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Abstract—With the recent advent of cloud computing, the
concept of outsourcing computations, initiated by volunteer
computing efforts, is being revamped. While the two paradigms
differ in several dimensions, they also share challenges, stemming
from the lack of trust between outsourcers and workers. In
this work we propose a unifying trust framework, where cor-
rect participation is financially rewarded: neither participant is
trusted, yet outsourced computations are efficiently verified and
validly remunerated. We propose three solutions for this problem,
relying on an offline bank to generate and redeem payments;
the bank is oblivious to interactions between outsourcers and
workers. In particular, the bank is not involved in job compu-
tation or verification. We propose several attacks that can be
launched against our framework and study the effectiveness of
our solutions. We implemented our most secure solution and
our experiments show that it is efficient: the bank can perform
hundreds of payment transactions per second and the overheads
imposed on outsourcers and workers are negligible.

I. INTRODUCTION

The ability to execute large, compute intensive jobs, is no
longer the privilege of supercomputer owners. With the recent
advent of cloud computing and volunteer computing initia-
tives, users can outsource their computations for execution on
computers with spare resources. Cloud computing provides
hardware (CPU and storage) capabilities, along with software
and electronic services, which clients can elastically rent
while abstracting from lower level details. Motivated by the
ability of computer owners to donate CPU resources, volunteer
computing takes advantage of the highly parallelizable nature
of certain computations to distribute sub-jobs to available
computers over the internet.

In this work we consider a general “compute market”
framework, encompassing the cloud and volunteer computing
paradigms: Participating computers can act both as service
providers (workers) and as clients (outsourcers). Outsourcers
have computing jobs they cannot complete in a timely fashion,
whereas workers are willing to spend CPU cycles to run parts
of such jobs. While it is natural to motivate participation
through the use of financial incentives, the distributed nature of
the framework raises trust questions: Outsourcers may not trust
the workers to correctly perform computations and workers
may not trust outsourcers to provide payments following job
completion.

Besides systems for outsourcing computations, open forums
that use kudos [2] to rate user posts and establish reputations
are also vulnerable to exaggeration attacks. While solutions
exist that address the lack of trust that the outsourcer has in a
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worker (see Section IX), the lack of trust of a worker in the
outsourcer is not addressed — W is required to fully trust O.
This is however an important problem, since in our model the
outsourcer can be any participant (user with a PC or mobile
device).

We consider the following computation model. A job takes
as inputs a function f: I — R, an input domain D C [ and
a value y € R and requires the evaluation of f for all values
in D. An outsourcer, O, seeks one or all z € D values for
which f(z) = y. That is, O seeks to invert f for a particular
y, and the approach he adopts is brute-force. O partitions the
domain I and allocates each partition, along with the function
f and value y, to a different job. O posts jobs to a predefined
location. Any worker, W, can access the job postings, pull the
next available job, execute it locally and return the results. In
our work we model the case of a single partition (job), and
one worker, W. W seeks payment for its work. The problem
is that O and W do not trust each other. From the standpoint
of O, O does not trust that W will indeed fully do the work he
undertakes. For example, W may evaluate f only on a portion
of D and seek full payment. From the standpoint of W, even
if he dutifully does the work, he does not trust that O will pay
him after he has expended the effort.

In this paper we propose solutions that address both issues
of trust. We rely on a trusted offline third party, a bank B,
that acts strictly as a financial institution in the transaction
between O and W. B issues payment tokens, which O embeds
in jobs. W is able to retrieve a payment token if and only if
it completes a job. Our solutions employ the ringer concept
proposed by Golle and Mironov [12].

Our first solution (see Section IV) requires O to split the
key used to obfuscate the payment and hides the subkeys into
pre-computed, randomly chosen parts of the job. The worker is
entitled to a probabilistic verification of the payment received
before beginning the computation. A malicious outsourcer that
generates a single incorrect subkey may pass the verifica-
tion step but prevent an honest worker from recovering the
payment. We address this issue in the second solution (see
Section V), through the use of threshold cryptography. O uses
threshold sharing to divide the payment into multiple shares
and obfuscates a randomly chosen subset of the shares with
solutions to parts of the job. The worker needs to retrieve only
a subset of the shares in order to reconstruct the payment.
This significantly improves the worker’s chance of retrieving
the payment even in the presence of a malicious outsourcer



generating incorrect shares. However, this solution provides
the worker with an unfair advantage in recovering the payment
before completing the entire job: fewer shares need to be
discovered.

We address this problem in our final solution (see Sec-
tion VI). We use exact secret sharing to compute shares
of the payment token — all the shares are needed to re-
construct the payment. Instead of generating a single ringer
set, O generates a ringer set for each payment share and
uses a function of the ringer set to “hide” the share. W and
O run a verification protocol, where all but one share are
revealed and the correctness of the last share is proved in zero
knowledge. While W cannot reveal the last payment share
without solving the last ringer set, it is unable to distinguish
the revealed payment share even after computing the entire
job. This effectively prevents W from performing incomplete
computations. Only the bank can retrieve the last share and
combine it with the other shares to obtain the payment token.

Our solutions rely on an offline bank: The bank does not
have to be online during job outsourcing operations, but only
during payment withdrawal and deposit. This ensures that the
bank has no involvement in the job outsourcing process. The
bank is not required to act as an escrow agent, feature that
is essential in ensuring the bank’s transparency with regard to
the job computation process.

We have tested our third solution on two problems: finding
the pre-image of a cryptographic (SHA-1) hash, and the abc
conjecture [1]. Our results, described in Section VIII, show
that we impose small overheads on the bank (100 payment
transactions per second) as well as on the outsourcer and
worker (ranging from tens of ms to 1s for various job types
and system parameters).

II. MODEL

Our framework is similar to the ones presented in prior
work [12], [8]; we present it here for clarity. The three
principals in a solution are the outsourcer O, the bank B, and
the worker W. O prepares jobs he wants done in the manner
we discuss in Section I, B issues and redeems payment tokens
and W computes the job.

In the ideal case, B should be offline: O and W indepen-
dently transact with it outside of any exchanges they have as
part of the outsourcing. The role of B is to act as a financial
“holding company”. B can easily link outsourcers to workers
and workers to the jobs they have performed, however, privacy
issues are outside the scope of this work. B has no interest or
participation in the nature of the outsourcing between O and
W. That is, B is trusted to act as an honest bank and follow
the protocol correctly.

Outsourcers and workers are assumed to be malicious.
Dishonest outsourcers will attempt to have their jobs computed
while paying less than agreed. Dishonest workers will attempt
to redeem payments while minimizing the work they perform.

We do not consider confidentiality, integrity and authen-
tication issues, which can be application specific and we

believe are outside the scope of this work. Existing off-the-
shelf tools can be used to authenticate participants, encrypt
and authenticate messages, thus preventing attacks such as
impersonation, eavesdropping, injection and replay attacks.

In the following we adopt the more abstract mechanisms as
used in the random oracle model [5]. G: {0,1}" — {0,1}>
is a random generator and H: {0,1}* — {0,1}" is a random
hash function. We use the notation x < D to denote the
fact that the value x is randomly chosen from the domain
D. We also use z;y to denote the concatenation of strings x
and y. Ex (M) denotes the symmetric encryption of message
M with key K. For a given symmetric key algorithm, let
s denote the key’s bit size. We also assume the bank has
a trapdoor permutation, (p,p’],d> that is secure from non-
uniform polynomial time [11] adversaries. The function p is
public, and p~! is private to B.

III. RINGERS - AN OVERVIEW

The solution from Golle and Mironov [12] (see Section 2.3
there) that we extend is called ringers. In this section, we
discuss ringers and how they are used to solve the problem of
the trust in . O needs to be able to establish that W does
indeed perform all the computations that were outsourced to
him.

The idea behind ringers is to require the outsourcer to select
a small set of random input values from D and to pre-compute
the image of the function f on those values (true ringers).
Besides the image of interest, the outsourcer sends to the
worker also the true ringers. The worker needs to retrieve
the pre-images of all the received images. In order to prevent
the worker from stopping the work after inverting all but one
image, the outsourcer uses bogus ringers, which are values
from the image of f that do not have a pre-image in D. If the
worker is able to invert at least the true ringers, the outsourcer
is convinced that the worker has completed a large percent of
the job. The solution has the following steps.

Job Generation O chooses an integer 2/m, the total number
of ringers. He picks an integer ¢ € [m + 1,...,2m] which
conforms to the probability distribution d(t) = 2™ 11, Let
t be the number of true ringers, and 2m — ¢ be the number
of bogus ringers. O computes f(x) for every true and bogus
ringer . These post-images are included in the screener S
that is sent to W. The screener is used by W to decide what
he must store for transmission back to O once he is done with
the job. O uses this information to infer whether W did indeed
do the entire job, and pays W only if he infers that he did.
We clarify how S works in the next step.

Computation and Payment The screener S takes as input
a pair (z, f(z)) and tests whether f(z) € {y,y1,--.,%2m}
where y is the post-image whose pre-image O seeks, and each
y; is the post-image of a true or bogus ringer. If f(x) is indeed
in the set, then S outputs x; otherwise it outputs the empty
string. W computes f for each element in D, processes each
through S, collects all the outputs of S and sends them to O
to receive its payment. If W honestly does its work, then what
it sends O at the end is the set of true ringers, and possibly the



special pre-image for which O is looking. The ringers ensure
that W does its entire work. The bogus ringers make it more
difficult for W to stop prematurely and still make O believe
that it did its entire work.

To express the quality of their solution, Golle and
Mironov [12] introduce the notion of a coverage constant. The
coverage constant (of a set of ringers) denotes the fraction of
the job completed by W, given that W is a rational cheater.
A rational cheater is one that continually assesses the risk-
reward trade off between guessing that he has found all the
true ringers, and simply completing the entire job. A rational
cheater risks stopping his work prematurely if the payoff is
higher than completing the entire job. We reproduce here
Theorem 2 from [12]: The bogus ringers scheme ensures a

4

coverage constant of 1 — —L — (2)™,

IV. PAYMENT SPLITTING BASED ON SUBKEYS

We now present our first solution to the simultaneity
problem and analyze its properties. Table I summarizes our
notations.
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Fig. 1. Payment based on key splitting. The “ringer” subkeys, shown each
in a gray rectangle on the left side of the figure, are used to generate the
key that obfuscates the payment. The “ringer” subkeys and “bogus” ringers
(shown in white rectangles), authenticated by B, are randomly permuted to
generate a verification set, shown on the right side, that will later allow W
to verify the validity of the payment.

Outsourcer Setup: 0 generates token
t = (Id(O),I1d(W),SN,v,T), containing O’s identity,
W’s identity, a fresh serial number the currency value v and
the deadline for completing the job. O picks an integer k from
the interval {m +1, .., 2m} which conforms to the probability
distribution d(k) = 2m~k=1 similar to [12]. O keeps k
secret. O also picks a symmetric key Ky — g {0,1}°.

Payment Splitting: O picks &k points z1, ..,z —gr D
and generates k values K; = H(f(x;)), j = 1..k (ringers) and
random values Kyy1,.., Koy g {0,1}" (bogus ringers).
h is the bit size of the output of the one-way function H.
Without loss of generality, let K < ... < K}, (if they are not,
sort and rename). Let K = H(Kjy;..; K},) (see Figure 1 for an
illustration). The ringers K, .., Kj are also called “subkeys”
of K. Generate obf(t) = Fx_(t)p(K). Send to B the values
Obf(t),t,k,K, K]7 ..,Kgm,Ks.

Binding payment to job: B verifies first that m 4+ 1 <
k < 2m and that K = H(K;;..; K}y), where Ky;..; K, are
the first £ keys from the set Ky, .., Ko,,. Then, it verifies that
Ex. (t)p(K) = obf(t). If any verification fails, B aborts the
protocol. Otherwise, it performs the following actions.

o Store the tuple (¢, K;) locally.
o Generate random R —p {0,1}*. Sign obf(t) to obtain

Gars(t) = pi(0bf(1) = p (B, ()K. Let ¢ =

p ' (Ek,(t)). Thus, o,¢(t) = oK. o denotes a valid

payment of value v. Whoever can present this value to

B, can cash it.

« Generate validation set |4 =

(o~ (H (K1, R, “r")),p™ (H (K), R, “1"))} U

{p "(H(Kis1,R)),.0 " (H(K2mn,R))} (see Figure 1

for an illustration).

o Generate signature S = p~'(H (oot (t),t, R)). Send to

O the values oo7(t), R, S and the set V.

Payment generation: Let 7 denote a random permu-
tation. O generates the payment P = (t, 005 (t), Ver,2m),
where Ver = w(V'). Ver is called the validation set.

Job Transmission: O sends the job to W, along with
the values P, R, S.

Verification: W needs to verify P’s correctness before
starting the job. First, it verifies B’s signature on ogp¢ (%),
using R, the payment token ¢t = (Id(O), Id(W),SN,v,T)
and the signature S = p~'((H (oop¢(t),t, R)). If it verifies,
W initializes the set SK = (). SK is the set of subkeys of K
known to W. Then, W selects indexes ¢y, ..,¢; =g {1..2m},
g < r and sends them as challenges to O. O processes each
challenge c¢; in the following manner.

o If the ¢;th element Ver, denoted by Ver(c;), is a ringer
subkey signed by B, O reveals the pre-image z; € D.
W computes K; = H(f(z;)) and verifies the equality
H(K;, R, “r'")=p(Ver(c;)). If the equality holds, SK =
SK UK; and Ver = Ver — Ver(c;). Otherwise, W
aborts the protocol.

o If the value Ver(c;) is B’s signature on a bogus ringer,
O reveals K; € {K,41,.., Koy }. W verifies the equality
H(K;) = p(Ver(c;,R)). If it holds, Ver = Ver —
Ver(c;j). Otherwise, W aborts the protocol.
Computation: W removes B’s signature from each

element in the set Ver. Let p(Ver) denote the resulting
set. W evaluates f on each input value =z € D. If
H(H(f(x)),R,“r") € p(Ver), SK = SK U H(f(x)) and
p(Ver) = p(Ver) — H(H(f(z)), R, “r").

Payment extraction: At the end of the computation, to
extract the payment, W sorts the elements in SK in increasing
order. Compute K = H(SK|[1];..; SK|[k]), where k is the size
of the SK set and SKJi] denotes its ith element (in sorted
order). Compute the value 0 = 0y K.

Payment redemption: If the current time is less
than 7', W sends o to B, along with the tuple t =
(Id(0),Id(W),SN,v,T). B accepts such a message only
once. It performs the following actions.

« Retrieve the tuple (¢, K) from its local storage.



The outsourcer

The bank
The worker

SEx=0

The function of interest for O

K; Subkeys of K
K Obfuscation key
4 Payment token
obf(t) | Obfuscated payment token

D Domain of f outsourced to W || oops(t) | Signed obfuscated token

H Random hash function o Valid payment

h Output length of H 14 Validation set
(p,p~t,d) | Trapdoor permutation of B Ver Permuted V

2m Total number of ringers S Bank signature

k Number of payment shares P Outsourced payment

TABLE I
Notation used in the subkey solution.

o Verify that the time T from t exceeds or equals the
current time. Verify that the identifier of the sender of
the message is indeed the second field of t.

o Verify that Dk, (p(o)) = t. If all verifications succeed,
B credits W’s account in the amount v.

Cancellation: If the current time exceeds 7', W cannot
redeem the payment. However, O can cancel it by sending
tand S = p ' (H(owy(t),t,R)) to B. Note that O cannot
cancel a payment before the expiration time 7' of its associated
job.

A. Analysis

Intuition: The purpose of the random R used during
the payment generation step is to bind oyf(t) to V. This
proves that these values were signed by B at the same time,
preventing O from using o,p¢(t) and V generated in different
protocol instances. While a value of format p(H (K;, R)) from
V certifies the fact that B has seen the subkey K;, a value of
format p(H (K;, R, “r'")) also authenticates the fact that O
claimed that subkey to be a ringer, subkey of K, where K
obfuscates the payment o. Note that B does not verify the
well-formedness of the ringers K1, .., K}. This verification is
to be performed by the workers.

Following the job transmission step, W needs to generate
and verify challenges. Since B has generated the random R
value and has signed both 0,7 (t) and each key K;,j = 1..2m
with it, the challenge verification procedure allows W to verify
that each revealed element in the set Ver is a payment piece
and any two revealed pieces belong to the same payment
instance O cannot pretend that a challenged ringer subkey
K; is not a ringer. This is because B has included the string
“r” in its signature of the subkey K;. During the computation,
W needs to retrieve Ky, .., K, compute K, then recover o
from ooy f(t). The bank signed value o allows W to cash the
payment.

Note that O cannot cancel a job before its expiration time.
Otherwise, O could easily cheat by canceling valid jobs and
preventing workers from redeeming correctly reconstructed
payments.

Theorem 1. If W retrieves the payment, W has completed
the job with probability 1-—tor-(2)™.

m2m+1 Uy

Proof: Consider that during the computation step W

can perform the following attack. Before finishing the job,
when W discovers a new subkey K; of K and it has
already accumulated more than m subkeys of K, it stops the
computation, assumes it has all the subkeys of K and performs
the redemption step with B. That is, W guesses the value of
k, the number of subkeys of K. If it succeeds to cash the
payment, W has successfully cheated O by not performing
the whole computation. However, W cannot precisely detect
the moment when it has retrieved the last subkey of K. Even
if it retrieves K and computes o0 K ' = p~ ' (Ek, (1)), W
cannot distinguish this value from a random number, since it
does not know the key K. Then, given the distribution of
k, the number of ringers chosen by O, we use the result of
Theorem 2 of [12] to complete the proof. [ ]

We now propose an attack that the outsourcer can launch
and show the defenses provided by our solution.

Invalid share attack: O attempts to include invalid
shares in place of legitimate shares in what is embedded in
the job. The objective is to undermine the payment verifiability
property and get an honest W to accept the job, but not get
paid when he completes it.

Let u be the parameter of the attack — the number of “bad”
ringers computed by O. We can now prove the following

property.

Theorem 2. If an outsourcer launches an invalid share attack
with parameter u, a worker that completes the corresponding

job is able to retrieve the payment with probability at least
1 — e~ va/(2m—g+1)

Proof: O generates u out of the k subkeys of K at
random. That is, O does not generate u subkeys of K as a
hash of the output of the function f applied to one pre-image
from D, but uses random numbers instead. Remember that B
is not verifying their well-formedness when it signs them, but
instead leaves this process for W, in the verification step. The
verification phase consists of the random revealing of ¢ out
of the 2m payment token shares. The probability that any of
W’s challenges hits an invalid subkey is

2m—u2m—-—u—1 2m—-u—q+1

P=1- =1-
2m 2m — 1 2m —q+1

>1— (M)q > 1 — e~ ue/(2m—g+1)
2m —qg+1



probability
of detection

# corrupted subkeys (u)
(a)

Fig. 2.

0.45

04

035 - b

03~ b

02 |

0.15 [~ |

01 b

probability of detection

005 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

#corrupted subkeys (u)

(b)

(a) Probability of detecting a cheating outsourcer as a function of the number of challenges g and the number of “bad” subkeys, u. The value of

m is 100, u ranges between 1 and 10 and g between 1 and 30. (b) Detection probability when the number of “bad” subkeys u ranges from 1 to 10 and the
number of challenges is 10 (rn=100). For u=1, the probability of detection is very small, 5%.

V. PAYMENT THRESHOLD SPLITTING

Figure 2 shows W’s probability of discovering a malicious
O that generates u bad subkeys, by challenging O to reveal
g subkeys. Note that for large ¢ and u values, this probability
quickly approaches 1. However, if u = 1, that is, O generates
only one “bad” ringer, the chance of W of asking O to reveal
the single bad subkey is ¢/2m. For m = 100 and ¢ = 10, this
value is 5%.

Our second solution uses threshold sharing to address this
problem. It splits the payment into 2m + p shares such that any
2m shares reconstruct the payment. The outsourcer obfuscates
a subset of the shares with a small subset of the solution of
the job to be performed. As before, the worker can retrieve
the shares only if it covers a large percentage of the job.
However, the worker does not need all the shares, but only
a predefined subset in order to reconstruct the payment. Then,
even if the outsourcer generates p bad shares, the worker can
still reconstruct the payment. Table II lists our notations.
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Fig. 3. Generation of Obf and Clr shares. The Obf and Clr values are
randomly permuted (lower side in the figure) to generate the payment structure
to be sent to W.

Setup: Let p and ¢ be two security parameters, ¢\/m <
p,q < m, for a constant c. Pick a symmetric key K —pg
{0, 1}*. Instantiate a (2m, 2m+p) secret sharing scheme (e.g.,
Shamir’s scheme [18]) such that any but not less than 2m
shares are required to compute the secret. Let SS be the
reconstruction function, that given any 2m or more shares
reconstructs the secret.

Payment generation: O generates the message M =
(Id(O), Id(W),SN,v,T), where SN is a fresh serial num-
ber, v is the currency value and T is the job deadline. Send
the tuple along with the key K to B.

Payment signature: B computes a payment token P =
Ex(p~'(M)) and verification value ¢ = p '(H(M)). B
stores the tuple (SN,v,T,t, K) in local storage, indexed by
serial number. B sends P and o to O. The convention is that
whoever knows P can cache the payment.

Payment splitting: O uses the P and o values received
from B to perform the following actions.

e Use the (2m,2m + p) secret sharing scheme to generate
2m + p shares s1, .., S2,4p Of P.

o Pick an integer k¥ —g {m + p + 1,..,2m — ¢} with
distribution d(k) = 2m~P~9=#=1 k is secret and denotes
the number of ringers.

o Use the shares s1,.., 52,,,4p to generate 2m + p payment
tokens P; = (Id(O), Id(W),SN,v,T,s;), i = 1.2m +
p. Each payment token is a wrapper for one of the shares
s;. Send the payment tokens F; to B along with P, k, m,
p and q.

Share signature: When B receives this message, it first
verifies that m+p+1 < k < 2m—gq. It then compares P against
the value previously stored for O and uses the reconstruction
function 8§ to verify that all the shares s; contained in the
token shares F; are unique and that any 2m of them indeed
reconstruct P. This verification step could be probabilistic.
If any verification fails B aborts and penalizes O’s account.
Otherwise, B performs the following steps.

o Generate the hash set HS = {H(Pjy1), ..., H(Pom+p) }-
Store HS along with the tuple stored under SN,
(SN,v,T,t, K,HS).

o For each payment token P;, generate p~'(H(t;)), i =
1..2m + p. Send these values to O.

Binding payment to job: O uses the values received
from B to embed the payment into a job as follows.

e Choose k values x1,..,xxy —gr D and compute their
images, r; = f(x;), i = 1..k. The r;’s are called ringers.

o Use each ringer r; to compute the obfuscated payment
share Obf; = r; & (P;; H(P;)) (see Figure 3) for an
illustration). Let sz = |Obf;].



O The outsourcer P Payment token

f The function of interest for O o Verification value

B The bank Si Shares of P

w The worker P; Payment token shares

D Domain of f outsourced to W HS Hash set of P;’s

H Random hash function T Ringers

h Output length of H Obf; | Obfuscated payment shares

p,p~',d) | Trapdoor permutation of B Clr; | Cleartext shares

D, q Security parameters P Payment set

M Payment message Ver Verification set

TABLE 11
Notation used in the threshold splitting based solution.

o For all remaining 2m +p — k (I = k + 1.2m + p)

shares, compute cleartext shares Clr; = (Rnd;;s;),
where Rnd; —g {0,1}%* 151,

e let m be a random permutation. Gen-
erate the outsourced payment set P =
m{Obf1,..,0bfr,Clrisa, .., Clrogmyp}, containing

both obfuscated and cleartext payment shares.

e Let m be a random permutation. Generate the ver-
ification set Ver = my({p 1(H(t1)),..,p *(H(t))}
U {Rk+1,.., Rom+p}), where Riy1, .., Rop, are random
values of the same bit length as the output of p—!.
Ver consists both of B’s signatures on the k obfuscated
payment tokens (from the set P) and 2m + p — k

indistinguishable random values.

Job Transmission: O sends SN, v, 2m+p, T, P, Ver and
o to the worker W along with the job. As mentioned n the
payment generation, o = p~ 1 (H (M)).

Verification: After receiving the job, W proceeds to
verify the correctness of the payment P. It first verifies the
correctness of the job payment, using o = p~*(H (M)). That
is, W verifies that the payment was generated by O for W,
has the serial number SN, is for currency amount v, is valid
for redemption before time 7' and is authenticated by B. If
these checks verify, W initializes Shr, its set of discovered
payment token shares, to the empty set. W selects random
indexes ¢1,..,¢q =g {1,..,2m + p}, ¢ < m and sends them
to O. O processes each index c; separately in the following
manner.

e If the c¢;th element of the payment set P, denoted by
P(cj), corresponds to an obfuscated payment token share,
P,, O sends the pre-image x of the ringer used for the
obfuscation of this value. W computes P(c;) @ f(z). If
the P(c;) value is valid, the result of this operation should
have the format (P,; H(P,)). W verifies that the value
P, has the format P, = (Id(O),Id(W),SN,v,T, s,).
W then verifies that the set Ver contains B’s signature
on the H(P,) value. If any of these checks fails, W/ aborts
the protocol. Otherwise, update the sets Shr = ShrUs,,
P =P —Plcj) and Ver = Ver —p ' (H(P,)).

e If P(c;) is a non-obfuscated payment token of format
(Rndy; sn), O sends the signed value p~t(H(P,)) re-
ceived from B during the share signature step (but not
sent to W during job transmission). W checks that

H(Id(O),Id(W),SN,v,T,s,) = pp '(H(P,)). If
this verification fails, W aborts the protocol. Otherwise,
it updates the set Shr = Shr U s,.

Computation: W evaluates f on each z € D. Then,
it computes f(z) @ P(i) , for all i = 1.2m + p. P(i)
denotes the ith element of the outsourced payment set P.
If the result is of the form (P;H(P)), with P of format
(Id(0),1d(W),SN,v,T,s) and p~'(H(P)) € Ver, then
update the sets Shr = ShrUs, P = P — P(i), Ver =
Ver — p~1(H(P)). That is, an obfuscated share has been
discovered.

Redemption: If W finishes the job before the dead-
line 7T, it sends the share set Shr to B, along with the
tuple (SN, v,T). B retrieves from its local storage the tu-
ple (SN,v,T,t, K, HS) indexed under SN, where HS =
{H(P+1),.... H(Paym+p)}. B verifies that the request comes
from the worker W whose id is contained in the token
P = Eg(p *({1d(0),1d(W),SN,v,T))). B only accepts
this redemption request once and if the current time is less
than 7. B sends to W the set HS. Let C'Shr be the set
of non-obfuscated shares that W needs to identify. Initially,
CShr = (). W performs the following actions.

« For each value in P (there should be 2m + p— k elements
left), treat the value as if being of format (Rnd,;s,),
where Rnd,, is a random number and s,, is a payment
share. Compute P, = (Id(0), Id(W),SN,v,T,s,) and
look for the hash of this value in the set HS. If a match
is found, CShr = CShr U s,,.

o Send the C'Shr set to B.

B verifies the correctness of the shares in C'Shr, by also
looking them up in HS. B then uses all the shares from the set
Shr, plus 2m — |Shr| shares from C'Shr to reconstruct the
payment P. If it succeeds, it deposits the payment into WW’s
account.

Cancellation: If the current time exceeds 1, W cannot
redeem the payment. O however, can cancel the payment, by
sending P to B. Then, if W has not redeemed the payment
before time 7', B reimburses O. O cannot cancel a payment
before the expiration time of the associated job.

A. Analysis

Intuition: The set Ver does not contain B’s signatures
on the cleartext payment tokens, Clryy1, .., Clrop4p, to pre-
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(a) Probability of detection of malicious outsourcers as a function of the number of additional shares p and of the number of challenges g, for

m = 100. (b) Probability of detection as a function of the number of additional shares p, for ¢ = 30. For a p = 30 and q = 30, the probability of detecting
an outsourcer that corrupts p + 1 shares is larger than 99%. Note that in this case p = ¢ = 3/m.

vent the worker from immediately distinguishing them from
the Obfy, .., Obfy shares. During the verification step, O needs
to prove either that the challenged share was obfuscated or
that it was presented in cleartext to 1. The proof consists
of showing to W the fact that B has witnessed (signed)
the obfuscated and cleartext challenged shares in the format
claimed by O. In both cases the worker receives one payment
share. When the worker completes the computation, if it has
not retrieved 2m shares, the bank will allow it to search for
additional cleartext shares. This process is allowed only once,
thus W has to be certain that it has retrieved all the shares it
needs or that it has completed the job.

Note that as mentioned in the previous solution, O cannot
cancel a payment before the expiration time of the associated
job and prevent a worker from redeeming the recovered
payment.

We first show that this solution is resilient to the invalid
share attack.

Theorem 3. The probability that an gnvalid shares attack is
detected is lower bounded by 1 —e=¢ /2.

Proof: For the attack to succeed, O must replace at least
p + 1 legitimate payment shares with bit strings that cannot
be used to reconstruct the original payment. We recall that
the bank does not verify the well-formedness of the payment
shares when it signs them, but instead leaves this process to
W, in the verification step. The verification step consists of
the random revelation of ¢ out of the 2m+p payment token
shares. The probability that any of W ’s challenges chooses an
invalid payment share is

(2m —1)...(2m — q)
2m+p)..Cm+p—q+1)

o pFl
2Zm+p—q+1

2m — q
2m+p—-qg+1

) =

1-(1 ) >1— e~ (PH1)a/(2m+p—a+1) -

1—e /2

Note that the last inequality holds due to the fact that ¢/m <
P, q (see Setup). [ |

Figure 4 depicts W’s chance of detecting a malicious
outsourcer that sends p + 1 “bad” shares, when m = 100.

We note that as the values of p and ¢ increase, the probability
quickly becomes close to 1. For instance, even when p=20, for
30 challenges (out of the 220 total shares), the probability of
capturing a malicious O that cheats as much as to prevent W
from recovering the payment, is larger than 96%. For p=30,
the probability becomes larger than 99%. The consequence of
Claim 3 is that our scheme is quite robust against the invalid
payment shares attack. The worker W is able to detect the
attack in the query phase with high probability.

We now propose another attack that the worker can launch.

Premature payment reconstruction: W attempts to
reconstruct a legitimate payment-token based on his knowl-
edge of the redundancy that is built into the payment-splitting
scheme. The objective is to allow a cheating worker to stop
the job computation step early, recover and then successfully
redeem the payment. After recovering a certain number of
payment shares that are embedded in the true ringers, W
attempts to verify that the remaining ringers are bogus while
simultaneously trying to extract the payment. Assume that he
has £ — = payment pieces that he has extracted legitimately
from true ringers (there are a total of k true ringers).

W premises that the remainder are bogus ringers and
chooses sets of 2m — k + x from which he extracts what
he believes are payment pieces. He then reconstructs each
set of 2m pieces and checks for duplicates among the re-
constructions. If there are any duplicates, then that is the
reconstructed payment he seeks. We observe that there are

2m+p—k+zx
2m —k+x

2m—k+a+ 1\

at most r = ) reconstructions he needs to

perform, and r > . Thus, the redundancy

in payment shares gives the worker an unfair advantage in
terminating the computation before completing the job while
also being able to recover the payment.

VI. EXACT PAYMENT SPLITTING

The first two solutions have two important drawbacks. First,
they are either vulnerable to the invalid payment share or
the premature payment reconstruction attack. Second, they
require heavy bank involvement. We now propose a solution
that addresses these problems: it thwarts both attacks while
involving B only in the payment generation step. Moreover,



in this solution, only O is involved in binding a payment to a
job.

As before, let G: {0,1}" — {0, 1} be a random generator
and H : {0,1}* — {0,1}" be a random hash function. We
provide concrete instantiations in Section VIII. Table III lists
our notational choices.

Setup: The bank, B, has the following.

¢ A trapdoor permutation, <p,p’1,d> that is secure from
non-uniform polynomial time [11] adversaries. The func-
tion p is public, and p~! is private to B.

o A generator, g € T' for a finite cyclic group, I' of order
q where q is prime. All of g, I' and ¢ are public. All
exponentiations of g are done modulo ¢; we omit the
“mod ¢~ qualification in our writing.

« A random keyed hash H : {0,1}* x {0,1}* — {0,1}"
based on H with the key K of length k. The key K is
secret to B. We assume that K is chosen with care and
Hy is constructed securely based on H. In other words,
if H is a random hash function, then so is H.

Payment generation: O requests B for a payment token
of a certain value. B generates (P, o) and sends it to O.

e« P = Hg (M) is a payment token. M contains the
value of the payment token (e.g., “$ 10”) and any other
information B may choose to put in it.

o« 0=p ' (H(g")). o is B’s signature on g*".

Job generation: O first generates an instance of
a job that consists of the function f I — R,
special image y and sub-domain D C I to be ex-
plored. O then genecrates r sets of ringers, J =
{Rl, AN 7Rr}- Each RZ = {H (f (tzl)) geeey H (f (ti,it))a
H (f (bz,l)) PP 7.FI (f (bz,lb))} Each H (f (ti,j)) is a true
ringer, and each H (f (b; ;)) is a bogus ringer. Each ¢; ; € D
and each b; ; € I — D. O needs to prove those facts to W
when challenged in the verification step below.

Binding payment to job: O’s objective is that W is able
to extract the payment token only if he does the job. O does
three things to bind P to J.

e O splits P into r shares Py, ..., P, such that P| x ... X
P, = P mod q — 1. Recall that r is the number of sets
of ringers from the Job Generation step above. O also
generates G = {gPl, ey g

o O obfuscates each P; with B’s trapdoor permutation.
That is, O computes £g,; = p (F;).

e O binds each £p; to the true ringers in R; as follows.
O computes K; = G (ti1 || ... || ti4,). We assume a
globally agreed-upon ordering for the ¢; ;’s, for example,
lexicographic. Without loss of generality, we assume that
ti1,...,tis, is that ordering. O then computes P; x =
K;® 5}371'. Let P = {Pz'7IC7 RV PTJC}-

Job Transmission: O sends (J,P,G,o, M) to W. Re-
call from the Payment Generation step above that o is B’s
signature on g©. W verifies that the cleartext M is acceptable
to him.

Verification: W runs a protocol with O to gain confi-
dence that if he completes the job, then he will be able to

retrieve the payment token. To achieve this, W chooses r — 1
indexes out of r as its challenge. Let ¢ be an index chosen by
W. O reveals to W all the f(t; ;) and f (b;;) from R;, the
corresponding ¢; ; and b;;, and P;. W now does the following
for each 7 in its chosen set of indexes.

o Verifies that g € G. And for i, j chosen by W such that
i # 7, verifies that g©¢ # ¢ .

« Verifies that each ¢; ; € D, each b;; € I — D, and each
H (f(ti;)) and H (f (biy)) is in R;.

« Computes K; = @ tiall..-|lt; 7 ). where iy is the
number of true ringer pre-images revealed for index ¢ by
O and t;1,...t; > are the lexicographically sorted true
ringer pre-images.

o Verifies that p (P;) = K; & Pi k.

In addition, let 71, ...,%,_1 be the indexes W chose, and i,

the remaining index for which the ringer pre-images and P;,
have not been disclosed to W by O. W verifies that:

i <(gpl_ )(P,-lx...xP,-rl)> (o)

Computation: At the end of the Verification step, W
is left with one set of ringers. Without loss of generality, we
assume that this is R,. An honest W does the following:

o Computes f on each value, v; € D.
o Checks whether H (f (v;)) € R,. If yes, it adds v; to a
set V.

Payment extraction: To extract what it believes to be
Ep.r =p(P;), W does the following. (Recall that we assume
that r is the index that was not chosen by W during the
verification step.)

« Computes K, =G (v1]] .. ||vs, ), where vy, ..., v;,
are sorted lexicographically.

o Computes g, =K, & P, k.

¢ Submits <P1,...,PT,1,5/];T> and M to B for reim-
bursement.

Payment redemption: For successful redemption, B
checks that M is valid, and P, X ... X P,_; x p~! (E/B\T) =
Hy (M). If p is homomorphic under multiplication, then W
can instead submit M and what it thinks is p(P). If the
check verifies, B credits W with the corresponding amount.
Otherwise, it rejects the payment.

A. Intuition

We present proofs of security properties we desire in Sec-
tion VII. Here, we discuss the intuition behind our construction
in the previous section. The intent behind splitting the payment
token P into r shares is to be able to embed each in a set
of ringers. The intent behind having r ringers is to run a
“cut-and-choose” type protocol in the Verification step — W
chooses exactly 1 out of the r sets of ringers on which to
base his computation; the remaining ones are revealed to him
by O. The intent behind obfuscating a payment share P; as
Ep.i = p(P;) is so that when W recovers a payment share, it
is unrecognizable to him. Therefore, unless he completes the



O The outsourcer P Payment token
f The function of interest for O n The number of payment shares
B The bank P; A share of P
w The worker r Number of payment shares
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Ri A set of ringers J A set of sets of ringers
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h Output length of H €p,i =p(P) An obfuscated payment share
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g A generator in I’ Pi.x = Ki ®EB,; | Encrypted, obfuscated payment share
q The prime order of I' P Set of P; xc’s

TABLE 111
Notation used in the exact payment splitting solution.

entire computation (or all the ringers in the set are true ringers
and he discovers all of them), he cannot be sure that there are
no more true ringers to be discovered. B, however, can easily
recover P; from Ep ;.

The intent behind encrypting the obfuscated payment share
as K;®Ep ; is to make the recovery of £ ; directly dependent
on discovering all the true ringers. The generator g and its
associated operations are used so W can be confident that O
is not cheating. That is, the g%* values enable W to verify that
all the shares are indeed linked to a value o signed by B. W
trusts B’s signature o, and bases its trust in O on whether it
is able to verify that signature before starting the computation
step.

B. Issues and Resolutions

We now discuss some issues with our solution and resolu-
tions for them.

O’s special values. Recall that one of the reasons O may
outsource the computation is that he has special values ¥ =
{y1,...,ys} C R for which he seeks pre-images in D. In our
solution, the values in Y do not appear. Our resolution to this
relies on the “lazy but honest” assumption about 1. The tuple
sent to W by O in the Job Transmission step can include Y.
W is then trusted to return any pre-images he finds for values
in Y to O at the end.

Double spending. We investigate the possibility that the
payment token P is “double spent.” There are various versions
of this problem: (i) O may redeem P with B himself before
an honest W has had the opportunity to complete the job. (ii)
O may embed the same P in jobs to two different workers,
Wi and Wy. (iii) W may attempt to get reimbursed for the
same P more than once. Our proposed resolution is for B to
generate an additional tuple, T' = (u, O, W, t,, t., s) as part of
the Payment Generation step. O also must communicate this
T to W during the Job Transmission step. 7' contains a unique
serial number, u, the identities of W and O, the time that P is
issued, t,, the time that P expires, t., and a signature s of B
over all these fields. Only W may redeem P during the time
interval [t,, t.]. O is allowed to redeem P after time ¢, if it has
not been redeemed already. W can check that he has a valid

and acceptable 7' before commencing the Computation step.
B retains u forever to prevent double-spending of P. The bank
is still offline, as the worker can redeem a recovered payment
anytime before ..

B as an oracle. W may use B as an oracle to guess the
key K, without completing the Computation step. A simple
approach W may adopt is to guess that he has discovered all
the true ringers at some point in the Computation step, con-
struct /C,. as his guess for the key based on the true ringers he
has discovered so far, and glleck whether B honors his request
for redemption based on K,.. A straightforward resolution to
this is to adopt the approach of Golle and Mironov [12] — B
allows W only one attempt at reimbursement.

Collisions of H. It is possible that a collision of H results
in an incorrect inference on the part of W about a true ringer.
Specifically, during the Computation step, it is possible that
W discovers a double u = (v, f (v)), where v € D, such that
H (f(v)) € R, and f(v) was never intended by O to be part
of R,. The f(v) may correspond to either a true or a false
ringer in R,.. Either way, W will incorporate v into his list of
true ringer pre-images in computing the key X,., which will
yield the incorrect key. Note that the probability of this event
can be decreased if H is applied on u instead of only f(v).
The probability of collision becomes then about 2~"/? where
h is the number of bits in the output of H. We do not propose
any resolution to this issue, other than to suggest that W must
be aware of the risk of this happening, even if O is honest.

Pre-images of bogus ringers It is possible that a bogus
ringer, f (b; ;). has a pre-image, d € D. This would cause
W to incorporate d into his construction of the key K,
which would yield an incorrect £g, and cause his request for
redemption of the payment token to be rejected by B. It may
be the case that both O and W are honest, and W is denied
his payment. Certainly, the probability of this event can be
reduced using the idea mentioned in the previous paragraph,
that is, applying H over both the pre-image and the image,
u = (v, f (v)), instead of only the image, f(v).

If O is honest, he can calculate the number of redemption
attempts W must be allowed so he has a minimum probability
of successful redemption given, for example, a probability that



a bogus ringer has a pre-image in D. O can then communicate
this to B so B can incorporate this number in his redemption
policy. However, O can be lazy in that he can choose not
to communicate anything to B for the maximum number of
redemption attempts to allow for W (or simply communicate
the 1). Consequently, our only “resolution” to this issue is
that W must be aware that even if he does the computation
honestly, there is a probability that his redemption attempt will
fail. If p is the probability that a bogus ringer has a pre-image
in D, then the probability that W’s legitimate redemption
attempt fails is 1 — (1 — p)" where iy is the number of bogus
ringers.

It may appear then, that O has an incentive to maximize
the number of bogus ringers in the hope that W’s legitimate
redemption attempt fails. However, as Theorem 5 in Sec-
tion VII shows, O must balance this with the risk that W may
successfully redeem P without completing the computation.

VII. SECURITY PROPERTIES

We now present and prove the security properties of this
solution. We do not consider the extensions we discuss in
Section VI-B in our proofs, and only consider the original
solution from Section VI. We conjecture that the extensions
do not affect our security properties. We consider two classes
of security properties: protection from a dishonest outsourcer,
and protection from a dishonest worker.

A. Protection from a dishonest O

The objective of a dishonest O is to get W to complete
the job, but not be able to redeem P. We first express our
assertion in the following theorem in terms of W'’s success
probability after the Computation step.

Theorem 4. An honest W successfully redeems the payment
token with probability 1 — 1/r, where 1 is the number of sets
of ringers.

Proof: Assume that W is honest and completes the
computation, and yet is unable to redeem the payment.
This means that the verification by B fails. Recall from
Section VI that W submits to B: the “payment message”

M, and <P17...7PT,17¢5‘/;,>. B verifies that M is valid,
and Py x ... x Py x p} (5’;) = Hyx (M). If Bs

—

verification fails, then this means that £, # Ep,». (The other
components are verified by W during the Job Transmission
and Verification steps prior.) Recall that £, = K, & P,
where K, = G (vi]]...v;,) and P, is the encrypted and
obfuscated payment share that corresponds to the pth
ringers. .

One case is that I, # KC,., then this means that W was
unable to reconstruct the key from the true ringers he found.
We assume that the bogus ringers have no pre-images in D.
This can only be because O cheated with the construction.
The other case is that P, x is invalid. Recall that P x =
K @ p(P.). In this case as well, this can be only because O
used either an invalid C,., or applied p incorrectly, or used an
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Fig. 5.  Effects of Cheating Outsourcers: The profit made by an honest
worker when interacting with f% cheating outsourcers. Even when 80% of
outsourcers are cheating, the decrease in profit is around 7%.

invalid P,.. All of the above attempts by O to cheat would have
been detected by W in the Verification step, unless O cheated
on exactly one set of ringers, and W happened to not choose
that set for examination in the Verification step. Consequently,
O succeeds with a probability of only 1/r. [ |

Consequently, we can make the following assertion about
W?s success probability before he invests in the Computation
step.

Corollary 1. Successful completion of the Verification step
implies that W has a success probability of 1 — 1/r in
redemption once he completes the Computation step.

Effects of Cheating: A bad payment that passes the
verification step will not be identified by W during the
computation. If this were the case, W would be able to also
detect when it has revealed the last payment share, stop the
computation short and retrieve the payment.

Let n be the number of outsourcers and let f be the fraction
of (consistently) dishonest outsourcers. Let m the number of
workers. We assume that a worker will interact with a caught
dishonest outsourcer only once. Let all payments have the
same value, v. Let us assume that a worker receives one
job from each outsourcer. Then, fn jobs will contain bad
payments and (1— f)n jobs will contain good payments. Then,
the worker makes V' = (1 — f)nv money out of the n jobs.

Let us ignore the cost of verifying a payment. As shown in
the evaluation section, this cost is 1.1 seconds even for r=100
and more compute intensive abc-conjecture jobs. Let ¢ be the
cost of executing a job. The work the worker does for the n
jobsis C' = (1— f)nc+ fnc/r. This is because only fn/r jobs
from the fn dishonest outsourcers pass the verification step.
Then, the money per job made by the worker is on average

L (=fiw (= fp
Profit=V/C = (1— finc+ fncjr  (1—f + f/r)e
_v/cxm

The fraction of bad jobs f could be evaluated periodically
system-wide: Each worker reports bad payments and proves



them — communication between O and W is over an authenti-
cated channel. Once per epoch (whose length is a system-wide
parameter) the value of f is evaluated. The worker’s union
adjusts the cost to be paid for a job to be v x % for the
next epoch. Figure 5 shows the decrease in profit made by an
honest worker when interacting with f% cheating outsourcers.
The ratio v/c is set to 1 and r is set to 100. The decrease in
profit is linear until f = 80%. When f = 80%, the decrease
in profit is only 7%.

Note that jobs are likely to have different sizes. The value
v for a job should be proportional to the number of CPU
cycles required to complete it. Dishonest outsourcers could
also prefer to cheat on larger jobs. Note however that the value
of r could also be proportional with the job size: for larger
jobs the chance of providing a bad payment should be smaller.

B. Protection from a dishonest W

In this section, we assume that O is honest. W may attempt
to reconstruct a legitimate £p ,, = p (P,) without completing
the job.

Theorem 5. If W is able to reconstruct Eg » = p (P,) without
finishing the job with probability p, a Golle-Mironov worker
can successfully stop early with probability at least p — e,
where € is the probability that W correlates p (P,) and g*".

Proof: (Intuition) We build the proof by reducing Golle-
Mironov’s solution to our solution. Let us assume that there
exists a PPT algorithm A which when run by a worker can
reconstruct £, = p (P,) without computing the entire job.
We then build a PPT algorithm B that allows a Golle-Mironov
worker to successfully stop early its computation. B works
in the following manner. First, it interacts with the (Golle-
Mironov) outsourcer O and receives a job consisting of the
function f, domain D and set of ringers f(x1),.., f(Z2m)-
B then runs the Payment Generation protocol with bank B
to obtain a valid payment P which it splits into r shares,
Py, .., P.. B then starts to compute the job received from the
outsourcer.

Let us consider the step (1) of this computation where B
has processed [ input values from the domain D and has
discovered k ringers, where m < k <[ < 2m. Let x1, ..,
be the (Golle-Mironov style) ringer pre-images discovered. At
this step, B runs the Job Generation and Binding Payment to
Job protocols to compute r ringer sets for A as follows. For
r — 1 of the ringer sets, it computes each ringer set using
inputs from D which it has already processed but which are
not Golle-Mironov style ringers. It uses these r — 1 ringer sets
to obfuscate r—1 payment shares, P, .., P._1. B computes the
last ringer set to be H(f(x1)), .., H(f(x2m)). It also computes
key K, = G(z1]|...||]zx) and uses it to obfuscate the last
payment share P,. B then runs the Job Transmission protocol
with A in the following manner. At each step it sends the
values previously computed to A and they engage in the
Verification protocol. If the » — 1 indexes challenged by A
contain r, B, stops and starts over. If the r — 1 indexes do not
contain 7, B follows the Verification protocol until the end.

B then interacts with A as if it were the bank B. That is, if
A returns p(P,), the last obfuscated payment share, B stops
and returns x4, .., £y to the outsourcer. Otherwise, B proceeds
with the step (I + 1) of its computation and repeats the above
procedure.

We need to prove first that B terminates in expected
polynomial time. This is true, since each interaction with O,
B and A is expected polynomial time, /3 runs only up to |D
computation steps and for each step it runs the Verification
protocol an expected r times (before A chooses the right job
to perform).

Then, it is straightforward to see that A succeeds only
if A recognizes the end of the job before completing it or
if A can correlate p(P,) and g~. By hypothesis, the latter
case occurs with probability upper bounded by e. Also, the
former case corresponds to the case where B succeeds. Thus,
Pr[B succeeds] > Pr[A succeeds] — e. [ |

VIII. EMPIRICAL EVALUATION

Our first solution can be used in volunteer computing envi-
ronments, where outsourcers may be more trusted. Our second
solution can be used in cloud computing environments where
the cloud providers are more trustworthy. However, given the
resilience of our third solution to both cheating outsourcers
and workers, as well as its lightweight use of the bank, we
believe it should be preferred in most implementations. In this
section we investigate the costs imposed by our third solution
on the operation of all system participants.

We first consider the bank, which is the system bottle-
neck, involved both in payment generation and redemption
transactions. The bank may be unwilling to implement our
solution if the overhead of such transactions is too high. Due
to large waiting times and system unavailability, significant
transaction costs can negatively impact the number of bank
customers. Thus, in the following we place special emphasis
on these costs, by evaluating the bank’s ability to handle
multiple transactions per second.

Second, we are interested in the overhead imposed by
our solution on the operation of outsourcers and workers. In
particular, we need to compare payment related overheads
to the costs of evaluating actual jobs. Outsourcers will be
unwilling to use our solution if the associated overheads are
similar to the costs of actual jobs. Similarly, workers would
expect the payment verification and extraction costs to be
much smaller than the job costs.

We have implemented our solution and have tested each
component on Linux machines with dual core Intel Pentium 4
that clocks at 3.2GHz and 2GB of RAM. The code was written
in Java and runs on Sun’s 1.5.0 Java Runtime Environment
(JRE). We used the BouncyCastle security provider [3] to
implement the required cryptographic primitives. We have
implemented two job types, SHA-1 hash inversion and abc-
conjecture jobs. We separately describe the implementation
details of each job type.

The SHA-1 inversion job. A job is a triple (SHA —
1,D,y). The job consists of applying SHA-1 to each input



value from a given domain D, a subset of the space of all input
strings of a given length. The result of the job consists of all (if
any) input values ¢ € D for which SHA — 1(z) = y. During
the job generation step, the outsourcer generates a ringer as
H(SHA — 1(z)), where = € D for true ringers and = € D
for bogus ringers. To recover the payment, the worker needs
to find all true ringer preimages from the remaining share.

The abc-conjecture job. The abc conjecture is stated as
follows. Given three integers a, b and ¢, where ged(a,b) =1
and ¢ = a+b, define the quality of the triple, quality(a, b, c) =
log ¢/ log rad(abc), where rad(z) is the product of the distinct
prime factors of x. The abc conjecture states then that the
number of (a,b,¢) triples for which quality(a,b,c) > 1+ ¢
is finite, for any € > 0. An abc-conjecture job consists
of the triple {(quality, D, x Dp,1 + €). That is, for each
a € D, and b € D, such that ged(a,b) = 1 compute
quality(a,b,a + b). The result of the job consists of all
a and b values for which quality(a,b,a + b) > 1+ e.
Before outsourcing the job, the outsourcer generates ringers
of the form H(quality(a,b,a + b)), for randomly chosen
a € Dy, b € D, for true ringers and a € D,, b € D, for bogus
ringers. Note that the quality(a, b, a+b) value for ringers does
not need to be larger than 1 + €.

The focus of our implementation is not on solving the hash
inversion or the abc-conjecture problems. Instead, our goal
is to study the computation costs imposed by our payment
solution on the system participants, in the context of these
computations.

Instantiations. We now discuss concrete instantiations for
the abstractions used in our solution. We chose SHA-1 to
implement the function H and also for implementing the
HMAC function Hg. The bank’s secret key K was instan-
tiated using a SecretKey object, using a secret key generator
provided by BouncyCastle [3]. We used RSA for the bank’s
trapdoor permutation (p,p~!,d). Let N denote the bit size
of the RSA modulus. The generator g and the group order
g of group I' were computed as ElGamal parameters. Let |g|
denote the bit size of I'’s order. N and |g| are parameters
and their values are specified in our experiments. We used
a SecureRandom instance based on a SHA-1 pseudo-random
generator to implement the random generator G.

In the following, all results presented are an average over
100 independent experiments.

A. Bank Transaction Costs

In the following we investigate the costs of each procedure
involving the bank.

Setup: We start by evaluating the time to perform the
initial setup operation. The time to generate 1024 bit RSA
parameters is 444ms, the time to generate 256 bit ElGamal
parameters is 1943ms and the time to instantiate the HMAC
and initialize it with a fresh secret key is 50ms. The total
setup time for these parameters is then on average less than
2.5 seconds. Note that this operation needs to be performed
only once, at startup. While periodically changing the system
parameters makes sense to enhance security, this issue is

beyond the scope of the paper. We note however that changing
security parameters needs to be done with care to avoid a
situation where the bank rejects valid but outdated payments.

Payment Generation and Redemption: The approxi-
mate cost of payment generation and redemption transactions
is given by Equations 1 and 2. Trsa_sig(IN) and Trsa_gec(N)
are the RSA signature and private key decryption costs for
the corresponding RSA modulus N, Teyp(|g]) and Ty (|g))
are the costs of modular exponentiation and multiplication
in ' and Ty is the hashing cost. Compared to the other
components, the hashing cost is very small and can be safely
ignored.

TPGen = TRSA_sig (N) + Tezp(|q‘) + 2CTH (1)

Tpreda = Trsa_dec(N) + 1T (lq]) + TH (2)

In one experiment we recorded the evolution of payment
transaction costs as a function of N, ranging from 512 to
2048 bits. We set |g| to be 256 bits and the number of ringer
sets, r, to be 2. Figure 6(a) shows our results. As expected
from Equations 1 and 2, payment redemption transactions
are more efficient than payment generations. For instance, for
small N values (512 bits), the bank can redeem almost 500
payments per second and generate 350 payments per second.
This is because the time to sign and encrypt are very similar,
however, a modular exponentiation is more expensive than 2
multiplications.

For large values of N the costs of the two transactions
become almost equal. For instance, for N = 2048, both
transactions take approximately 66ms. This is because for
large N values the RSA signature and private key encryption
costs becomes the dominant factor. Note that when N = 1024
both transactions take approximately 10ms, allowing a single
PC to generate and redeem 100 payments per second. In the
following experiments we set N to be 1024 bits.

In a second experiment we study the bank’s cost dependency
on |g|, ranging from 64 to 512 bits (N is set to 1024 bits).
Figure 6(b) shows our findings. The payment redemption
cost is almost constant, as it depends almost entirely on the
RSA modulus size — even for large |g| values the modular
multiplication cost is very low. However, the modular expo-
nentiation cost for large |g| values becomes significant. (see
Equation 1). This determines a decrease in the number of
payment generation transactions performed per second from
around 100, for smaller |g| values, to around 70 for |q| = 512.
In the following experiments we set |g| to be 256, sufficient
according to current specifications [15].

Payment size and network delays: The size of a
payment token generated by the bank and sent to an outsourcer
is |N|+h, where h is the hash function output bit size. For the
values considered (|N| = 1024 bits, h=160 bits for SHA-1),
the payment token can fit a single packet (MTU=1500 bytes).
The size of the payment structure sent by a worker to the bank
during the payment redemption step is (r — 1)|q| + N. When
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r = 100, the traffic generated by the payment redemption step
is 3 packets.

B. Outsourcer Overhead

We study now the costs incurred in our solution by a
participant outsourcing a job. As mentioned before we con-
sider two types of jobs, hash inversions and abc-conjecture
jobs. In particular, we are interested in the costs imposed
by the generation of ringers as well as the costs to split a
payment token, obfuscate the shares and blind each share with
a ringer set. Where applicable, we compare these costs against
the baseline costs of an outsourcer implementing the Golle-
Mironov [12] solution.

Ringer Generation: The cost of generating the ringer
sets in our solution is approximately given by equation 3,
where cnt is the number of ringers (true and bogus) in a ringer
set and T is the average cost of computing the function f on
one input value from domain D.

TRing =r X cnt X (TH + Tf) 3)

We implement our solution using up to 100 ringer sets,
where the total number of ringers in each set is 10. We limit
the job computation time by considering only domains where
the largest possible element is 10°. Figure 7(a) shows our
findings, where each bar is an average over 100 independent
experiments (jobs). The first (gray) bar in each pair is the cost
(in milliseconds) for hash inversion and the second (black) bar
is the cost for abc-conjecture jobs. The first two bars in the
graph are the Golle-Mironov costs (r=1). The remaining pairs
are for our solution when r ranges from 10 to 100. The y axis
is shown in logarithmic scale.

As indicated by Equation 3, the ringer generation overhead
is dependent on the number of ringers (sets). By generating
a single ringer set, Golle-Mironov is more efficient, requiring
only 4ms for generating hash inversion ringers and 13ms for
abc-conjecture ringers. As expected, the cost of our solution
grows linearly with the number of ringer sets. The job type is
the other factor in the ringer generation cost, since generating

a ringer effectively means computing the job on a randomly
chosen input point. The ringer generation cost for the abc-
conjecture is higher than for hash inversion. The hash inversion
ringer generation cost is practically independent of the bit
length of the input value (for reasonably sized inputs). This is
certainly not the case for abc-conjecture ringers, which require
factoring numbers from the input domain. Note however that
even for 100 ringer sets of 10 ringers each, the outsourcer’s
ringer generation cost for the abc-conjecture (of input values
a, b and ¢ upper bounded by 1000000) is under 1s. For the
same parameters but for the hash inversion problem, this cost
is significantly smaller, around 75ms. The outsourcer needs to
perform this task only once per job, thus we believe this cost
to be very reasonable.

Binding payment to job: Once the ringer sets are
computed the outsourcer needs to split a payment token and
use the ringer sets to blind each payment share. The cost
of this task is independent of the job type and has three
components, Ty (see Equation 4), Topr = rTRSA_enc(V)
and Tping = 7Tyor(N), where Trsa ene is the RSA public
key encryption cost, Tyo(N) is the time to perform an Xor
operation on N bit input values and Tj,, is the modular
inversion cost.

Tspli,t = va(\(ﬂ) + TTmul(‘qD + TT&Z]J(‘QD (4)

We measure the time taken by each component when
the number of ringer sets r increases from 10 to 100 and
the number of ringers (true and bogus) in each set is 10.
Figure 7(b) shows our results, averaged over 100 independent
experiments. Since the last step, of binding the ringer sets to
payment shares, only consists of Xor operations, it imposes
the smallest overhead, less than 17ms even for » = 100.
The split and obfuscation steps impose similar costs, with the
obfuscation step being slightly more expensive. This is because
these steps are dominated by the cost of » RSA encryptions
and modular exponentiations in I'. However, even for r = 100,
the total cost of binding a payment to a job is less then 200ms.
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In conclusion, the total cost incurred by the outsourcer is
under 1.2s for abc-conjecture jobs and under 0.3s for hash
inversion jobs even when 100 ringer sets are used. The ringer
generation step is job dependent but the ringer to payment
binding is independent of job details. As the size of the job
increases, the ringer generation overhead becomes dominant
(see Equation 5) however it is only a fraction of the total job
computation cost.

Overhead(O) = (Tring + Tsprit + Tovs + Tvina)/Tjob
~ (rxcntxTy)/(|D| x Ty)
= rxcnt/|D| (5)

C. Worker Costs

Finally, we study the worker overheads. Specifically, we
are interested in the three main components, verification, the
actual job computation and the extraction of the last payment
share.

Payment and Job Verification: The worker needs to
verify that if it completes the job, it is able w.h.p. to extract
the payment. The verification cost is approximately given in
Equation 6, where Trsa_enc(N) and Trsa_ver (IN) denote the
RSA signature verification and public key encryption costs.
For all practical purposes these two costs are equivalent.

Tver = (r—1)x(ent x (Tu + T¢) + 2Teup(lq]) +

+TRSA_enc(N) + Tzor(N)) + TRSA_ver(NX6)

We measure the worker’s verification cost as a function
of the number of ringer sets employed by the outsourcer.
That is, we increase r from 10 to 100, each ringer set
containing 10 ringers. Figure 8(a) shows the verification cost
both for hash inversion and abc-conjecture jobs, each data
point being averaged over 100 independent experiments. It
is interesting to note that the verification cost is quite similar
to the outsourcer’s ringer generation cost. The worker’s cost
is slightly larger, consisting of roughly » — 1 additional RSA
public key encryptions and 2(r — 1) modular exponentiations
in the group I'. However, even for abc-conjecture jobs with
100 ringer sets, each consisting of 10 ringers, the worker’s

cost is approximately 1.1s. For hash inversion jobs this cost
is under 300ms.

Computation Costs: We also briefly investigate the
worker’s job computation cost as a function of the job size
(cardinality of input domain D). For both hash inversion and
abc-conjecture job types, we experiment with input domain
sizes ranging from 100000 to half a million. Each input
domain consists of contiguous ranges of integers up to 10% !.
Figure 8(b) shows the results of this experiment. Note that
Golle-Mironov’s computation overhead is identical to that of
our solution: Besides performing the actual job, both solutions
require the worker to lookup each computed value in the set
of input ringers (the unrevealed set of ringers in our solution).

As expected, the computation cost increases linearly with
the input domain size. The increase is steeper for the abc-
conjecture job, reaching almost 300s for 500000 input values.
This cost will certainly be higher for larger input domain
values. Outsourcing jobs makes sense only if the computation
cost is on the order of hours. Note however that even when
compared to the jobs considered here, the overheads of our
solution, both for outsourcers and workers are negligible.

Payment Extraction: After completing the computation,
the worker needs to remove the ringer based blinding factor
from the last payment share. The overhead of this operation
is roughly an Xor operation, r string concatenations and one
random string generation. Figure 8(c) shows the cost of this
operation when the number of ringer sets r increases from 10
to 100. Each bar is an average over 100 independent experi-
ments. It is interesting to see that even though theoretically this
cost should be linear in r (the number of string concatenations)
in practice it is not. This is because the string concatenation
cost is negligible. The variations seen in Figure 8(c) are
actually quite small (the highest value is under 0.3ms) and
are due to running the experiments on a real machine.

D. Experimental Conclusions
Our experiments show that our protocol is efficient. First,

for standard security parameters, on a single off-the-shelf PC,

"For abc-conjecture jobs the input consists of two domains, for a and b
values.
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Worker costs. (a) Job verification cost as a function of the number of ringer sets. Even for 100 ringers sets and the more compute intensive

abc-conjecture jobs, our solution takes only 1.1s. (b) Actual computation overhead, function of the input domain D cardinality. Growth is linear and shows
that verification costs become negligible for reasonable sized jobs. (c) Payment extraction cost as a function of the number of ringer sets. The number of
ringer sets influences only the string concatenation cost. As such, the cost is less than 0.3ms.

the bank can perform 100 payment generation and payment
redemption transactions per second. Both transactions are job
independent, making the bank efficient irrespective of job
complexities. The traffic created by payment generation and
redemption transactions is of 1 respectively 3 packets. Since
the bank’s overhead is 10 ms for either transaction, the delay
incurred by clients during these transactions is likely to be
dominated by network latencies (tens of milliseconds).

Second, the overheads imposed by our solution on out-
sourcers and workers are negligible when compared to over-
heads of jobs. These overheads consist of job dependent and
job independent components. The job independent components
are on the order of milliseconds, thus negligible. The costs of
job dependent components are determined by the level of as-
surance needed by both outsourcers and workers: more ringer
sets improve the worker’s confidence whereas more ringers
per set improve the outsourcer’s confidence. However, these
overheads are very small when compared to the actual job
computation costs. In our experiments, the payment associated
overheads for either outsourcer or worker are less then 1.5s
for abc-conjecture jobs and only a few hundred milliseconds
for SHA-1 inversion jobs.

Our solution compares favorably with Golle-Mironov. Even
though expected to be slower, our solution introduces very
small overheads. This is a small cost to pay for the additional
benefit of providing payment redemption assurances to work-
ers.

IX. RELATED WORK

The model we use in this paper for securely distribut-
ing computations in a commercial environment is proposed
in [16], [13], [12]. Monrose et al. [16] propose the use of
computation proofs to ensure correct worker behavior. A proof
consists of the computation state at various points in its
execution. In essence then, the proof is a trace where each
value in the trace is the result of the computation based on
the previous trace value. The worker simultaneously performs
the computation and populates the proof trace. The outsourcer
probabilistically verifies the computation correctness given the
proof, by repeatedly picking a random trace value, executing

the computation given that value and comparing the output
with the next trace value.

Golle and Stubblebine [13] verify the correctness of com-
putation results by duplicating computations: a job is assigned
to multiple workers and the results are compared at the
outsourcer. Golle and Mironov [12] introduce the ringer con-
cept to elegantly solve the problem of verifying computation
completion for the “inversion of one-way function” class of
computations. Du et al. [9] address this problem by requiring
workers to commit to the computed values using Merkle
trees. The outsourcer verifies job completeness by querying
the values computed for several sample inputs.

Szajda et al. [19] and Sarmenta [17] propose probabilistic
verification mechanisms for increasing the chance of detecting
cheaters. In the same setting, Szajda et al. [20] propose a
strategy for distributing redundant computations, that increases
resistance to collusion and decreases associated computation
costs. Instead of redundantly distributing computations, Car-
bunar and Sion [6] propose a solution where workers are rated
for the quality of their work by a predefined number of ran-
domly chosen witnesses. This solution addresses not only the
selfishness of workers but also the reluctance of outsourcers
to provide fair ratings. Belenkiy et al. [4] propose the use of
incentives, by setting rewards and fines, to encourage proper
worker behavior. They define a game theoretic approach for
setting the fine-to-reward ratio, deciding how often to double-
check worker results.

Motivated by the need of resource constrained devices, such
as RFID tags, to perform (expensive) cryptographic operations,
Hohenberger and Lysyanskaya [14] introduce an outsourcing
framework where the workers act as cryptographic helpers to
dumb devices. This model introduces the additional constraint
of making the worker oblivious to the actual computation
while still allowing the outsourcer to efficiently verify its
correctness.

This paper extends the work of Carbunar and Tripunitara [7]
by introducing two new solutions to the simultaneous com-
putation for payment exchange problem. The first solution
obfuscates the payment with a key generated from ringers
associated with the job. The second solution uses threshold



cryptography to split the payment into multiple shares, where
only a subset of the shares is needed to reconstruct the
payment. Some shares are then obfuscated with ringers and
some are presented in clear to the worker. The two solutions
provide various degrees of trust to the worker and outsourcer.
As such, each solution is suitable for environments where one
of the participants is less trusted than the other. For instance,
cloud providers are more trusted than clients and volunteer
project outsourcers are more trusted than workers.

On a related note, Gentry et al. [10] introduce the concept of
secure distributed human computations. While computers are
still employed to solve large, difficult problems, humans can be
used to provide candidate solutions for problems that are hard
for computers (e.g., image analysis or speech recognition).
This work proposes the use of payouts not only as a reward
for solving problems, but also in the reverse manner. That
is, humans could be asked to solve simple problems (image
labeling, CAPTCHA solution gathering, proofreading short
texts, etc) as payment for small Internet services.

X. CONCLUSIONS

In this paper we study an instance of the secure computation
outsourcing problem in cloud and volunteer computing sce-
narios, where the job outsourcer and the workers are mutually
distrusting. We employ ringers coupled with secret sharing
techniques to provide verifiable and conditional e-payments.
Our solutions rely on the existence of a bank that is oblivious
to job details. We prove the security of our constructions and
show that the overheads imposed by our final solution on the
bank, outsourcers and workers are small.
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