the ratings counts at the end of the observation interval.

Since these are newer apps than those in dataset.2012, it is

natural that they receive fewer ratings. We also observe that

several categories do not have apps that are in the “most

popular” category, including the “Business”, “Libraries &

Demo” and “Medical” categories.

6

Arcade & Action
Books & Reference

Brain & Puzzle
Business

Cards & Casino
Casual
Comics

Communication
Education

Entertainment
Finance

Health & Fitness
Libraries & Demo

Lifestyle
Media & Video

Medical
Music & Audio

News & Magazines
Personalization

Photography
Productivity

Racing
Shopping

Social
Sports

Sports Games
Tools

Transportation
Travel & Local

Weather

10 1000
Ratings Count

Unpopular

C
a

te
go

ry

1e+03 1e+04 1e+05
Ratings Count

Popular

1e+05 1e+06
Ratings Count

Most Popular

Arcade&Action
Books&Reference

Brain&Puzzle
Business

Cards&Casino
Casual
Comics

Communication
Education

Educational
Entertainment

Family
Finance

Health&Fitness
Libraries&Demo

Lifestyle
Media&Video

Medical
Music&Audio

News&Magazines
Personalization

Photography
Productivity

Racing
Shopping

Social
Sports
Tools

Transportation
Travel&Local

Weather

0 1e+03

Ratings Count
Unpopular

C
a
te

go
ry

1e+03 5e+03

Ratings Count
Popular

5e+03 5e+04 1e+05

Ratings Count
Most Popular

Fig. 4. Per app category distribution of rating counts. (Top) Dataset.2012. The distribution is almost symmetric in the case of “unpopular” apps. The
distributions for most of the categories are symmetric in the “popular” class and span roughly from 1, 000 to 100K ratings. The Business and Comics categories
do not have any apps in the “most-popular” class. (Bottom) Dataset.14-15. We observe smaller rating counts compared with the apps in dataset.2012. This is
natural, as these are new apps, thus likely to receive fewer ratings. We also note that while a few “Business”, “Libraries & Demo” and “Medical” categories
are unpopular and popular, none are most popular.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Total Updates in last six months

Ap
p

li
c
a
ti

o
n

s
 (
d

e
n

s
it

y)

(a)

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9

10 11 12

13
 −

14

15
 −

16

17
 −

18

19
 −

20

21
 −

25

26
 −

30

31
 −

40

41
 −

60

61
 −

14
6

Total Updates

Ap
pl

ic
at

io
ns

 (d
en

si
ty)

(b)

0

500

1000

1500

1 2 3 4 5 6

of category changes

#A
pp

lic
at

io
ns

(c)

Fig. 5. (a) Histogram of app updates for dataset.2012. Only 24% apps have received at least one update between April-November 2012. (b) Histogram of
fresh app updates for dataset.14-15. Unlike the dataset.2012, 35% of the fresh apps have received at least one update, while 1 app received 146 updates! (c)
Histogram of app category changes. 1.9% apps have received at least one category change between October 24, 2014 and May 5, 2015, while several have
received 6 category changes.

C. App Updates

Updates form a critical and often the last part of the software

lifecycle [17]. We are interested in determining if mobile

app developers prefer seamless updating i.e., if they push out

releases within short time periods.

Fig. 5(a) shows the distribution of the number of updates

received by the apps in dataset.2012. Only 24% apps have

received at least one update within our observation period —

nearly 76% have never been updated. In contrast, Fig. 5(b)

shows that 35% of the “fresh” apps in dataset.14-15 have

received at least one update within our observation period.

Several apps received more than 100 updates, with one app

receiving 146 updates in a 6 months interval. We conjecture

that this occurs because these are newly released apps, thus

more likely to have bugs, and to receive attention from their

developers.

Figure 6 (top) plots the distribution of the update frequency

of the apps from dataset.2012, across categories based on their

popularity. As expected, Unpopular apps receive few or no

updates. We observed that this is due to the app being new

or abandoned by its developer. For instance, “RoboShock”

from “DevWilliams” in Arcade & Action with good reviews

from 4 users has received only one update on September 28,

2012 since its release in August 2011 (inferred from its first

7

Arcade & Action
Books & Reference

Brain & Puzzle
Business

Cards & Casino
Casual
Comics

Communication
Education

Entertainment
Finance

Health & Fitness
Libraries & Demo

Lifestyle
Media & Video

Medical
Music & Audio

News & Magazines
Personalization

Photography
Productivity

Racing
Shopping

Social
Sports

Sports Games
Tools

Transportation
Travel & Local

Weather

0 30 60 90
Update Frequency

Unpopular

C
a

te
go

ry

0 20 40 60
Update Frequency

Popular

0 10 20 30
Update Frequency

Most Popular

Arcade&Action
Books&Reference

Brain&Puzzle
Business

Cards&Casino
Casual
Comics

Communication
Education

Educational
Entertainment

Family
Finance

Health&Fitness
Libraries&Demo

Lifestyle
Media&Video

Medical
Music&Audio

News&Magazines
Personalization

Photography
Productivity

Racing
Shopping

Social
Sports
Tools

Transportation
Travel&Local

Weather

0 20 40 60

Update Frequency
Unpopular

C
a
te

go
ry

0 50 100 150

Update Frequency
Popular

0 20 40

Update Frequency
Most Popular

Fig. 6. The distribution of update frequency, i.e., the update count for each app per category. (Top) Dataset.2012. Unpopular apps receive few or no
updates. Popular apps however received more updates than most-popular apps. This may be due to most-popular apps being more stable, created by developers
with well established development and testing processes. (Bottom) Dataset.14-15. We observe a similar update count distribution among unpopular apps to
dataset.2012. Further, in the popular and most popular classes, most app categories tend to receive fewer updates than the dataset.2012 apps. However, a few
apps receive significantly more updates, with several popular apps receiving over 100 updates.

comment). Another app “Shanju” from “sunjian” in Social has

not been updated since May 27, 2012 even though it received

negative reviews.

Outliers (e.g., “Ctalk” in the Social category) push out

large number of updates (111). Popular apps are updated

more frequently: 75% in each category receive 10 or fewer

updates, while some apps average around 10-60 updates during

our observation period. User comments associated with these

apps indicate that the developer pushes out an update when

the app attracts a negative review (e.g., “not working on my

device!”). In the Most-Popular category, the population differs

significantly. While some apps seldom push any updates, apps

like “Facebook” (Social) have been updated 17 times. The

lower number of updates of most popular apps may be due

to testing: Companies that create very popular apps are more

likely to enforce strict testing and hence may not need as many

updates as other apps.

To identify how frequently developers push these updates,

we computed the average update interval (AUI) per app mea-

sured in days (figure not shown). In Popular and Unpopular

classes, 50% of apps receive at least one update within 100

days. The most interesting set is a class of Unpopular apps

that receive an update in less than a week. For instance, the

developer of “Ctalk” pushed, on average, one update per day

totaling 111 updates in six months indicating development

stage (it had only 50-100 downloads) or instability of the app.

On the other hand, Most-Popular apps receive an update within

20 to 60 days.

Figure 6 (bottom) shows the update frequency for the

newly released apps of dataset.14-15. Compared to the apps in

dataset.2012, new releases exhibit a similar update frequency

distribution, with slightly lower third quartiles. However, a

few newly released popular apps receive significantly more

updates, some more than 100 updates.

Updates, bandwidth and reputation. A high update fre-

quency is a likely indicator of an on-going beta test of a feature

or an unstable application. Such apps have the potential to

consume large amounts of bandwidth. For instance, a music

player “Player Dreams”, with 500K-1M downloads, pushed

out 91 updates in the last six months as part of its beta testing

phase (inferred from app description). With the application

size being around 1.8 MB, this app has pushed out ≈164

MB to each of its users. Given its download count of 500K-

1M, each update utilizes ≈0.87-1.71 TB of bandwidth. We

have observed that frequent updates, especially when the app

is unstable, may attract negative reviews. For instance, “Ter-

remoti Italia” that pushed out 34 updates in the observation

interval, often received negative reviews of updates disrupting

the workflow.

Furthermore, app market providers can use these indicators

to inform users about seemingly unstable applications and also

as part of the decision to garbage collect abandoned apps.

8

5.14% > 1 Change

0.64% > 10 Changes

0.13% > 40 Changes

0.09% > 70 Changes
100

300
500

1000

1500

2000

4000

6000

8000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Price Changes

#
 A

p
p

li
c

a
ti

o
n

s
 (

s
qr

t
s

c
a

le
)

Fig. 8. The (square root) of the number of apps whose number of price
changes exceeds the value on the x axis. Only 5.14% of the apps had a price
change, and 0.09% of the apps had more than 70 changes.

D. App Category Changes

In the fresh app dataset.14-15 we found app category change

events, e.g., “Social” to “Communication”, “Photography” to

“Entertainment”, between different game subcategories. Such

category changes may enable developers to better position

their apps and improve on their install and download count,

as categories may overlap, and apps may stretch over multiple

categories. Fig. 5(c) shows the distribution of the number

of app category changes recorded over the 6 months in

dataset.14-15. Only 1.9% of apps have received at least one

category change.

VII. DEVELOPER IMPACT

In this section, we are interested in understanding what

fraction of popular apps are being controlled by an elite set of

developers and if there is a power-law effect in-place. Next,

we analyze the impact that developer actions (e.g., changing

the price, permissions etc.) can have on the app popularity.

We use dataset.2012 for this analysis.

A. Market Control

To understand the impact that developers have on the mar-

ket, we observe their number of apps, downloads, and review

count. Figure 7 plots these distributions, all showing behavior

consistent with a power-law distribution [27]. We display the

maximum likelihood fit of a power-law distribution for each

scatter plot as well [22], [11]. Figure 7(a) shows that a few

developers have a large number of apps while many developers

have few apps. However, the developers that post the most

apps do not have the most popular apps in terms of reviews

and download counts. Instead, Figure 7(b) shows that a few

developers control apps that attract most of the reviews. Since

Figure 7(c) shows an almost linear relation between review

and download counts (1 review for each 300 downloads), we

conclude that the apps developed by the controlling developers

are popular.

B. Price Dispersion

Menu costs (incurred by sellers when making price changes)

are lower in electronic markets as physical markets incur

product re-labeling costs [23]. In app markets menu costs are

Fig. 9. Monthly trend for the average app price. Over the 6 month observation
interval, the average app price does not exhibit a monthly trend.

zero. We now investigate if developers leverage this advantage

i.e., if they adjust their prices more finely or frequently.

Figure 8 shows a variation of the complementary cumulative

distribution frequency (CCDF) of the number of price changes

an app developer made during our observation period. Instead

of probabilities, the y axis shows the square root of the number

of apps with a number of price changes exceeding the value

shown on the x axis. We observe that 5.14% of the apps

(≈4000) have changed their price at least once. The tail (>

70 changes) is interesting — about 23 apps are frequently

changing their prices. From our data, we observed that they

are distributed as follows: Travel & Local (11), Sports (5),

Business (2), Brain & Puzzle (2) and one in each of Education,

Finance, and Medical. In this sample, “LogMeIn Ignition”,

developed by LogMeIn, has 10K-50K downloads and under-

went 83 price changes (Min:$18.44, Max:$27.80, Avg:$26.01,

Stdev:$2.01). The rest were either recently removed or are

unpopular.

Price dispersion is the spread between the highest and

lowest prices in the market. In our dataset, we used the

coefficient of variation (COV) [38], the ratio of standard

deviation to the mean, to measure price dispersion. COV= 1
indicates a dispersal consistent with a Poisson process i.e.,

uniformly at random; COV> 1 indicates greater variability

than would be expected with a Poisson process; and COV< 1
indicates less variation. In our dataset, we observed an average

COV (computed for all apps) to be 2.45 indicating a non-

negligible price dispersion, in agreement with results in the

context of other electronic markets [9].

Figure 9 shows the STL decomposition [12] of the average

price time series in the observation interval, for a periodicity of

one month. The gray-bar on the “monthly panel” (see Figure 9)

is only slightly larger than that on the “data” panel indicating

that the monthly signal is large relative to the variation in the

data. In the “trend” panel, the gray box is much larger than

either of the ones on the “data”/“monthly” panels, indicating

the variation attributed to the trend is much smaller than the

monthly component and consequently only a small part of

the variation in the data series. The variation attributed to the

trend is considerably smaller than the stochastic component

(the remainders). We deduce that in our six month observation

period this data does not exhibit a trend.

9

1

10

100

1000

10000

1 10 100 1000
Number of Applications

Nu
mb
e
r

o
f
D

e
ve

lo
p

e
rs

(a)

1

10

100

1000

10000

1 10 100 1000
Number of Ratings

Nu
mb
e
r

o
f
D

e
ve

lo
p

e
rs

(b)

1e+01

1e+03

1e+05

1e+02 1e+05 1e+08
Downloads

Ra
ti

n
gs

(c)

Fig. 7. (a) Distribution of apps per developer. (b) Distribution of total reviews per developer. (c) Scatter plot of downloads vs. ratings in Google Play. Both
axes are log-scaled. A linear curve was fitted with a slope of 0.00341 indicating that an application is rated once for about every 300 downloads.

D ↑ P ↓ P ↑ RC ↑ SV ↑ TP ↓ TP ↑

D ↑ 0.18 -0.02 0.13 0.34 0.09 0.21

P ↓ 0.18 -1.00 0.09 0.89 0.89 0.93

P ↑ -0.02 -1.00 -0.23 0.72 0.51 0.76

RC ↑ 0.13 0.09 -0.23 0.73 0.65 0.70

SV ↑ 0.34 0.89 0.72 0.73 0.99 1.00

TP ↓ 0.09 0.89 0.51 0.65 0.99 -1.00

TP ↑ 0.21 0.94 0.76 0.70 1.00 -1.00

TABLE II
Yule association measure for pairs of attributes for dataset.2012. The sample

size is the entire dataset for the observation interval. D is number of
downloads, P is price, RC is review count, SV is software version number

and TP is the total number of permissions. (↑) denotes an increasing
attribute and (↓) denotes a decreasing one.

C. Impact of Developer Actions

Developers have control over several attributes they can

leverage to increase the popularity of their apps, e.g., pricing,

the number of permissions requested from users and the

frequency of updates. In this section we investigate the relation

between such levers and their impact on app popularity. For

instance, common-sense dictates that a price reduction should

increase the number of downloads an app receives.

We study the association between app attribute changes.

We define a random variable for increase or decrease of each

attribute, and measure the association among pairs of variables.

For example, let X be a variable for price increase. For each

〈 day, app 〉 tuple, we let X be a set of all of the app and day

tuples where the app increased its price that day (relative to

the previous day’s value). For this analysis we consider 160K

apps that have changed throughout our observation period,

and we discard the remaining apps. We use the Yule measure

of association[37] to quantify the association between two

attributes, A and B:
|A∩B|∗|A∩B|−|A∩B|∗|A∩B|

|A∩B|∗|A∩B|+|A∩B|∗|A∩B|
.

A is the complement of A, i.e., each 〈 day, app 〉 tuple where

the attribute does not occur, and |A| denote the cardinality

of a set (in this case A). This association measure captures

the association between the two attributes: zero indicates

independence, +1 indicates perfectly positive association, and

-1 perfectly negative association. Table II shows the measure

values for all pairs of download count (D), price (P), review

count (RC) and total number of permission (TP) attributes.

Table II shows that a price decrease has a high association

with changes in software version and permissions. However,

similarly high associations are not observed with a price

increase. Thus, when a developer is updating software or

Metric Description

DEBUT Debut rank (rank when it first gets onto the list)
HRS2PEAK Hours elapsed from debut until peak rank
PEAK Highest rank attained during its lifetime on the list
TOTHRS Total number of hours spent on the list
EXIT Exit rank (rank during the last hour on the list)
RANKDYN Total ranks occupied during its lifetime on the list

TABLE III
Scores proposed to study the evolution of apps on Top-K lists.

permissions they are more likely to decrease the price than

increase the price of an app.

We observed that changing the price does not show sig-

nificant association with the download or review counts. We

randomly sampled 50 apps where this is happening and

observe the following to be the main reasons. First, apps are

initially promoted as free and a paid version is released if

they ever become popular. However, in some cases, the feature

additions are not significant (e.g., ads vs. no ads) and hence

do not cause enough motivation for users to switch to the

paid version. Second, with app markets offering paid apps for

free as part of special offers (e.g., Thanksgiving deals), users

may expect the app to be given out for free rather than take

a discount of a few cents.

VIII. TOP-K DYNAMICS

A higher position in Google’s top-k lists (see §V) is desir-

able and often attracts significant media attention [1] which

in turn increases the app popularity. To analyze the dynamics

of app in top-k lists, we have used the GOOGPLAY-TOPK

dataset (see §V). Google keeps the ranking algorithms for the

top-k lists secret. In this section we seek answers to several

fundamental questions: How long will an app remain on a top-

k list? Will an app’s rank increase any further than its current

rank? How long will it take for an app’s rank to stabilize?

A. Top-K App Evolution

We investigate first whether apps follow the “birth-growth-

decline-death” process (inverted bathtub curve [21]). Although

every app’s path may be unique, we can summarize its life on

a top-k list using the metrics defined in Table III.

This six-tuple captures a suite of interesting information

contained in each app’s list trajectory. To make these sum-

maries comparable, we remove all applications for which we

are unable to compute the DEBUT information. For instance,

10

0.0
2.5
5.0
7.5

10.0
12.5

0.0

2.5

5.0

7.5

0

10

20

30

0

10

20

30

0.0
2.5
5.0
7.5

10.0

Free

Gross

New (Free)

New (Paid)

Paid

0 100 200 300 400
DEBUT: App’s debut rank (Binwidth = 1)

Fr
e
qu
e
n

c
y

(a)

0

10

20

30

0

5

10

15

0
25
50
75

100

0
20
40
60
80

0

5

10

15

Free

Gross

New (Free)

New (Paid)

Paid

0 100 200 300 400
EXIT: App’s exit rank (Binwidth = 5)

Fr
e
qu
e
n

c
y

(b)

0

25

50

75

0

20

40

60

80

0

100

200

0
50

100
150
200

0

30

60

90

Free

Gross

New (Free)

New (Paid)

Paid

0 100 200 300 400
PEAK: Peak rank during lifetime (Binwidth = 10)

Fr
e
qu
e
n

c
y

(c)

Fig. 10. Distributions of (a) DEBUT, (b) EXIT and (c) achieved PEAK rank. The y axis is the number of apps whose ranks correspond to the values on
the x axis. Most apps entered and exited from the bottom of the list. The New (Free) and New (Paid) lists choose apps updated within the last 20 days.

the set of applications obtained during the first hour of the

crawl process are removed.

Figures 10(a) and 10(b) show the histograms for the DEBUT

and EXIT ranks, both indicating list positions, for the 3000

apps we monitored. Smaller numbers indicate better perfor-

mance. The plots show that most apps entered and exited from

the bottom part of the list (indicated by the high debut and exit

ranks). This is consistent with the lifetime metaphor discussed

earlier. However, a small number of apps entered the list highly

ranked. For instance, in the Paid category, the best DEBUT

was attained by “ROM Manager”, by “Koushik Datta” that

entered at #1 on August 14, 2012, and exited at rank #20 on

October 6, 2012, occupying seven different ranks during its

lifetime on the list. Another noteworthy DEBUT was attained

by “Draw Something”, by “OMGPOP” that entered at #2 on

October 1, 2012, peaked to #1 on Oct 25, 2012 and exited

at Nov 6, 2012 at #4. During its lifetime, the worst rank it

achieved was #38.

Figure 10(c) shows the distribution of the peak rank

achieved in top-k lists (PEAK) and Figure 11(a) shows the

distribution of the number of hours required for apps to reach

the peak (HRS2PEAK).

Figure 11(b) shows the total number of hours spent by apps

in the top-k lists (TOTHRS). Figure 11(c) shows the number

of ranks achieved in a top-k list (RANKDYN): very few New

(Free) and New (Paid) apps achieve more than 100 different

ranks, with most apps achieving 50 or fewer. This differs

significantly in the other top-k lists.

Among the many apps with poor DEBUT and EXIT po-

sitions, most had a short, uneventful life (i.e., low TOTHRS,

poor PEAK, low HRS2PEAK), but several were able to reach

a high peak position and/or remain for a long time. One entry,

“PS Touch”, by “Adobe”, entered at #413 and has been on the

“Gross” list for 2,403 hours (≈ 3 months, although it peaked

only at #206. This app also took a remarkably slow journey

(more than two months) to reach that peak and has occupied

137 distinct ranks. Also note that 67 apps attained their top

rankings in their debut hour (i.e., HRS2PEAK = 1). Many of

these apps stayed on the list for a very short time, but there

are 6 apps that stayed for 100 - 1000 hours, 31 stayed for

more than 1000 hours.

Figure 11(b) shows that New (Free) and New (Paid) apps

do not stay on the list for more than 500 hours (≈ 20 days)

indicating that these lists may be taking into account all those

applications which were last updated in the last 20 days. We

have confirmed this hypothesis also by verifying that indeed

the “last updated” field of these apps is within the last 20

days. From the same figure, for other lists, we also emphasize

the presence of a long tail of apps that have been present

for thousands of hours. We conclude that: (1) a majority of

apps follows a “birth-growth-decline-death” process, as they

enter/exit from the bottom part of a list, (2) most of the apps

with modest DEBUT and EXIT values have a short, eventful

life occupying many ranks quickly, and (3) the New (Free) and

New (Paid) lists choose among apps that were updated within

the last 20 days.

B. Top-K List Variation

We now characterize the changes in the rankings of the top-

k items from the five lists over time.
We use the Inverse Rank Measure to assess the changes over

time in each of the rankings. This measure gives more weight

to identical or near identical rankings among the top ranking

items. This measure tries to capture the intuition that identical

or near identical rankings among the top items indicate greater

similarity between the rankings. Let us assume the following:

kn is the list of top-k apps at time tn, σn(i) is the rank of

app i in kn, Z is the set of items common to kn−1 and kn,

S is the set of items in kn−1 but not in kn, T is the set of

items in kn but not in kn−1. Then, the inverse rank measure

is [7] defined as M (kn−1,kn) = 1 − N(kn−1,kn)

Nmax
(kn−1,kn) , where

N (kn−1,kn) =
∑

i∈Z | 1
σn−1(i)

− 1
σn(i)

|+
∑

i∈S | 1
σn−1(i)

−
1

(|kn|+1) |+
∑

i∈T | 1
σn(i)

− 1
(|kn−1|+1) |, and Nmax(kn−1,kn) =

∑|kn−1|
i=1 | 1

i
− 1

(|kn|+1) |+
∑|kn|

i=1 | 1
i
− 1

(|kn−1|+1) |.

Figure 12(a) shows the variation of Mkt1 ,kt2 for consecutive

days in the month of September. Note that values above 0.7

indicate high similarity [7]. We observe that the lists are

similar from day to day for Free list but this is not the case

for Paid and Gross. Intuitively, this indicates that the effort to

11

1

10

1

10

1

10

1

10

100

1

10

Free

Gross

New (Free)

New (Paid)

Paid

0 250 500 750 1000
HRS2PEAK: Hours to reach peak rank (Binwidth = 1)

Fr
e
qu
e
n

c
y

(a)

0

50

100

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

Free

Gross

New (Free)

New (Paid)

Paid

0 500 1000 1500 2000 2500
TOTHRS: Total hours spent on list (Binwidth = 1)

Fr
e
qu
e
n

c
y

(b)

0

100

200

0

50

100

0

200

400

600

0

200

400

600

0

50

100

150

Free

Gross

New (Free)

New (Paid)

Paid

0 50 100 150
RANKDYN: Distinct ranks held (Binwidth = 10)

Fr
e
qu
e
n

c
y

(c)

Fig. 11. Distributions of (a) required HRS2PEAK, (b) spent TOTHRS and (c) RANKDYN over lifetime. The y axis displays the number of apps whose
hours correspond to the values displayed on the x axis. New (Free) and New (Paid) apps do not stay on the list for more than 500 hours. While few New

(Free) and New (Paid) apps achieve more than 100 different ranks, Gross list apps achieve an almost uniform distribution up to 125 different ranks.

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

Free

Gross

New (Free)

New (Paid)

Paid

Sep 03 Sep 10 Sep 17 Sep 24 Oct 01
Timestamp

In
ve

rs
e
 R
a
n

k
M

e
a
s
ur

e
 (
M

)

(a)

150

300

450

150

300

450

150

300

450

150

300

450

150

300

450

Free

Gross

New (Free)

New (Paid)

Paid

0 100 200 300 400
Rank

Ap
p

li
c
a
ti

o
n

s

(b)

0.00

0.02

0.04

0.06

0.00

0.01

0.02

0.03

0.00
0.05
0.10
0.15

0.00

0.05

0.10

0.15

0.00
0.01
0.02
0.03

0.04
0.05

Free

Gross

New (Free)

New (Paid)

Paid

0 25 50 75 100
Lifetime (hours)

D
e
n

s
it

y

1 50 100 200 400

(c)

Fig. 12. (a) The Inverse Rank Measure vs. Timestamp. The Free list varies little from day to day, which is not the case for Paid and Gross. (b) Number of
apps vs. ranks. (c) Lifetime of apps at various ranks. The average top-k list lifetime is longer for higher ranking than for lower ranking apps.

displace a free app seems to be higher than that of a paid app

or the frequency with which the ranking algorithm is run on

Free list is less than that of the Paid list.
This intuition is difficult to verify without access to Google’s

ranking function. To compare the dynamics between the top-24

positions and bottom 25, we computed Mkt1 ,kt2 , the amount

of overlap between two subsequent lists for the two cases (see

Table IV). In addition, we also computed the overlap between

the first and the last lists obtained over the observation period.

The overlap between the first and the last observed lists is zero

in the case of the New(Free) and New(Paid) lists, due to the

higher in-flow of apps in these lists.
In all other cases (except Paid top-24 and last-25 cases),

there is an overlap of at least 50%: apps continue to be popular

for longer periods. In each list-type of last-25 cases, the low

overlap values indicate that the list is highly dynamic and

variable. Also, notice that Mmean for the top-24 is higher than

that of the last-25 indicating that the top-24 is less dynamic

in all cases expect New(Free) and New(Paid).
Figure 12(b) shows the number of apps that occupy a

rank position in 5 different list-types over our observation

Pages List-Type #items Omean Omin Mmean Msd Of∩l

Top 24

Gross 57 23.8953 18 0.9893 0.0617 12
Free 44 23.9539 21 0.9970 0.0238 16
Paid 74 23.8840 11 0.9932 0.0537 4
New (Free) 128 23.7974 15 0.9867 0.0742 0
New (Paid) 125 23.8226 13 0.9889 0.0641 0

Last
25

Gross 205 25.3765 1 0.9692 0.1299 0
Free 186 25.6145 10 0.9785 0.1030 4
Paid 150 24.9245 12 0.9780 0.1029 4
New (Free) 449 25.1159 5 0.9571 0.1502 0
New (Paid) 485 24.9245 2 0.9780 0.1687 0

TABLE IV
Variability in top-k Lists. Omean, Omin and Of∩l are the mean and min.

overlap, and that between the first and last lists.

period. Note that a lower rank is preferred. For example, the

300th rank position in the New (Free) list is occupied by 441

applications. With the increase in rank, the rate of applications

being swapped is increasing for each category indicating an

increased churn – it is easier for apps to occupy as well as

get displaced on high ranks. For Paid, Gross, and Free, the

number of apps varies from 34 to 142, 30 to 173, and 43 to

163, respectively, from the 1st to the 400th rank.

However, in the case of New (Free) and New(Paid) lists,

12

0

50

100

150

200

250

0 100 200 300

Time (Days)

#
 R

e
vi
e
w

s

(a)

−20

−10

0

0 20 40 60

Time (Days)

#
 R

e
vi
e
w

s

(b)

0

25

50

75

0 100 200 300

Time (Days)

#
 R

e
vi
e
w

s

(c)

Fig. 13. Review timeline of “fraud” apps: x axis shows time with a day granularity, y axis the number of daily positive reviews (red, positive direction)
and negative reviews (blue, negative direction). Apps can be targets of both positive and negative search rank fraud campaigns: (a) The app “Daily
Yoga- Yoga Fitness Plans” had days with above 200 positive review spikes. (b) “Real Caller” received suspicious negative review spikes from ground truth
fraudster-controlled accounts. (c) “Crownit - Cashback & Prizes” received both positive and negative reviews from fraudster-controlled accounts.

the number of apps being swapped for a position is almost

linearly increasing with the increase in rank. This is because

all the applications in these two categories are new and the

competition is higher compared to other list-types.

Figure 12(c) shows the distribution of the lifetime of ap-

plications that occupy a specific rank position. To evaluate

the variation in the distributions we choose the 1st, 50th,

100th, 200th, and 400th rank positions. For each category,

the average lifetime is longer for higher ranking apps then for

lower ranking apps. We can clearly observe this phenomenon

in the case of New (Free) and New (Paid). In both the cases,

the lifetime of the apps at the lowest rank (i.e., 400th) is the

lowest, i.e., ≈6 hours and it starts increasing with the increase

in the ranks. We can attribute this effect to the frequently

changing list of new apps and the relatively easier competitions

to be on the top-400 lists. However, in case of Free apps, the

average lifetime of apps on the 1st rank is 94.2 hours and

decreases to 16.7 hours for the 400th rank. For Paid and Gross

categories, the lifetime changes from 81.6 to 20.6 hours and

65.7 to 17.9 hours, respectively, for the rank 1 → 400. We

attribute these effects to the stability of the apps in these lists.

IX. RESEARCH IMPLICATIONS

We now discuss the implications of longitudinal monitoring

on security and systems research in Android app markets.

A. Fraud and Malware Detection

App markets play an essential role in the profitability of

apps. Apps ranked higher in the app market become more pop-

ular, thus make more money, either through direct payments

for paid apps, or through ads for free apps. This pressure to

succeed leads some app developers to tinker with app market

statistics known to influence the app ranking, e.g., reviews,

average rating, installs [5]. Further, malicious developers also

attempt to use app markets as tools to widely distribute their

malware apps. We conjecture that a longitudinal analysis of

apps can reveal both fraudulent and malicious apps. In the

following we provide supporting evidence.

Search rank fraud. We have contacted Freelancer workers

specializing in Google Play fraud, and have obtained the ids of

2,600 Google Play accounts that were used to write fraudulent

reviews for 201 unique apps. We have analyzed these apps and

found that fraudulent app search optimization attempts often

produce suspicious review patterns. A longitudinal analysis

of an app’s reviews, which we call timeline, can reveal such

patterns. For instance, Figure 13(a) shows the review timeline

of “Daily Yoga- Yoga Fitness Plans”, one of the 201 apps

targeted by the 15 fraudster-controlled accounts. We observe

several suspicious positive reviews spikes, some at over 200

reviews per day, in contrast with long intervals of under 50

daily positive reviews.

We have observed that Google Play apps can also be

the target of negative review campaigns, receiving nega-

tive reviews from multiple fraudster-controlled accounts. Fig-

ure 13(b) shows the timeline of such an app, “Real Caller”,

where we observe days with up to 25 negative reviews, but few

positive reviews. While negative reviews are often associated

with poor quality apps, these particular spikes are generated

from the fraudster-controlled accounts mentioned above. We

conjecture that negative review campaigns are sponsored by

competitors. Further, we identified apps that are the target of

both positive and negative reviews. Figure 13(c) shows the

timeline of such an app, “Crownit - Cashback & Prizes”. While

the app has received more positive reviews with higher spikes,

its negative reviews and spikes thereof are also significant.

App markets can monitor timelines and notify developers

and their users when such suspicious spikes occur.

In addition, our analysis has shown that several developers

upload many unpopular apps (see §V II), while others tend to

push frequent updates (§VI). We describe here vulnerabilities

related to such behaviors.

Scam Apps. We have identified several “productive” devel-

opers, that upload many similar apps. Among them, we have

observed several thousands of premium applications (priced

around $1.99) that are slight variations of each other and have

almost no observable functionality. Such apps rely on their

names and description to scam users into paying for them, then

fail to deliver. Each such app receives ≈500-1000 downloads,

bringing its developer a profit of $1000-2000.

Malware. While updates enable developers to fix bugs and

push new functionality in a seamless manner, attack vectors

can also leverage them. Such attack vectors can be exploited

both by malicious developers and by attackers that infiltrate

13

−6

−3

0

3

6

2014−11−09 2014−11−12 2014−11−14 2014−11−15 2015−01−29

Date

#
 P
e
rm

is
s
io

n
s

(a)

−6

−3

0

3

6

2014−11−09 2014−11−14 2014−11−25 2014−12−02 2014−12−11 2014−12−12 2014−12−13

Date

#
 P
e
rm

is
s
io

n
s

Type

Dangerous
Normal

(b)

−6

−3

0

3

6

2014−11−10 2014−12−15 2015−01−30 2015−02−03

Date

#
 P
e
rm

is
s
io

n
s

(c)

Fig. 14. Permission timeline of 3 VirusTotal flagged apps, (a) “Hidden Object Blackstone”, (b) “Top Race Manager”, and (c) “Cash Yourself”. The x axis
shows the date when the permission changes occurred; the y axis shows the number of permissions that were newly requested (positive direction) or removed
(negative direction). The red bars show dangerous permissions, blue bars regular permissions. We observe significant permission changes, even within days.

developer accounts. We posit that a motivated attacker can

develop and upload a benign app, and once it gains popularity,

push malware as an update. For instance, Table II shows that

as expected, software version and total permissions are highly

correlated. However, we found that in 5% of cases where

permissions change, the software version does not change.

On the iOS platform, Wang et al. [36] proposed to make

the app remotely exploitable, then introduce malicious control

flows by rearranging already signed code. We propose an

Android variant where the attacker ramps up the permissions

required by the app, exploiting the observation that a user is

more likely to accept them, then to uninstall the app.

To provide an intuition behind our conjecture, we introduce

the concept of app permission timeline, the evolution in time of

an app’s requests for new permissions, or decisions to remove

permissions. We have used VirusTotal [6] to test the apks of

7,756 randomly selected apps from the dataset.14-15. We have

selected apps for which VirusTotal raised at least 3 flags and

that have at least 10 reviews. Figure 14 shows the permission

timeline of 3 of these apps, for both dangerous (red bars) and

regular permissions (blue bars).

For instance, the “Hidden Object Blackstone” app (Fig-

ure 14(a)) has a quick succession of permission requests and

releases at only a few days apart. While the app releases

2 dangerous permissions on November 14, 2014, it requests

them again 1 day later, and requests 2 more a month and a half

later. Similarly, the “Top Race Manager” app (Figure 14(b))

has very frequent permission changes, daily for the last 3.

The “Cash Yourself” app (Figure 14(c)) requests 3 dangerous

permissions on November 10 2014, followed by 1 dangerous

permission in both December and January, then releases 1

dangerous permission 4 days later.

Permission changes imply significant app changes. Frequent

and significant permission changes, especially the dangerous

ones may signal malware, or unstable apps. Market owners can

decide to carefully scan the updates of such apps for malware,

and notify developers that something went wrong with their

updates, indicating potential account infiltration.

B. App Market Ecosystem

Analytics-driven Application Development. We envision a

development model where insights derived from raw market-

level data is integrated into the application development. Such

a model is already adopted by websites such as Priceline [4]

through their “Name Your Own Price” scheme where the

interface provides users with hints on setting an optimal

price towards a successful bid. We propose the extension

of development tools like Google’s Android Studio [2] with

market-level analytics, including:

• Median price: In §VI-A, we showed that developers may

be settling down for lower profits. The development tools

could provide developers them with hints on the optimal

price for their app based on, e.g., the number of features,

the price of active apps in the same category etc.

• Application risk: Provide predictions on the impact of

permissions and updates on reviews and download count.

• App insights: Present actionable insights extracted from

user reviews (e.g., using solutions like NetSieve [31]),

including most requested feature, list of buggy features,

features that crash the app.

Enriching User Experience. We believe data-driven insights

will be indispensable to enhance the end user experience:

• Analytics based app choice: Visualize app price, update

overhead, required permissions, reviewer sentiment to en-

hance the user experience when choosing among apps with

similar claimed functionality. For instance, develop scores

for individual features, and even an overall “sorting” score

based on user preferences. Scam apps (see §IX-A) should

appear at the bottom of the score based sorted app list.

• Analytics based app quarantine: We envision a quarantine

based approach to defend against “update” attacks. An

update installation is postponed until analytics of variation

in app features indicates the update is stable and benign.

To avoid a situation where all users defer installation, we

propose a probabilistic quarantine. Each user can update the

app after a personalized random interval after its release.

X. LIMITATIONS

This paper seeks to shed light on the dynamics of the Google

app market and also provide evidence that a longitudinal

monitoring of apps is beneficial for users, app developers and

the market owners. However, our datasets were collected in

2012 and 2014-2015, and may not reflect the current trends

of Google Play.

In addition, while we believe that the Google Play market,

the applications it hosts and developers we examined represent

a large body of other third-party markets and their environ-

ments, we do not intend to generalize our results to all the

14

smartphone markets. The characteristics and findings obtained

in this study are associated with the Google Play market and

its developers. Therefore, the results should be taken with the

market and our data collection methodology in mind.

The goal of our discussion of permission and review time-

lines was to provide early evidence that a longitudinal monitor-

ing and analysis of apps in app markets can be used to identify

suspicious apps. We leave for future work a detailed study of

permission changes to confirm their statistical significance in

detecting search rank fraud and malware.

XI. CONCLUSION

This article studies temporal patterns in Google Play, an in-

fluential app market. We use data we collected from more than

160,000 apps daily over a six month period, to examine market

trends, application characteristics and developer behavior in

real-world market settings. Our work provides insights into the

impact of developer levers (e.g., price, permissions requested,

update frequency) on app popularity. We proposed future

directions for integrating analytics insights into developer and

user experiences. We introduced novel attack vectors on app

markets and discussed future detection directions.

XII. ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS-

1527153, CNS-1526494 and CNS-1450619.

REFERENCES

[1] Angry Birds Star Wars tops App Store Chart in 2.5 hours.
http://goo.gl/ioJWq.

[2] Getting started with Android Studio. http://goo.gl/wgeUok.
[3] Google Bouncer. http://goo.gl/QnC6G.
[4] Priceline. http://priceline.com.
[5] Google I/O 2013 - Getting Discovered on Google Play. www.youtube.

com/watch?v=5Od2SuL2igA, 2013.
[6] VirusTotal - Free Online Virus, Malware and URL Scanner. https://

www.virustotal.com/, Last accessed on May 2015.
[7] J. Bar-Ilan, M. Levene, and A. Lin. Some measures for comparing

citation databases. Journal of Informetrics, 1(1):26–34, 2007.
[8] Y. Benjamini. Opening the box of a boxplot. The American Statistician,

42(4):257–262, 1988.
[9] E. Brynjolfsson and M. Smith. Frictionless commerce? a comparison

of internet and conventional retailers. Management Science, 2000.
[10] B. Carbunar and R. Potharaju. A longitudinal study of the google app

market. In Proceedings of the IEEE/ACM ASONAM, 2015.
[11] A. Clauset, C. Shalizi, and M. Newman. Power-law distributions in

empirical data. Arxiv preprint arxiv:0706.1062, 2007.
[12] R. Cleveland, W. Cleveland, J. McRae, and I. Terpenning. Stl: A

seasonal-trend decomposition procedure based on loess. Journal of

Official Statistics, 6(1):3–73, 1990.
[13] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.
[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of OSDI,
2010.

[15] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX Conference on

Security, 2011.
[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android

permissions demystified. In Proceedings of the ACM CCS, 2011.
[17] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software

engineering. Prentice Hall PTR, 2002.
[18] Google. Developer Registration. http://goo.gl/wIwpa, 2012.
[19] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure

analysis of mobile in-app advertisements. In Proceedings of the ACM

WiSec, 2012.

[20] A. Greenberg. Malware Apps Spoof Android Market To Infect Phones.
Forbes Security, 2014.

[21] R. Jiang, P. Ji, and X. Xiao. Aging property of unimodal failure rate
models. Reliability Engineering & System Safety, 79(1):113–116, 2003.

[22] R. Johnson and D. Wichern. Applied multivariate statistical analysis.
Prentice hall, 2002.

[23] D. Levy, M. Bergen, S. Dutta, and R. Venable. The magnitude of menu
costs: direct evidence from large us supermarket chains. The Quarterly

Journal of Economics, 112(3):791–824, 1997.
[24] H. M. Levy. Capability-Based Computer Systems. Butterworth-

Heinemann, Newton, MA, USA, 1984.
[25] C. Z. Liu, Y. A. Au, and H. S. Choi. An Empirical Study of the

Freemium Strategy for Mobile Apps: Evidence from the Google Play
Market. In Proceedings of ICICS, 2012.

[26] Z. Miners. Report: Malware-infected Android apps spike in the Google
Play store. PCWorld, 2014.

[27] M. Mitzenmacher. A brief history of generative models for power law
and lognormal distributions. Internet mathematics, 2004.

[28] S. Mlot. Top Android App a Scam, Pulled From Google Play. PCMag,
2014.

[29] A. Möller, F. Michahelles, S. Diewald, L. Roalter, and M. Kranz. Update
behavior in app markets and security implications: A case study in
google play. In Proceedings of the Intl. Workshop on Research in the

Large, 2012.
[30] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and

T. Karagiannis. Rise of the planet of the apps: A systematic study of
the mobile app ecosystem. In Proceedings of the 2013 Conference on

Internet Measurement Conference, IMC ’13, pages 277–290, New York,
NY, USA, 2013. ACM.

[31] R. Potharaju, N. Jain, and C. Nita-Rotaru. Juggling the jigsaw:
Towards automated problem inference from network trouble tickets. In
Proceedings of USENIX NSDI, 2013.

[32] M. Rahman, M. Rahman, B. Carbunar, and D. H. Chau. FairPlay: Fraud
and Malware Detection in Google Play. In Proceedings of the SIAM

International Conference on Data Mining (SDM), 2016.
[33] D. Roberts. How to spot fake apps on the Google Play store. Fortune,

2015.
[34] E. Siegel. Fake Reviews in Google Play and Apple App Store.

Appentive, 2014.
[35] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google play.

In ACM SIGMETRICS Performance Evaluation Review, volume 42,
pages 221–233. ACM, 2014.

[36] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll on ios: When
benign apps become evil. In Proceedings of USENIX Security, 2013.

[37] M. J. Warrens. On association coefficients for 2x2 tables and properties
that do not depend on the marginal distributions. volume 73, 2008.

[38] E. Weber, S. Shafir, and A. Blais. Predicting risk sensitivity in
humans and lower animals: risk as variance or coefficient of variation.
Psychological Review; Psychological Review, 111(2):430, 2004.

[39] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.
Identifying diverse usage behaviors of smartphone apps. In Proceedings

of ACM IMC, 2011.
[40] N. Zhong and F. Michahelles. Google play is not a long tail market:

An empirical analysis of app adoption on the google play app market.
In Proceedings of the ACM SAC, 2013.

[41] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the IEEE S&P, 2012.

[42] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proceedings of NDSS, 2012.

Rahul Potharaju is a researcher at Microsoft. He focuses on building
interactive query engines for big data. He earned his CS Ph.D. degree from
Purdue University and CS Masters degree from Northwestern University. He
is a recipient of the Motorola Engineering Excellence award in 2009, the
Purdue Diamond Award in 2014, and the Microsoft Trustworthy Reliability
Computing Award in 2013.

Mizanur Rahman is a Ph.D. candidate at FIU. He has previously held various
positions in KAZ Software, iAppDragon and Prolog Inc. His research interests
include fraud detection in social networks and user experience.

Bogdan Carbunar is an assistant professor in SCIS at FIU. He has held
research positions within Motorola Labs. His interests include security and
privacy for mobile and social networks. He holds a Ph.D. in CS from Purdue.

