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Abstract—In an outsourced database framework, clients level of query expressibility. This is particularly relevain
place data management responsibilities with specializedesvice  relational settings. Recently, protocols for equijoin aadge
providers. Of essential concern in such frameworks is data queries have been proposed [15], [34], [35].

privacy. Potential clients are reluctant to outsource serive data H tep furth d ide | head
to a foreign party without strong privacy assurances beyond ere we go one siep further and provide low overhead so-

policy “fine prints”. In this paper we introduce a mechanism for lutions forgeneralbinary JOIN predicates that satisfy certain
executing general binary JOIN operations (for predicates lhat properties: for any value in the considered data domain, the

satisfy certain properties) in an outsourced relational déabase numberof corresponding “matching” pair values (for which

framework with computational privacy and low overhead — a ; ; .
first, to the best of our knowledge. We illustrate via a set of ele- the p_redlcatG holds) is upper bound. We call these finite matc
predicates (FMPs).

vant instances of JOIN predicates, including: range and eqality ] )
(e.g., for geographical data), Hamming distance (e.g., fobNA Such predicates are extremely common and useful, includ-

matching) and semantics (i.e., in health-care scenarios —apping  ing any discrete data scenarios, such as ranges, invenmdry a
antibiotics to bacteria). We experimentally evaluate the rain company asset data sets, forensics and DNA data (e.qg., fuzzy
overhead components and show they are reasonable. The imlli o4 6y 40t Hamming distances), and health-care databages (e
client computation overhead for 100000 data items is around . o
5 minutes and our privacy mechanisms can sustain theoretita Oacteria to antibiotics matches). Moreover, at the experfise

throughputs of several million predicate evaluations per second, additional client-side processing (pruning of false posg)
even for an un-optimized OpenSSL based implementation. other predicate types (multi-argument, continuous daga) c

Index Terms—D.4.6 Security and Privacy Protection. E.0.c P& accommodated.
Data Encryption While on somewhat orthogonal dimensions, it might be
worth noting that other important challenges are to be con-
sidered in the framework of database outsourcing. Trans-
port layer security is important as eavesdropping of data
Outsourcing the “database as a service” [25] emerged asaagess primitives is unacceptable. This can be achieved by
affordable data management model for parties (“data ownersleploying existing traditional network security protogsuch
with limited abilities to host and support large in-housdadaas IPSec/SSL. Moreover, query correctness issues such as
centers of potentially significant resource footprint. st authentication and completeness are important and have bee
model aclient outsources its data management tdaaabase previously considered [42], [36], [43], [46].
service providemhich provides online access mechanisms for The main contributions of this paper include: (i) the pro-
qguerying and managing the hosted data sets. posal and definition of the problem of private joins for
Because most of the data management and query executieneralized query predicates, (ii) a solution for FMPsd) (ii
load is incurred by the service provider and not by thiés analysis, (iv) a proof-of-concept implementation angl (
client, this is intuitively advantageous and significantipre the experimental evaluation thereof.
affordable for parties with less experience, resourcesaiméd The paper is structured as follows. Section Il introduces
manpower. Compared with e.g., a small company, with likelythe main system, data and adversary models. Section Il
minimal data management knowledge, such a database seroieerviews, details and analyzes our solution. Section I&- pr
provider intuitively has the advantage of expertize and thposes predicate instance examples and their handling. Sec-
ability to offer the service much cheaper, with increasetibn V introduces our proof-of-concept implementation and
service availability and uptime guarantees. provides its experimental analysis. Section VI surveyatesl
Significant security issues are associated with such “owtork and Section VII concludes.
sourced database” frameworks, including communication-
layer security and data confidentiality. Confidentialityrad Il. MODEL
can be achieved by encrypting the outsourced content. Once
encrypted however, the data cannot be easily processectby thWe choose to keep the data outsourcing model concise
server. This limits the applicability of outsourcing, ag tiype Y€t representative. Sensitive data is placed by a client on a
of processing primitives available will be reduced drarceity. database server situated at the site and under the control of
Thus, it is important to provide mechanisms for server-sigedatabase service providetater, the client can access the

data processing that allow both confidentiality and a seffici Outsourced data through an online query interface exposed
by the server. Network layer confidentiality is assured by
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encrypted data is hard to process without revealing it, maal open(pred) revealed by the client, for any other predicate
for more expressive server-side data processing, cliefits vpred’ # pred for which the server does not havgen(pred’)
also pre-process data according to a set of supported (joamd any random values € {1..n} andj € {1..m}, for
predicates. They will then outsource additional assodiatany probabilistic polynomial time server algorith#i, the
metadata to aid the server in processing tasks. This metadatlue |Pr[Spreq £prea(open(pred), D]a;], D[b;])] — 1/2| is
however, will still be “locked” until such processing tas&ae negligible.
requested by the client. We stress that here we do not provide confidentiality of
Later, to allow server-side data processing, the client wipredicates, but rather just of the underlying target data. W
provide certain “unlocking” information for the metadatsa- also note that we do not consider here the ability of the serve
ciated with the accessed items. The server will perferactly to use out of band information and general knowledge about
the considered query (and nothing more) without finding otfie data sets to infer what the underlying data and the query
any additional information. results look like. In fact we envision a more formal definitio
It is important for the outsourced metadata not to revell which privacy guarantees do not allow any leaks to the
any information about the original data. Additionally, theerver beyond exactly such inferences that the curiousserv
computation, storage and network transfer overhead showutdy do on its own based on outside information.
maintain the cost advantages of outsourcing, e.g., e)cmmtben‘ormance Constraints. The main performance constraint
times should not increase significantly. We consider a rela- . S P o
tional model, where we consider the outsourced data as a ‘Set 3¢ interested in ignaintaining the applicability of out-

of t data columns (e.g., relational attributes),stored on the S?f%r.(;'l:? (:Eaﬁag'.zl:]lfr’ rgczsgans)lqr?r?r?equnes%/clori?j Eatrgocr)e ¢
server. Letn be the average number of values stored in qnet ! P ng) | u u u

column andb be the number of bits in the representation o ourcing model N then it Sh.OUId St.'” be more (_aff|0|ent n
e secured version. We believe this constraint is esdentia

a value. Naturally, we allow relations to contain a variabl it is important to identifv solutions that validate in lrea

number of tuples. We use this notation for analysis purpos, por fy

only Iife. There exist a large number of apparently more elegant
' cryptographic primitives that could be deployed that would

Finite Match Predicates (FMPs).In this paper we consider ._: ", . ; : :
binary predicates : X x Y — B = {true, false} for fail this constraint. In particular, experimental resu[#4]

which the “match sets’P(x) := {y|p(z,y) = true} can be indicate thatpredicate evaluations on the server should not
computed by a polynomial time algorithm and their size (takenvolve any expensive (large modulus) modular arithmetic
over all encountered values af) is upper bound. In other such as exponentiation or multiplicatioWe resisted the
words, given a certain value in the considered data doma'n’%largely impractical) trend (found in existing research)use

its “matching” values can be determined in polynomial tim : : : : :
and their nurgnber is upper bound. We call thesrt)e p}r/edi(fiitkbe omomorphisms in server side operations, which would have

matchpredicates (FMPs). For a relation R matched againsténplified the mechanisms in theory but would have failed in
relation S, we define MMS, th@aximum match sizéo be the practice due to extremely poor performance, beyond usgabili
maximum number of matching values from relation R for any fact, in Section V we show that solutions that would employ

{i?r\:vein r??r?gen j%irfcgljgfyt/a?hcaet’ ﬁ)?ﬂgii?:i\t/gfsf‘wict’x’iggp‘g&rehomomorphisms would be several (2-4) orders of magnitude
within the same 30 mins interval (e.g., in a train station): Slower than solutions that we prppose n th|s_ paper. )
. We assume that servetorageis cheap. This assumption
\?\EEEETA;S(Fm \"’/‘gl”s"?: fréd_epg‘;t g:fﬁres time) < 30 is supported by recent findings that show the total cost of
' P ' storage management is orders of magnitude higher than the

In this example, the FMP has an MMS @4. storage equipment acquisition costs [18].
Privacy Requirements. In the considered adversarial modeladversary. We consider arhonest but curiouserver: given
the following privacy requirements are of concern. the possibility to get away undetected, it will attempt to

Initial  Confidentiality. The server should not be ablecompromise data confidentiality (e.g., in the process ofyue
to evaluate inter-column join predicates amtially stored execution). The protocols in this paper are protecting iyain
data without client “unlock” permission. Formally, given adataconfidentiality The server can certainly choose to deny
relation A with encoded element®|a1], .., D[a,], a relation service by explicitly not cooperating with its clients, g.gy
B with encoded element®[b1], .., D[by,], any random values not returning results or simply closing connections.
i€ {l..n} andj € {1..m}, for any probabilistic polynomial
time server algorithn®, the valug Pr(S(Dla;], D[b;])]—1/2]
is negligible. A. Tools

Predicate Safety.Following a client join request, the server
can only evaluate the stored data for the predicate providedl) Encryption, Hashing and Random Numberg/e con-
by the client. Specifically, given a relatioA with encoded sider ideal, collision-free hashes, denoted iy We consider
elementsD([a4], .., D[a,], a relationB with encoded elements semantically secure (IND-CPA) encryption mechanisms. We
DIby], .., D]b,,], and a predicate@red for which the client denote byEx (v) the encryption of valuer with secret key
provides opening informatioopen(pred), the server can only K. If not specified, the keyk will be implicitly secret and
learn the valuepred(a;,b;) € {true, false}, Vi = 1..n and known only to the client. In the following, we use the notatio
j = 1...m. Formally, given a predicatered and corresponding = <— g S to denotex’s uniformly random choice front'.



: . . _ p prime number
2) B_Ioom Filters.: Bloom filters [8] o_ffer a compact repre N bit size of p
sentation of a set of data items, allowing for fast set iriclus G subgroup ofZ,,
tests. Bloom filters ar@ne-way in that, the “contained” set p order of G
items cannot be enumerated easily (unless they are drawn 9 generator ofi
rA, ya | secret values for column A

from a finite, small space). Succinctly, a Bloom filter can be
viewed as a string of bits, initially all set to0. To inserta TABLE |

certain element, the filter sets tol the bit values at index TABLE OF SYMBOLS USED IN OUR SOLUTIONS
positions Hy(x), Ha(x), ..., Hy(x), where Hy, Ho, ..., Hy,

are a set of crypto-hashes. Testing set inclusion for a value

x is done by checking that the bits fall bit positions
Hiy(z), Ha(x),...,Hy(x) are set. By construction, Bloom
filters feature a controllable rate of false positivesg,{ for set . . .
inclusion tests. For a certain numb&r of inserted elements, . E is executed by the client, after runnir@. It takes as
there exists a relationship that determines the optimallrarm input a columnA € D, the key X and the secret values,

of hash functiongi, minimizin ‘ hy = +1n2 ~ 0.74 @ndya corresponding to columd.
) ) unct I I_ _IZI 9P to = N N E(A,K,x4,y4).: Associate with each elemeat € A,
which yields a false positive probability ofy, = (5)™° = ;, _ | 'a Bloom filter denotedBF (a;), with all the bits

2 ~ 0.62/N For a Bloom filter BF, we denote initially set to 0. Let P(a;) = {v|predps(ai,v) = true}
BF.insert(v) the insertion operation anBl F.contains(v) the be the set of values that satisfy the predicatedr,, for
set inclusion test (returning-ue if it contains valuev, false elementa;. For eacha; € A, encrypta; with the key K,
otherwise). producing Fx (a;). Compute then an “obfuscation” af;,
For an excellent survey on applications on Bloom filters and(a;,) = H(a;)za mod q. Then,Vv € P(a;), compute
their applications in a variety of network problems please se(v) = ¢"(“Jv4 mod p and insert them intaz;’s Bloom
[10]. filter (BF(a;).insert(es(v))). That is, BF(a;) encodes all
3) Computational Intractability AssumptionsLet G be a the values that satisfy the predicat® for a;. Finally, output
finite field of sizep prime and ordey and letg be a generator the valuesEx (a;), O(a;) and BF(a;). Let Dy denote the
for G. The Computational Diffie-Hellman assumption (CDHputput of E for all the columns inD. The client storesDr
[22]: on the server. Hence, elemeant <€ A is stored on the server
Definition 1: Given g, g% mod p and ¢® mod p, for asDr(A,i) = [Ex(a;), O(a;), BF(a;)].
a,b € Zg, it is computationally intractable to compute the

valuesx 4 andy 4, for all columnsA € D.

l %1112

value g** mod p. We now describe the join operatiod, executed by the
In the same cyclic grouf¥, the Discrete Logarithm assump-server..J takes as input two column namek B, a desired
tion (DL) states that: predicatepredr,; and a trapdoor value (computed and sent
Definition 2: Giveng,v € G, itis intractable to find- € Z, by the client)r 45 = g¥4/*2 mod p and outputs the result of
such thatv = g" mod p. the join of A and B ompredg);.
J(A,B,predpy,rap). . For each elemenb;, € B,
[1l. OUTSOURCEDJOINS WITH PRIVACY computee(b;) = rgg’j) mod p. That is, e4(b;) denotes

We define the arbitrary (non-hard-coded to a specifF@e vaIueb_j encoded in the same fashion as the eI.ements
application) predicate join solution to be a quadrupl@coded in BF(a;). For each elements; < A, iff.
(predFM, G, E, J), WherepredFM is the FMP,G is a param- BF(CLi).COTLtaZTLS(BA(bj)) return the tupldEK(az), EK(bJ»
eter generation functionZ is a data pre-processing function ) _ . )
and J denotes a joining function according to predicate In .r.eal .I|fe, J will output also any ado“non_a_l attributes
predpp. G and E are executed by the client and the output o?pe(_:'f_'Ed in the S,ELECT claqse, but for S,'“?p"c't}’ we make
E is outsourced to the servef. is executed by the server Onepr|C|t here and in the following only the join attributes.
two attributes of the client’s data. In this section we pdeva )
general description of thé, E and.J functions and in Section A- Analysis
IV we study two predicate and correspondity £ and J We now prove the following results.
function instances. In Figure | we summarize the symbold use Theorem 1:(Correctness) The join algorithni returns all
in our solution. matching tuples.

G is a parameter generation operation executed initially by
the client. Its input isN, a security parameter ang the Proof: During the join function/, for each element; €
number of columns in the client databaBe Letp = 2p’ +1 B, the server computes the valag(b;) = &fgﬂ mod p =
be aN bit long prime, such thap’ is also prime. The reason (gv4/=5)Hbi)zs — gH®5)va mod p. According to the func-
for this choice is to make the CDH assumption harder. Lébn E, the Bloom filter BF'(a;) of an elementa; € A
G = Z, be a group of ordeg, with a generatoy. stores values of typg™(")¥4 mod p, for all v € P(a;) =

G(N,t). : Generates an encryption kédy —r {0,1}*.  {v|predrap(a;,v) = true}. Thus, ifb; € P(a;) thenea(b;)
For each columm € D, generate two valuesa,y4 —r Z,, is stored inBF(a;).
x4 7 ya. Publishp andg and keep secret the kdy and the [ ]



Theorem 2:The (predrn, G, E, J) solution satisfies the B. Discussion and Extensions

initial confidentiality requirement outlined in Section Il. o o
Notes on Transitivity.: Under certain circumstances the

server may use our solution to perform transitive joins. tTha

Proof: Let us assume that for a relatioh with encoded s, provided with information to joind with B and later to
elementsDla1],.., D[a,] and a a relationB3 with encoded join B with C, it can join 4 andC. We make the observation
elementsD(b: ], .., D[by,], there exists a PPT algorithsh and  that on certain FMPs any solution will allow the server to
a pair of valuesi € {l..n} andj € {l.m} such that perform partial transitive joins, using the outcome of poexs
|Pr[S(Dla;], D[b;])] — 1/2| > e. Let the elementDa;] = joins. That is, when an elemebt B has matched an element
[Ek(a;), O(ai), BF(a;)] and letD[b;] = [Ex(b;), O(b;), a e A and an element € C, the server can infer that with a
BF'(bj)]. Then,A can have advantageonly if (i) Ex(a;) can certain probabilityz also matches. In conclusion, we believe
be distinguished fronx (b;) with advantage larger thanor  the transitive join problem to be less stringent than reagci
if (if) O(a;) can be distinguished fror®(b;) with advantage server-side storage and computation overhead.
larger thane or if (iii) O(a;) can be searched for iBF/(b;) Same-column Duplicate Leaks. In the case of duplicate
(the symmetric case is identical). In case (i), we can alsllbu, 5,65 occurring in the same data column, a data distributio
an algorithm that has advantage larger ta@gainst the IND- 65 can be identified. The deterministic nature of the otsts
CPA game of the semantically secure encryptionCase (ii) o step in the definition off associates the same obfuscated

cannot occur in an information theoretic sense, since thesa | o) s to duplicates of a value. Upon encountering two estri
O(a;) andO(b;) are obfuscated with different random valuesy iy, the same obfuscated value, the server indeed can infer
For case (iii), let us consider for simplicity th&tF(b;) Stores ¢ the two entries are identical. We first note that if joime
the setP(b;) as the set of obfuscated values(v), where o itormed on primary keys this leak does not occur. Addition
v € P(b;) — instead of using a %qum filter to encode they it is likely that in many applications this is not of azern.
ep(v) valugs. Then, it4 can findg®“) in the set of values Neyertheless, a solution can be provided, particularlestfior
ep(v) = g""")v=, then we can also build an algorithm thafpe case when the number of expected duplicates can be upper
defeats the discrete logarithm assumption (see Sectigi)ll- bound by a small value (e.gw). The deterministic nature
B of O(a;) is required to enable future Bloom filter lookups

Theorem 3:(predry, G, E, J) is predicate safe in the process of predicate evaluation. However, as long as
the predicate evaluation is designed with awareness of this
each duplicate can be replaced by a unique value. This can be
achieved by (i) populating Bloom filters with multiple difent
“variants” for each value expected to occur multiple tirmessq
(ii) replacing each duplicate instance with one of theséavas

Proof: We need to prove that given a a relatioh
with encoded element®[a,], .., D[a,], a relation B with
encoded elementd|b,], .., D[b,,], along with client pro-

Vid%d open:ng i'nformatiowAB :d g.yA/wB mod p :;md any instead of the actual value. These variants can be construct
random valuesi & {l..n} and j € {l.m}, for any for example by padding each value with differéng, (m) bits.
probabilistic polynomial time server algquthzﬁ, _the value For example, if the 10-bit valug13 (binary 1000000001) is

| PriSprea #prea(rap, Dlail, DIbj])] — 1/2] is negligible. Let expected to occur multiple times (but no more than= 4),

Let the elementDla;] = [Ex(a;), Ola:), BF(a;)] and let 5 pyq il pe prefixed to its binary representation, to yiél
Db;] = [Ex (b)), O(b;), BF(b;)]. As mentioned in the proof 4 .4 ants: 001000000001, 011000000001, 101000000001,

of Theorem 1’30 advantage can cowe from the _erf1crypt§d V11000000001, For each occurrence, one of these variants
ues E (a;) and E (b;). Moreover, the opening information, i e ysed instead in computing its obfuscated value in

TAB does npt provi_de information con_cernir@F(bj), thus E’s definition. Additionally, in any Bloom filter, instead of
in the following we ignore this Bloom filter. inserting justv = 513 (e.g., BF(a;).insert(g"(®v4)), all

Similar to the proof of Theorem 1, we make the simplifyingts four variants will be inserted. Care needs to be taken for
assumption that the structurBF(a;) = w{g”(Wva|vy < largerm values, as this solution can lead to space blowups
P(a;)}, wherer is a random permutation. That i F(a;) Or increases in the rate of false positives due to the additio
stores the encoded matching elements dprin a random “variant” information inserted in the Bloom filters.
order, instead of further encoding them in a Bloom filter. ithe Bloom Filter Sizes: Bloom filters (see Section II-A2)
any advantage of algorithr can be either from (iYO(a;), feature a controllable, arbitrarily small rate of false piges
O(b;) andrap or from (ii) O(b;), rap and BF(a;). In case for set inclusion tests. In the case of a join, the false p@sit
(i), S can obtain valueg’(®)va and g#(@)x,. However, rate of Bloom filters implies that a small percentage of the
these values cannot be compared without defeating theetiiscrresulting joined tuples daot match the predicate the join has
logarithm assumption. In case (i&j,can determine if the value been executed for. These tuples will then be pruned by the
rgg’j) is in BF'(a;). However, further comparisons mﬁg’j) client. Their percentage is then determined by the equstion
with the other elements iBF(a;) cannot occur due to the from Section [I-A2. Thus, a tradeoff between storage
use of cryptographic hash functions: the outputs valuebe®f toverhead and rate of false positives (and associated adaliti
hashes of even similar values and b; will likely differ in  network traffic) emerges. Larger Bloom filters reduce this
half of their bits. rate but require more storage, whereas smaller ones are

B cheaper to store but will incur additional network traffic



and client-size pruning of non-matching results. Morepvewith valuese [ — v, — v1]. Note that given the size of
associated network traffic costs are heavily dependent the range, n and a fixed probability of false positives,, we
the sizes of values in the data tuples. The optimal sizes fadive that the optimum Bloom filter size fs= —’zllsg’)f;,
Bloom filters becomes thus an application specific decision.

For example, for a predicate MMS N = 60 (e.g., in the B Hamming JOIN

simple query in Section Il), a desired false positive rate of
no more tharpy, = 0.8%, the equations from Section II-A2
can be used to determine one optimal sétep600 andh = 7.

It is often important to be able to evaluate Hamming dis-
tance on remote data with privacy in untrusted environments
This has applications in forensics, criminal investigat{e.g.,
fingerprints), biological DNA sequence matching, etc.

. R . Let x and y be b bit-long strings and leh < d < b
ing scenarios, it is important to handle data updates inerem be an integer value. We usé(z,y) to denote the Ham-
tally, W'th. minimal pverhead. In particular, any update slib ming distance ofz and y. We consider the join predicate
not require the client to re-parse the outsourced data sets

: . . . predpay(x,y) == (du(z,y) < d). An example is the fol-
in their entirety. The solution handles data updates nwuralowing fingerprint matching query that retrieves the nanes a

For any new incoming data |tem,_ the cllent_s Pre-processing: gates of entry for all individuals with physical fingers
function £ can be executed per-item and its results simp

x . fAn some binary representation) close enough to the ones of
forwarded to the server. A(_Jld|t|onally,_|n the case of a multlSuspects on the current EBI watch list:
threaded server, multiple clients (sharing secrets and)kegn

Data Updates and Multiple Clients: In data outsourc-

access the same data store simultaneously. SELECT wat chl i st. nane,
Complex, Multi-predicate Queries: Multiple predicate I m gration. name,
evaluations can be accommodated naturally. Confidentialit i mm gration. date

can be provided for the attributes involved in binary FMP$ROM wat chl i st, i nmi grati on

For example, in the following database schema, the assatiab\yrre Hanmi ng(wat chl i st. fi ngerprint
between patients and diseases is confidential but any other S ti ' fi . ,t <5
information is public and can be used in joins. To return a i mmi gration. fingerprint)

list of Manhattan-located patient names and their aniitBot 5 private execution of this join operation can be deployed

(but not their disease) the server will access both confidient . S : . .
(disease) and non-confidential (name,zip-code) values. using the solution introduced in Section Ill. The implemen-

tation of the Hamming part of the predicate requires specific

SELECT pati ents. nane, anti bi oti cs. name adjustments. In particular, in pre-processing, the cljEeudo-
FROM pati ents, anti biotics d IV bit-wi t Il the data el t 4
WHERE nd( patients. di sease, anti bi oti cs. nane) randomly _' -WISe permutes a e_ atae emep S condlgten
AND patients. zi pcode = 10128 It then splits each data element intb equal sized blocks,

] . ) ) where § is an input parameter discussed later. Then, for
Only the predicatend() will utilize the private evaluation sup- each such block, it generates three data items: one item will

port. This will be achieved as discussed above, by encryptig|ow |ater private comparisons with other blocks for edtyal
the patients.disease attribute and generating metadata fo(Hamming distance 0). The other two (a Bloom filter and

the antibiotics relation (which contains a list of diseases, «ocked” obfuscated value) will be used by the server to

that each antibiotic is recommended for). identify (with privacy) blocks at Hamming distance 1. In the
following we describe th€dy, Gy, EFy, Jy) solution, as an
IV. PREDICATE INSTANCES extension of the solution presented in Section |l.

To illustrate, we choose to detail two predicate instanees: The parameter generatdk,;, takes two additional param-

simple, range join and a Hamming distance predicate rewirieters,J andb. b is the bit length of elements from and 3
custom predicate-specific extensions. is the number of t_)locks into which each data element is split.
We assumed > d is constant, much smaller than the number
A R IOIN of elements stored in a database column. Possible values for
' a”ge ) [ are investigated later in this section.
hCon5|der tgepl\)m_ar){ FMW?}%) = (gl St (x _thy) F”W). Gu(N,t,8,b). : Choose a value — 5 {0,1}* and gener-
wherex, y € Z. An instance of this predicate is the following ] . b b
travel agency query, allocating buses to trips, ensuringus ( ate a secret pseudo randomlpermutamor{m 1}* —{0,1}".
no more than 10) last-minute empty slots per trip: For each data columd € D *, computes, = H(s, A). Use
] sa to seed a pseudo-random number generator PRG. Use PRG
SELECT buses. nane, tri ps. name

FROM buses, tri ps to generate3g secret, duplicate-free pseudo-random values
WHERE (buses. capacity-trips.participants) >= 5 2a(1), ., xa(B), ya(1),..,ya(B), 24(1), .., 24(8) —r Zq.
AND (buses. capacity-trips.participants) <= 10 En(A K,za(k),ya(k),za(k)),k = 1.6,A € D. :

For each element;, ¢ = 1..n of A, computea;'s bit-

Executing such a query remotely with privacy can bgise nermutationr(a;), then splitr(a;) into 8 blocks of
achieved efficiently by deploying the solution presented 'é‘qual bit length,a;1, .., a;s. For each blocka,, k = 1..8

_Sgctlon I_II. The parameter generation algorith@,and the_ enerate an obfuscated val@€a;,) = H (ai)za(k) mod g.
join algorithmJ will be the same. As above, the data encodi hen, createu,;'s Bloom filter by generating all values

algorithm encodes in the Bloom filtd8 F'(a;) of elementa;
all integer values inP(a;) := {y|p(ai,y) = true} namely 1A here is the column’s unique server-side name.



for which dg (a;;,v) = 1. That is, generate all values with Theorem 4:Any given pair of elements fromd and B

Hamming distance 1 from block;;. For each valuey, let

ek (v) = g"vatk) mod p. Encodeek (v) into a;;’'s Bloom

filter, using operationB F'(a;;,).insert(ea)*(v)). Compute an
additional structure allowing the server to assess (wikvey)

equality of the kth block of a; with the kth blocks of
other valuesZ(a;x) = H(aix)za(k) mod g. Finally, output
[Ex(a;), Olait), Z(ai), BF(a;)], for all k = 1..5. Hence
elementa; is stored on the server as a tupler(A4,i) =

[Ex(a;),O0(air), Z(ai), BF(a;)], similar to the solution in
Section Il

Algorithm 1 The Jy algorithm performing a Hamming
join between columng! and B.
hammingJOIN(A, B, ry(k), rp(k), 1, k = 1..05)
forall a; € A and k= 1..6 do
v(aix) = ra(k)?@*) mod p;
forall b; e Band k=1..5 do
v(bjx) = r5(k)*®*) mod p;
0(bs)
u(ka) = rk )
forall b; € B do
forall a; € A do
c 0
for (kx — 1;k<fFk—k+1)
if v(aik) §£ V(ka) then
if BF;;j(A).contains(u(bjx)) then

mod p;

c«—c+1;
else
c «— —1; #signaldrop
break;
if ¢ = —1 then continue; #drop(a;,b;)

if ¢ < d then output|Ex(a:), Ex(b;)];

To join two columnsA and B on predicatepredgys, Jg
receives the followings trapdoor values from the client (3
for each block) (i)ra(k) = g™/24®) mod p, (i) re(k) =
gtx/28(k) mod p and (i) r, = gv2®)/=8(8) mod p, for k =

1..6, whereRy, —r {0,1}* (generated at the client side). Se%

Algorithm 1 for the pseudo-code afy.

Ju(A,B,ra(k),rg(k), ),k = 1..3. : For each ele-
menta; from A and for eacht = 1..3, computev(a;;) =
ra(k)?@*) mod p. For each elemerit; from B and for each
k = 1..8, computev(b;) = rp(k)?®*) mod p. For each
elementb; € B and each element; € A, set counter to
0. For eacht = 1..3, if BF(aik).contains(rkO(bjk)) then do
¢ = c+1andk = k+1. Else, ifv(a;x) = v(bji), dok = k+1.
Otherwise, move to the next element, 1, from A. If at the
end of thek loop, ¢ < d, return(Ex (a;), Ex (b;)). Else, move
to the next element from, a;, ;.

at Hamming distance less than or equaldtés found with
probability at least~/7(1 + 451).

Proof: The operation of splitting the permuted elements
into 5 blocks and then comparing the Hamming distance
between blocks can be viewed as a balls and bins process,
where blocks represent bins and bit-wise differences sspre
balls. That is, bit-wise differences between any two eleimen
a; andb; are thrown uniformly at random intg blocks. If
dm(a;, b;) < d, for two elementss; andb;, then using the
balls and bins paradigm, the probability of a pair of blocks
(@i, bjx), k = 1..6, having Hamming distance exactlyis
P, (7)%(1 - %)d—l. The probability of blocks(aix, b;x)
to have Hamming distance smaller than or equal to 1 is then
Po+Pr=(1-3)"71 1+ %5 e (1 + 5,

We now have to prove that if any pair of bfocks from two
valuesa; andb; has at most one bit-wise difference, algorithm
Jy indeed returns the pair;, b;. To see why this is the case,
consider that

r,?“’jk’ = (gvAW /(RN HbiR)es (k) = guaHb) 1o p.

The values v for which dg(ak,v) 1 are en-
coded in a;,’s Bloom filter in the formatgv2(®H @) |f
BF(aik).contains(rko(bjk)) then dg (air, bjx) = 1 and the
counterc associated with the paifa;, b;) is incremented. If
the above condition is not satisfied, then

v(air) = ra(k)? ) mod p = (gt/z4(k))Hlem)zalk) —

Ry H(a;k)

=g mod p.

Similarly,

RkH(ka)

v(bjr) =g mod p.

If a;x = bjk, thenv(a) = v(bj,) and the countee should
not be incremented.
]
As an example, for a valug = 800 and d = 100, the
probability of finding a matching pair is 99.39%. Besidesgsi
a largerg, this probability can be further increased by trading
ff data storage and privacy. For instance, the server could
store for each bloclg;;, of a data element; a Bloom filter
containing all possible blocks at Hamming distance 2, a Bloo
filter for all possible blocks at Hamming distance 3 and so on,
until the desired precision level is reached.
Note on Predicate Safety.: The reasoning used
in Theorem 2 can be easily used to show that the
(dg,Gu,Fy,Jg) solution satisfies the confidentiality
requirement. The predicate safety requirement, however,
remains only partially true. The server can in fact deteamin
the actual Hamming distance between matching (but
encrypted) (a;,b;) pairs (satisfying thedg(a;,b;) < d

Note that for future query purposes the client does ngpndition). Moreover, the server can also find the Hamming
need to remember the values(k), ya(k), za(k)) for each gistance of some encrypteda,,b;) pairs for which
column A. Instead, it generates them by seeding its PRG_ dp(ai,b;) < 3. While out of scope here, a solution can

with s 4. For this, the client only needs to store one valse,

1) Analysis: We now prove the following result for the
Hamming join solution proposed above.

be provided for this case by prefixing origina, b; values
with a random number of special symbols with controllable
Hamming distances.



A

2) Complexity AnalysistetT,, ., be the time to encrypt an Enctal)
element, ., the time to perform one modulap) exponen- Enc(a2) | TGty porae |
tiation, 7,,,,; the time to perform a modulag) multiplication PN oa]
andTj,.s;, the time to perform a crypto-hash operatiaris the [ e [ew@n][ a2 [enc@2] [z@2)
number of hash functions used to encode elements in a Bloom [ enc@ N / [pF@)
filter. Then, ift is the number of attributes in the relation, the \ /1\\ | /2\ || ais'\\ | /4\\ \
following results hold.

Lemma 1:The initial client overhead istn(Tencr + [0 L0 [ e
25(Temp + Thash + Tmul) + b(Tewp + (h + 1)Thash + Tmul)) Enc(an) Enc(ail)

Proof: The per-element initial overhead is the sum of
three factors: (i) the cost to encrypt the element, (ii) tbetc Fig. 1.  Data structure for hierarchical private Hammingtafige. The

hierarchy in the example has three layers. On ldyegich element is split into
to generate the obfuscatéland Z values and (iii) the cost 2! blocks. The red rectangles denote the Z and BF structures associated

to generate thed Bloom filters, each storing/3 elements. with each block. Together Wit i (a; ), they are the only values stored on
The cost of storing one element in a Bloom filter is equal tbe server.

the cost of generating the obfuscated element (a cryptb-has
application and an XOR) plus the cost of anothecrypto-

hashes for generating the bit-wise positions to be set to 1. Arbitrary Distances.: One drawback of the previous
m Solution is the fixed nature of the Hamming distaddagat can

Lemma 2: The server-side storage overheaddgtnNj3), be considered. To accommodate a different distance, addlti

where N is the bit size ofp. The computation overhead for ametadata would need to be generated by the client accoyding|
Hamming join operation over two columns of elements is !Nstéad, it would be desirable to provide a single solution f
O(nB(Teap + hThash))- any distances. In the following we show how to extend the
Proof: The original database ha(tn) elements. Since a @P0Ve solution for arbitrary distances. _ 3
Bloom filter encodings numbers take$)(s) bits (see Section ~ For this purpose, the encoding algorithfly; is modified
Il) and the number of valueg that are at Hamming distanceto perform a _hlerarch|cal ge_nerallzanon of the previous
1 from a bit string of lengttb/3 is b/3, the storage required shuffle-and-divide pre-processing step. The new algorithm
by the 3 Bloom filters of an element i®)(b). The first result Err calls Ey logh times, for 3 = {1,2,2%,..b}. As a
follows then from the observation that each of theblocks result, each data element hag b layers of metadata, one
of an element, stored as output of tieand Z functions, for each value off (the individual block size). Figure 1
requiresO(b/3) bits. illustrates the output of functiory for two layers.
The second result is due to the fact that the Hamming join
computation overhead consists @fBloom filter searches for ~ The extended join algorithm/r g, is initially executed by
all the blocks for each ofi2 pairs of elements from the two the client and takes as an input parameter the distance
joined columns. m interest. Based od and the desired miss ratdyy decides
See Section V for a discussion on why for practica#Pon the appropriate layer of metadata on which the join
purposes a single crypto-hash application may be enoughsttpuld be performed and call$y, to be executed on the

replace theh Bloom filter hashes. server, with the corresponding parameters, detailedezaFor
instance, if the join is done on the metadata for the layer
3) Extensions: corresponding to the value = 2M°e?1+1 then the miss

Arbitrary Alphabets. : The above solution can also berate can be upper bound by 8%. The following result is then
deployed for an arbitrary alphabet, that is, when the elamesstraightforward.
stored in the databade are composed of symbols from multi- Theorem 5:(Overheads) The server-side storage overhead
bit alphabets (e.g., DNA sequences). This can be done by - supporting arbitrary distance Hamming joins increases
ploying a custom binary coding step. Lét= {ay,..,o,_1} DY @ factor oflogb over the Hamming join overhead. The
be an alphabet of, symbols. In the pre-processing phasecomputation and traffic overhead remain the same.
the client represents each symbol ovebits (u/ logu-fold Note that the server-side storage overhead for supporting
blowup in storage), such that symbal, = 2°. That is, arbitrary distance Hamming joins increases by a factdogb
dp (i, ) is 1if i # j and O otherwise. If each data itemover the Hamming join overhead. The computation and traffic
has b symbols, each of the item’s blocks will have;/3 overhead remain the same.
bits, and, due to the coding, pairs of elements of symbol- Variable Data Sizes. For illustration purposes, the
wise distancal will have a2d bit-wise Hamming distance. algorithms above have been presented considering elements
Thus, after the coding phase, the above algorithm can bkthe same, known size. We now show how to deploy them
deployed without change. As an example, for an alphabetaso for data columns with values of different represeatati
4 symbols{A,C,G,T}, the following encoding will be used bit sizes.
{A=0001,C=0010,G=0100,T=1000To compare the strings In the pre-processing stage, given an alphabet {«g, a1
ACG and ACT (alphabet distance 2), the following twa.. «,_1}, the client introduces an additional symbal,. It
binary strings will be compared instead: 000100100100 atitkn represents each of thet 1 alphabet symbols on + 1
000100101000 (binary Hamming distance 2). bits, with o;; = 2° anda, = 2%



Let ! be the expected maximum symbol length of elements
stored in the database ard < [ the symbol length of
elements in columr. The client then reduces this problem 4000
to the previous setting by “padding” each column with
symbols up to length. For example, it append§ — l4)
symbols of typea, to each element iMd. The padding is 2000
done before the random bit-wise permutation of the elements
to prevent the server from differentiating the padding sgiab

Hamming distance predicates will then be rewritten accord- 0
ingly. For example, to find all pairs of elements from columns
A and B whose Hamming distance is less than or equal,to
the client searches for all pairs at distante |4 — [p|. This Fig. 2. Comparison of RC4, 3DES, MD5 and SHAL. MDS can support
method has an additional padding-related storage overh&4gpahput of up to 150MB/sec in our setup.
that depends on the distribution of the data column symbol
lengths. It functions best if this distribution is very nam 10000
For flatter distributions, other non-padding mechanismsato
be envisioned.
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C. Additional Examples

We illustrated above two predicate instance extremes: one
very simple and straightforward range predicate and a more

exponentiations per second

1

]
bl
5

complex Hamming distance scenario, requiring custom,ipred T o e T
cate - specific mechanisms. In the following we list just a few modulus bit ize
more (and some of their application domains), straightimw Fig. 3. Modular exponentiation costs when the modulus simeges from

. . 512 to 4096. They axis is shown in logarithmic scale.
to deploy using the solution above. Y g

p(z,y) = (f(z,y) R r). Financial, geographic location
queries. For examplg¢(x,y) = 22 +y* andR ='<". _ o
p(z,y) = (§ €7 wy€2) We have considered three types of applications for the

private join algorithms. In a first application we used SNPs

p(z,y) == (z = y° mod q). Cryptography. ( single nucleotide polymorphisms ) from a human DNA
p(z,y) := (antibiotic  matches bacteriay). Health care database [2]. An SNP is a variation of a DNA sequence that
diagnostics. differs from the original sequence in a single position. gbal

p(z,y) := (patient = has diseasey). Census, health care. of a join is to identify all pairs of sequences from two colsnn
that differ in a single position. To achieve this, the Bloom

filter of a DNA sequence contains all the sequence’s SNPs.
For each value from the data set from [2] there are 25 SNPs,
Implementation Details: We conducted our experi- whose values are drawn from the four nucleotides, A, C, G,

ments using a C++ implementation of the private predicate joand T. Thus, each Bloom filter stores 100 values (MMS=100).
algorithms, on 3.2GHz Intel Pentium 4 processors with 1GRote that we have simplified the SNP evaluation for the
of RAM running Linux. We implemented the cryptographigurposes of illustration, as each SNP is actually composed
primitives using OpenSSL 0.9.7a. Our goal was to investigadf two nucleotides (one from the father and one from the
the feasibility of the algorithms in terms of computationmother. This effectively doubles the number of bits needed t
communication and storage overhead, both on the client amghresent them. Our second application performs fingearprin
the server side. matching, that is, identifying similar pairs of fingerpsnive

To understand the costs of encryption and hashing, we haweve used fingerprint data from [1] where each fingerprint
evaluated several symmetric encryption and crypto-hashioonsists of 100 features. For this application we consitlere
algorithms. In our setup we benchmarked RC4 at just belloanly fingerprints that differ in at most one feature to be
80MB/sec, and MD5 at up tal50MB/sec, shown in Figure 2. a match, thus, Bloom filters store 100 values (MMS=100).
We also benchmarked integer hashing throughput at more thehe last application identifies picture similarities, ugpifigital
1.1 million MD5 hashes per second, showing the "startupt cognages from the LabelMe [41] and Caltech 101 [17] databases.
of hashing. A set of images are annotated with scores for lightness, hue

As recommended by the Wassenaar Arrangement [32], we colors of interest [16], [20]. The Bloom filter associated
set N, the size of the primep to be 512 bits and the with an image contains score ranges of interest, which figr th
size of the prime q to be 160 bits. From our benchmarkapplication was set to 100 values around the image’s score
shown in Figure 3, we have concluded that 512-bit modul@mMS=100). To compare two images for similarity, the score
exponentiations (with 160 bit exponents) takéiusec while of one image is searched in the Bloom filter associated with
512-bit modular multiplications take onl§87nsec. the other image.

V. EXPERIMENTAL RESULTS
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Fig. 5. Client computation overhead: Bloom filter effect: eTkost of Fig. 7. Server cost: Bloom filter storage overhead, as péagenof the size
the RC4/MD5 combination when MMS increases from 10 to 100nedi of the cleartext data. The overhead is 42% for SNP databasesinder 3%
dependency between this cost and MMS. for fingerprint or image databases.

Client Computation Overheads. : We now describe within a given range of each other. In our implementatiom, fo
our investigation of the initial client pre-processingst®©f each element from one column we perform a 512-bit modular
interest were first the computation overhead involved ineggen exponentiation with a 160 bit modulus, followed by a crypto-
ating the encryption, obfuscation and Bloom filter compasenhash, fragment the result into 12 parts and use each part as a
associated with a database of 100000 elements of 16 byésposition into each of the Bloom filters associated with th
each. We experimented with four combinations of encrypticglements of the other column.
algorithms (RC4 and AES) and hashing algorithms (MD5 and As, to the best of our knowledge no other solutions exist
SHAL1), in a scenario where Bloom filters store 100 item®r arbitrary private joins on encrypted data, we chose to
each. Figure 4 depicts our results (log scale time axis). Fesmpare our solution against a hypothetical scenario which
each encryption/hash algorithm combination shown on thewould use the homomorphic properties of certain encryption
axis, the left hand bar is the encryption cost, the middle bathemes such as Paillier [39]. This comparison is motivated
is the Bloom filter generation cost and the right hand bar ks recent related work (e.g., [19]) that deploy this applotac
the obfuscation cost. Our experiments show the dominanceagfswer SUM and AVG aggregation queries on encrypted data.
the Bloom filter generation, a factor of 30 over the combinedoreover, we also considered the cost of solutions that gvoul
encryption and obfuscation costs. The total computatist caise RSA encryptions or decryptions to perform private joins
of each implementation is roughly 320 seconds with the mifFinally, we have also compared our solution against a base
imum being achieved by RC4/MD5. We further investigatedase with no privacy: the server stores the data in cleartext
the RC4/MD5 combination by increasing the MMS value fromperforms joins on request from the client and returns theexa
10 to 100. Figure 5 shows that the pre-processing overheagults.
increase is linear in the MMS value. The total costs range Figure 6 compares our solution against{iy, that performs
between 40 seconds (MMS=10) and 7 minutes (MMS=10@ne modular multiplication within the Paillier cryptosgst
We stress that this cost is incurred by the client only onc@ith a 1024-bit modulus, for every two elements that need
during the computation of the initial data structures. to be compared, (ii)C(enc), that uses one 1024-bit RSA

Server Computation Costs.: In order to evaluate the encryption for each comparison (i’ (dec), that uses one
performance of the private join algorithm we used columrEd24-bhit RSA decryption operation and (iv) NP, a no-privacy
of 10000 images each, collected from the LabelMe [41] armblution where the data is stored in clear at the server. The
Caltech 101 [17] databases. For each image we deployedxis represents the time in logarithmic scale. The first
1024-bit Bloom filters § = 12 hashes) with MMS=100. The bar shows the cost of the base case with no privacy (NP).
join operation returns all pairs of images that have scor@he second bar shows the performance of our FMP join
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algorithm. The cost is dominated 08 x 12 verifications 1
of Bloom filter bit values (the cost of computirig)* hashes

and exponentiations (modulo a 512-bit prime) is under 3.5s) 095

With a 21.3s computation overhead, the FMP join solution 0.9

performs two orders of magnitude faster th@p (third bar) 0.85 |

taking 1525s, three orders of magnitude faster tligmnc)

(fourth bar), taking 19168s and four orders of magnitudésfas 0.8

than C(dec) (fifth bar), taking 408163s. One reason for the 0.75

large overhead of the modular multiplications in the Peiilli 07 L ‘ ‘ ‘ ‘ ‘
system (used also in [19]) is the fact that while the modulus ’ 10 20 30 40 50 60

n has 1024 bits, the multiplications are actually performed
in the spaceZ’.. That is, the active modulus has 2048 bitsrig. 8. Hamming Join: Completeness (the probability ofmeing a matching
Using less than 1024 bits for is not recommended [3], [32]. pair) as a function of the value ¢f — the number of blocks used for dividing
. ] - feature strings.

Note that as expected our solution is two orders of magmtu&é1
(21.3s) less efficient than the trivial solution (0.23s)}ttstares
the data in cleartext at the server. _ _ 4) is upper bounded by the false positive rateaimy of the

Storage Ove_rhead.' Since we use symmetric encrypthn16 Bloom filters, fpiotas = 16 x fp = 0.2022. Let us now
algorithms, the size of th& values stored on the server is ge the generic solution to solve the same problem. A single
roughly_t_he same as the original size of the elements — thig,om filter, needs to storgle (1(20) = 4087975 elements.
no significant overhead over storing the cleartext data. Th§ schieve the same false positive rate as the one achieved
size of theO value for each element i8 = 512 bits, which  py the Hamming Join solution, the generic solution’s Bloom

is small and data-independent. Finally, Figure 7 shows thgers have to have 13,596,925 bits. Thus, the storage eeerh
overhead of the 1024 bit Bloom filters as a percentage of {8¢ the generic solution is more than 13000 times larger than
size of the original data. The largest overhead is 42%, fer thya one of the Hamming Join approach.

SNP database, due to the smaller size of SNPs. However, f0|&igure 8 shows for the same problem, the completeness of

image databases, the overhead is under 3% and for fing&prifk result of the Hamming join (the probability of returniag
is under 1%. Note that the total space storage overhead Fﬁétching pair) as a function of the value 6f Note that for

100000 items is 18.31MB. =16, this probability exceeds 0.975.
Transfer Overhead.: We have measured the communi-
cation overhead of the initial database transfer betwets si VI. RELATED WORK

located in Chicago and New York, more than a thousand miles

apart. With the bottleneck being the uplink capacity of the The paradigm of providing a database as a service recently
client, of around 3 Mbps, the overhead of transferring thémerged [25] as a viable alternative, likely due in no small
Bloom filters associated with 100000 items was roughly 3gart to the dramatically increasing availability of fasheap
seconds. networks. Given the global, networked, unreliable, pdgsib
Summary. The experimental evaluation of the main overheadabstile nature of the operation environments, providinguse
show that they are reasonable. The small initial costs ofy and integrity assurances has become essential.
generating metadata and transferring the database are onlgxtensive research has focused on various aspects of DBMS
incurred once. The storage overhead of the metadata is snsaiurity and privacy, including access control and general
and independent of the size of the data items. Finally, tirformation security issues [5], [4], [6], [7], [12], [13]26],

cost of executing 100 million private FMPs is 2-4 orderf7], [29], [30], [33], [37], [38], [40], [42]. Statisticaland

of magnitude faster than that of implementations using ttdippocratic databases aim to address the problem of allow-
homomorphic properties of certain asymmetric encryptidng aggregate queries on confidential data (stored on ttuste
algorithms to provide privacy. servers) without leaks [4], [5], [12], [13], [31].

Hamming Join vs. Generic Solution: To understand Hacigumus et al. [24] introduced a method for executing
the advantages of the Hamming Join solution when compar®@L queries over partly obfuscated outsourced data. The
with the generic solution, we consider our fingerprint maaigh data is divided into secret partitions and queries over the
problem. Each fingerprint has 100 featur&s1(00) and we are original data can be rewritten in terms of the resulting itiart
interested in matching fingerprints that have up to 4 difiereidentifiers; the server can then partly perform queriesatiye
features ¢=4). In the Hamming Join solution, we consider &he information leaked to the server is claimed to lbeut-
value of 3=16, that is, we divide the 100 bit feature string®f-s where s is the partition size. This balances a tradeoff
into 16 blocks, of 7 bits each. Let the total space allocatd@tween client-side and server-side processing, as adumrat
for the Bloom filter associated with a fingerprint be 1024 bitthe data segment size. At one extreme, privacy is completely
Then, for each of the 16 blocks of bits of a fingerprint, theompromised (small segment sizes) but client processing is
associated Bloom filter has 64 bits. Each Bloom filter hasinimal. At the other extreme, a high level of privacy can be
to store 7 values, leading to a false positive rate per bloelktained at the expense of the client processing the quieries
Bloom filter fp ~ 0.625*/7 = 0.012. The overall false positive their entirety. We believe this client load requirement efeht
rate (probability of returning a pair with distance larghat the very purpose of data outsourcing.
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Similarly, Hore et al. [28] deployed data partitioning taldu of privately performing join operations on encrypted dities,
“almost”-private indexes on attributes considered semsiAn using arbitrary FMP predicates. While previous work cannot
untrusted server is then able to execute “obfuscated rargge used to solve this problem, increased outsourced da&abas
qgueries with minimal information leakage”. An associateflinctionality can be provided when our solutions are used in

privacy-utility tradeoff for the index is discussed. conjunction with existing results.
Ge and Zdonik [19] have proposed the use of a secure
modern homomorphic encryption scheme, to perform private VII. CONCLUSIONS

SUM and AVG aggregate queries on encrypted data. Since gy, this paper we introduced mechanisms for executing JOIN
simple solution of encrypting only one value in an encryptiogperations on outsourced relational data with full computa
block is highly inefficient, the authors propose a solution f o4 privacy and low overheads The solution is not hard-
manipulating multiple data values in large encryption BRC -qqed for specific JOIN predicates (e.g., equijoin) buteath
Such manipu_lation .handle.s complex ar}d realistic scenarigg ks for a large set of predicates satisfying certain proge
such as predicates in queries, compression of data, ovelfloye evaluated its main overhead components experimentally
and more complex numeric data types (float). In Section ¥,q showed that we can perform more over 5 million private
we show that the overhead of the operations used in [19]df/pg per second, which is between two and four orders of

very large, exceeding the overhead of FMP predicate joins Ryagnitude faster than alternatives that would use asyninetr

three orders of magnitud(_a. encryption algorithms with homomorphic properties to avki
The problem of searching on encrypted data has also b‘?ﬁ'ﬂ/acy.

studied extensively. The setting of this problem considts o
clients that need to store encrypted documents on an uetrust
server and later wish to privately retrieve the documents . . .
containing certain encrypted keywords, without revealing W(_a would like to thank the anonymous reviewers for their
the server the keywords of interest. Song et al. [45] intréj—e'["’“Ied feedback.
duced an elegant solution that uses only simple cryptogcaph

primitives. Chang and Mitzenmacher [11] proposed a satutio

where the server stores an obfuscated keyword index which [ Biometrix Int. http://www.biometrix.at/.

then used by the client to perform the actual searches. Gol[ ?ﬁ{gﬁ":ﬁ‘;’ ggpAMﬁgyprsoifg_t' %tﬁl}/rﬁw'?ﬁtw,m%sasemmm,
et al. [23] provide a solution with the additional feature of ~ rsalabs/node.asp?id=2004.

allowing conjunctive keyword searches. In a similar contex[4] R.Agrawal, J. Kieman, R. Srikant, and Y. Xu. Hippoceatiatabases. In
Boneh et al. [9] proposed the notion of “public key encryptio \P,rl_oggyegg‘gjsolfzfgflg‘frgggghal Conference on Very Larggabases
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