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Toward Private Joins on Outsourced Data
Bogdan Carbunar, Radu Sion

Abstract—In an outsourced database framework, clients
place data management responsibilities with specialized service
providers. Of essential concern in such frameworks is data
privacy. Potential clients are reluctant to outsource sensitive data
to a foreign party without strong privacy assurances beyond
policy “fine prints”. In this paper we introduce a mechanism for
executing general binary JOIN operations (for predicates that
satisfy certain properties) in an outsourced relational database
framework with computational privacy and low overhead – a
first, to the best of our knowledge. We illustrate via a set of rele-
vant instances of JOIN predicates, including: range and equality
(e.g., for geographical data), Hamming distance (e.g., forDNA
matching) and semantics (i.e., in health-care scenarios – mapping
antibiotics to bacteria). We experimentally evaluate the main
overhead components and show they are reasonable. The initial
client computation overhead for 100000 data items is around
5 minutes and our privacy mechanisms can sustain theoretical
throughputs of several million predicate evaluations per second,
even for an un-optimized OpenSSL based implementation.

Index Terms—D.4.6 Security and Privacy Protection. E.0.c
Data Encryption

I. I NTRODUCTION

Outsourcing the “database as a service” [25] emerged as an
affordable data management model for parties (“data owners”)
with limited abilities to host and support large in-house data
centers of potentially significant resource footprint. In this
model aclient outsources its data management to adatabase
service providerwhich provides online access mechanisms for
querying and managing the hosted data sets.

Because most of the data management and query execution
load is incurred by the service provider and not by the
client, this is intuitively advantageous and significantlymore
affordable for parties with less experience, resources or trained
manpower. Compared with e.g., a small company, with likely a
minimal data management knowledge, such a database service
provider intuitively has the advantage of expertize and the
ability to offer the service much cheaper, with increased
service availability and uptime guarantees.

Significant security issues are associated with such “out-
sourced database” frameworks, including communication-
layer security and data confidentiality. Confidentiality alone
can be achieved by encrypting the outsourced content. Once
encrypted however, the data cannot be easily processed by the
server. This limits the applicability of outsourcing, as the type
of processing primitives available will be reduced dramatically.

Thus, it is important to provide mechanisms for server-side
data processing that allow both confidentiality and a sufficient
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level of query expressibility. This is particularly relevant in
relational settings. Recently, protocols for equijoin andrange
queries have been proposed [15], [34], [35].

Here we go one step further and provide low overhead so-
lutions for generalbinary JOIN predicates that satisfy certain
properties: for any value in the considered data domain, the
numberof corresponding “matching” pair values (for which
the predicate holds) is upper bound. We call these finite match
predicates (FMPs).

Such predicates are extremely common and useful, includ-
ing any discrete data scenarios, such as ranges, inventory and
company asset data sets, forensics and DNA data (e.g., fuzzy
and exact Hamming distances), and health-care databases (e.g.,
bacteria to antibiotics matches). Moreover, at the expenseof
additional client-side processing (pruning of false positives)
other predicate types (multi-argument, continuous data) can
be accommodated.

While on somewhat orthogonal dimensions, it might be
worth noting that other important challenges are to be con-
sidered in the framework of database outsourcing. Trans-
port layer security is important as eavesdropping of data
access primitives is unacceptable. This can be achieved by
deploying existing traditional network security protocols such
as IPSec/SSL. Moreover, query correctness issues such as
authentication and completeness are important and have been
previously considered [42], [36], [43], [46].

The main contributions of this paper include: (i) the pro-
posal and definition of the problem of private joins for
generalized query predicates, (ii) a solution for FMPs, (iii)
its analysis, (iv) a proof-of-concept implementation and (v)
the experimental evaluation thereof.

The paper is structured as follows. Section II introduces
the main system, data and adversary models. Section III
overviews, details and analyzes our solution. Section IV pro-
poses predicate instance examples and their handling. Sec-
tion V introduces our proof-of-concept implementation and
provides its experimental analysis. Section VI surveys related
work and Section VII concludes.

II. M ODEL

We choose to keep the data outsourcing model concise
yet representative. Sensitive data is placed by a client on a
database server situated at the site and under the control of
a database service provider. Later, the client can access the
outsourced data through an online query interface exposed
by the server. Network layer confidentiality is assured by
mechanisms such as SSL/IPSec. This corresponds to aunified
client model[14], [35]. Clients would like to allow the server
to process data queries while maintaining data confidentiality.
For this purpose, they will encrypt data before outsourcing. As
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encrypted data is hard to process without revealing it, to allow
for more expressive server-side data processing, clients will
also pre-process data according to a set of supported (join)
predicates. They will then outsource additional associated
metadata to aid the server in processing tasks. This metadata,
however, will still be “locked” until such processing tasksare
requested by the client.

Later, to allow server-side data processing, the client will
provide certain “unlocking” information for the metadata asso-
ciated with the accessed items. The server will performexactly
the considered query (and nothing more) without finding out
any additional information.

It is important for the outsourced metadata not to reveal
any information about the original data. Additionally, the
computation, storage and network transfer overhead should
maintain the cost advantages of outsourcing, e.g., execution
times should not increase significantly. We consider a rela-
tional model, where we consider the outsourced data as a set
of t data columns (e.g., relational attributes),D stored on the
server. Letn be the average number of values stored in a
column andb be the number of bits in the representation of
a value. Naturally, we allow relations to contain a variable
number of tuples. We use this notation for analysis purposes
only.
Finite Match Predicates (FMPs). In this paper we consider
binary predicatesp : X × Y → B = {true, false} for
which the “match sets”P (x) := {y|p(x, y) = true} can be
computed by a polynomial time algorithm and their size (taken
over all encountered values ofx) is upper bound. In other
words, given a certain valuex in the considered data domain,
its “matching” values can be determined in polynomial time
and their number is upper bound. We call these predicatesfinite
matchpredicates (FMPs). For a relation R matched against a
relation S, we define MMS, themaximum match size, to be the
maximum number of matching values from relation R for any
row in relation S. For instance, consider the following discrete
time – range join query that joins arrivals with departures
within the same 30 mins interval (e.g., in a train station):

SELECT * FROM arrivals,departures
WHERE ABS(arrivals.time - departures.time) < 30

In this example, the FMP has an MMS of60.

Privacy Requirements. In the considered adversarial model,
the following privacy requirements are of concern.

Initial Confidentiality. The server should not be able
to evaluate inter-column join predicates oninitially stored
data without client “unlock” permission. Formally, given a
relation A with encoded elementsD[a1], .., D[an], a relation
B with encoded elementsD[b1], .., D[bm], any random values
i ∈ {1...n} and j ∈ {1..m}, for any probabilistic polynomial
time server algorithmS, the value|Pr[S(D[ai], D[bj ])]−1/2|
is negligible.

Predicate Safety.Following a client join request, the server
can only evaluate the stored data for the predicate provided
by the client. Specifically, given a relationA with encoded
elementsD[a1], .., D[an], a relationB with encoded elements
D[b1], .., D[bm], and a predicatepred for which the client
provides opening informationopen(pred), the server can only
learn the valuepred(ai, bj) ∈ {true, false}, ∀i = 1...n and
j = 1...m. Formally, given a predicatepred and corresponding

open(pred) revealed by the client, for any other predicate
pred′ 6= pred for which the server does not haveopen(pred′)
and any random valuesi ∈ {1...n} and j ∈ {1...m}, for
any probabilistic polynomial time server algorithmS, the
value |Pr[Spred′ 6=pred(open(pred), D[ai], D[bj])] − 1/2| is
negligible.

We stress that here we do not provide confidentiality of
predicates, but rather just of the underlying target data. We
also note that we do not consider here the ability of the server
to use out of band information and general knowledge about
the data sets to infer what the underlying data and the query
results look like. In fact we envision a more formal definition
in which privacy guarantees do not allow any leaks to the
server beyond exactly such inferences that the curious server
may do on its own based on outside information.

Performance Constraints. The main performance constraint
we are interested in ismaintaining the applicability of out-
sourcing. In particular, if a considered query load is more
efficient (than client processing) in the unsecured data out-
sourcing model – then it should still be more efficient in
the secured version. We believe this constraint is essential,
as it is important to identify solutions that validate in real
life. There exist a large number of apparently more elegant
cryptographic primitives that could be deployed that would
fail this constraint. In particular, experimental results[44]
indicate thatpredicate evaluations on the server should not
involve any expensive (large modulus) modular arithmetic
such as exponentiation or multiplication. We resisted the
(largely impractical) trend (found in existing research) to use
homomorphisms in server side operations, which would have
simplified the mechanisms in theory but would have failed in
practice due to extremely poor performance, beyond usability.
In fact, in Section V we show that solutions that would employ
homomorphisms would be several (2-4) orders of magnitude
slower than solutions that we propose in this paper.

We assume that serverstorage is cheap. This assumption
is supported by recent findings that show the total cost of
storage management is orders of magnitude higher than the
storage equipment acquisition costs [18].

Adversary. We consider anhonest but curiousserver: given
the possibility to get away undetected, it will attempt to
compromise data confidentiality (e.g., in the process of query
execution). The protocols in this paper are protecting mainly
dataconfidentiality. The server can certainly choose to deny
service by explicitly not cooperating with its clients, e.g., by
not returning results or simply closing connections.

A. Tools

1) Encryption, Hashing and Random Numbers.:We con-
sider ideal, collision-free hashes, denoted byH . We consider
semantically secure (IND-CPA) encryption mechanisms. We
denote byEK(v) the encryption of valuev with secret key
K. If not specified, the keyK will be implicitly secret and
known only to the client. In the following, we use the notation
x →֒R S to denotex’s uniformly random choice fromS.
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2) Bloom Filters.: Bloom filters [8] offer a compact repre-
sentation of a set of data items, allowing for fast set inclusion
tests. Bloom filters areone-way, in that, the “contained” set
items cannot be enumerated easily (unless they are drawn
from a finite, small space). Succinctly, a Bloom filter can be
viewed as a string ofl bits, initially all set to0. To insert a
certain elementx, the filter sets to1 the bit values at index
positions H1(x), H2(x), . . . , Hh(x), where H1, H2, . . . , Hh

are a set ofh crypto-hashes. Testing set inclusion for a value
x is done by checking that the bits forall bit positions
H1(x), H2(x), . . . , Hh(x) are set. By construction, Bloom
filters feature a controllable rate of false positives (pfp) for set
inclusion tests. For a certain numberN of inserted elements,
there exists a relationship that determines the optimal number
of hash functionsho minimizing pfp: ho = l

N ln 2 ≈ 0.7 l
N

which yields a false positive probability ofpfp =
(

1
2

)ho
=

(

1
2

)
l

N
ln 2
≈ 0.62l/N For a Bloom filter BF , we denote

BF.insert(v) the insertion operation andBF.contains(v) the
set inclusion test (returningtrue if it contains valuev, false
otherwise).

For an excellent survey on applications on Bloom filters and
their applications in a variety of network problems please see
[10].

3) Computational Intractability Assumptions.:Let G be a
finite field of sizep prime and orderq and letg be a generator
for G. The Computational Diffie-Hellman assumption (CDH)
[22]:

Definition 1: Given g, ga mod p and gb mod p, for
a, b ∈ Zq, it is computationally intractable to compute the
valuegab mod p.

In the same cyclic groupG, the Discrete Logarithm assump-
tion (DL) states that:

Definition 2: Giveng, v ∈ G, it is intractable to findr ∈ Zq

such thatv = gr mod p.

III. OUTSOURCEDJOINS WITH PRIVACY

We define the arbitrary (non-hard-coded to a specific
application) predicate join solution to be a quadruple
(predFM , G, E, J), wherepredFM is the FMP,G is a param-
eter generation function,E is a data pre-processing function
and J denotes a joining function according to predicate
predFM . G andE are executed by the client and the output of
E is outsourced to the server.J is executed by the server on
two attributes of the client’s data. In this section we provide a
general description of theG, E andJ functions and in Section
IV we study two predicate and correspondingG, E and J
function instances. In Figure I we summarize the symbols used
in our solution.

G is a parameter generation operation executed initially by
the client. Its input isN , a security parameter andt, the
number of columns in the client databaseD. Let p = 2p′ + 1
be aN bit long prime, such thatp′ is also prime. The reason
for this choice is to make the CDH assumption harder. Let
G = Zp be a group of orderq, with a generatorg.

G(N, t). : Generates an encryption keyK →֒R {0, 1}∗.
For each columnA ∈ D, generate two valuesxA, yA →֒R Zq,
xA 6= yA. Publishp andg and keep secret the keyK and the

p prime number
N bit size of p
G subgroup ofZp

p order of G
g generator ofG
xA, yA secret values for column A

TABLE I
TABLE OF SYMBOLS USED IN OUR SOLUTIONS.

valuesxA andyA, for all columnsA ∈ D.

E is executed by the client, after runningG. It takes as
input a columnA ∈ D, the keyK and the secret valuesxA

andyA corresponding to columnA.
E(A, K, xA, yA). : Associate with each elementai ∈ A,

i = 1... a Bloom filter denotedBF (ai), with all the bits
initially set to 0. Let P (ai) = {v|predFM (ai, v) = true}
be the set of values that satisfy the predicatepredFM for
elementai. For eachai ∈ A, encryptai with the key K,
producing EK(ai). Compute then an “obfuscation” ofai,
O(ai) = H(ai)xA mod q. Then, ∀v ∈ P (ai), compute
eA(v) = gH(v)yA mod p and insert them intoai’s Bloom
filter (BF (ai).insert(eA(v))). That is, BF (ai) encodes all
the valuesv that satisfy the predicateP for ai. Finally, output
the valuesEK(ai), O(ai) and BF (ai). Let DT denote the
output of E for all the columns inD. The client storesDT

on the server. Hence, elementai ∈ A is stored on the server
asDT (A, i) = [EK(ai), O(ai), BF (ai)].

We now describe the join operation,J , executed by the
server.J takes as input two column namesA, B, a desired
predicatepredFM and a trapdoor value (computed and sent
by the client)rAB = gyA/xB mod p and outputs the result of
the join of A and B onpredFM .

J(A, B, predFM , rAB). : For each elementbj ∈ B,
computeeA(bj) = r

O(bj)
AB mod p. That is, eA(bj) denotes

the valuebj encoded in the same fashion as the elements
encoded in BF (ai). For each elementai ∈ A, iff.
BF (ai).contains(eA(bj)) return the tuple〈EK(ai), EK(bj)〉.

In real life, J will output also any additional attributes
specified in the SELECT clause, but for simplicity we make
explicit here and in the following only the join attributes.

A. Analysis

We now prove the following results.
Theorem 1:(Correctness) The join algorithmJ returns all

matching tuples.

Proof: During the join functionJ , for each elementbj ∈

B, the server computes the valueeA(bj) = r
O(bj)
AB mod p =

(gyA/xB )H(bj )xB = gH(bj)yA mod p. According to the func-
tion E, the Bloom filter BF (ai) of an elementai ∈ A
stores values of typegH(v)yA mod p, for all v ∈ P (ai) =
{v|predFMP (ai, v) = true}. Thus, ifbj ∈ P (ai) theneA(bj)
is stored inBF (ai).
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Theorem 2:The (predFM , G, E, J) solution satisfies the
initial confidentiality requirement outlined in Section II.

Proof: Let us assume that for a relationA with encoded
elementsD[a1], .., D[an] and a a relationB with encoded
elementsD[b1], .., D[bm], there exists a PPT algorithmA and
a pair of valuesi ∈ {1...n} and j ∈ {1..m} such that
|Pr[S(D[ai], D[bj ])] − 1/2| > ǫ. Let the elementD[ai] =
[EK(ai), O(ai), BF (ai)] and let D[bj ] = [EK(bj), O(bj),
BF (bj)]. Then,A can have advantageǫ only if (i) EK(ai) can
be distinguished fromEK(bj) with advantage larger thanǫ, or
if (ii) O(ai) can be distinguished fromO(bj) with advantage
larger thanǫ or if (iii) O(ai) can be searched for inBF (bj)
(the symmetric case is identical). In case (i), we can also build
an algorithm that has advantage larger thanǫ against the IND-
CPA game of the semantically secure encryptionE. Case (ii)
cannot occur in an information theoretic sense, since the values
O(ai) andO(bj) are obfuscated with different random values.
For case (iii), let us consider for simplicity thatBF (bj) stores
the setP (bj) as the set of obfuscated valueseB(v), where
v ∈ P (bj) – instead of using a Bloom filter to encode the
eB(v) values. Then, ifA can findgO(ai) in the set of values
eB(v) = gH(v)yB , then we can also build an algorithm that
defeats the discrete logarithm assumption (see Section II-A3).

Theorem 3:(predFM , G, E, J) is predicate safe.

Proof: We need to prove that given a a relationA
with encoded elementsD[a1], .., D[an], a relation B with
encoded elementsD[b1], .., D[bm], along with client pro-
vided opening informationrAB = gyA/xB mod p and any
random valuesi ∈ {1...n} and j ∈ {1..m}, for any
probabilistic polynomial time server algorithmS, the value
|Pr[Spred′ 6=pred(rAB , D[ai], D[bj])] − 1/2| is negligible. Let
Let the elementD[ai] = [EK(ai), O(ai), BF (ai)] and let
D[bj ] = [EK(bj), O(bj), BF (bj)]. As mentioned in the proof
of Theorem 1, no advantage can come from the encrypted val-
uesEK(ai) andEK(bj). Moreover, the opening information
rAB does not provide information concerningBF (bj), thus
in the following we ignore this Bloom filter.

Similar to the proof of Theorem 1, we make the simplifying
assumption that the structureBF (ai) = π{gH(v)yA |∀v ∈
P (ai)}, whereπ is a random permutation. That is,BF (ai)
stores the encoded matching elements forai in a random
order, instead of further encoding them in a Bloom filter. Then,
any advantage of algorithmS can be either from (i)O(ai),
O(bj) andrAB or from (ii) O(bj), rAB andBF (ai). In case
(i), S can obtain valuesgH(bj)yA and gH(ai)xA. However,
these values cannot be compared without defeating the discrete
logarithm assumption. In case (ii),S can determine if the value
r

O(bj)
AB is in BF (ai). However, further comparisons ofrO(bj)

AB

with the other elements inBF (ai) cannot occur due to the
use of cryptographic hash functions: the outputs values of the
hashes of even similar valuesai and bj will likely differ in
half of their bits.

B. Discussion and Extensions

Notes on Transitivity.: Under certain circumstances the
server may use our solution to perform transitive joins. That
is, provided with information to joinA with B and later to
join B with C, it can joinA andC. We make the observation
that on certain FMPs any solution will allow the server to
perform partial transitive joins, using the outcome of previous
joins. That is, when an elementb ∈ B has matched an element
a ∈ A and an elementc ∈ C, the server can infer that with a
certain probabilitya also matchesc. In conclusion, we believe
the transitive join problem to be less stringent than reducing
server-side storage and computation overhead.

Same-column Duplicate Leaks.: In the case of duplicate
values occurring in the same data column, a data distribution
leak can be identified. The deterministic nature of the obfusca-
tion step in the definition ofE associates the same obfuscated
values to duplicates of a value. Upon encountering two entries
with the same obfuscated value, the server indeed can infer
that the two entries are identical. We first note that if joinsare
performed on primary keys this leak does not occur. Addition-
ally, it is likely that in many applications this is not of concern.
Nevertheless, a solution can be provided, particularly suited for
the case when the number of expected duplicates can be upper
bound by a small value (e.g.,m). The deterministic nature
of O(ai) is required to enable future Bloom filter lookups
in the process of predicate evaluation. However, as long as
the predicate evaluation is designed with awareness of this,
each duplicate can be replaced by a unique value. This can be
achieved by (i) populating Bloom filters with multiple different
“variants” for each value expected to occur multiple times,and
(ii) replacing each duplicate instance with one of these variants
instead of the actual value. These variants can be constructed
for example by padding each value with differentlog2(m) bits.
For example, if the 10-bit value513 (binary 1000000001) is
expected to occur multiple times (but no more thanm = 4),
2 bits will be prefixed to its binary representation, to yieldits
4 “variants”: 001000000001, 011000000001, 101000000001,
111000000001. For each occurrence, one of these variants
will be used instead in computing its obfuscated value in
E’s definition. Additionally, in any Bloom filter, instead of
inserting justv = 513 (e.g., BF (ai).insert(gH(v)yA)), all
its four variants will be inserted. Care needs to be taken for
larger m values, as this solution can lead to space blowups
or increases in the rate of false positives due to the additional
“variant” information inserted in the Bloom filters.

Bloom Filter Sizes.: Bloom filters (see Section II-A2)
feature a controllable, arbitrarily small rate of false positives
for set inclusion tests. In the case of a join, the false positive
rate of Bloom filters implies that a small percentage of the
resulting joined tuples donot match the predicate the join has
been executed for. These tuples will then be pruned by the
client. Their percentage is then determined by the equations
from Section II-A2. Thus, a tradeoff between storage
overhead and rate of false positives (and associated additional
network traffic) emerges. Larger Bloom filters reduce this
rate but require more storage, whereas smaller ones are
cheaper to store but will incur additional network traffic
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and client-size pruning of non-matching results. Moreover,
associated network traffic costs are heavily dependent on
the sizes of values in the data tuples. The optimal sizes for
Bloom filters becomes thus an application specific decision.
For example, for a predicate MMS= N = 60 (e.g., in the
simple query in Section II), a desired false positive rate of
no more thanpfp = 0.8%, the equations from Section II-A2
can be used to determine one optimal setupl = 600 andh = 7.

Data Updates and Multiple Clients.: In data outsourc-
ing scenarios, it is important to handle data updates incremen-
tally, with minimal overhead. In particular, any update should
not require the client to re-parse the outsourced data sets
in their entirety. The solution handles data updates naturally.
For any new incoming data item, the client’s pre-processing
function E can be executed per-item and its results simply
forwarded to the server. Additionally, in the case of a multi-
threaded server, multiple clients (sharing secrets and keys) can
access the same data store simultaneously.

Complex, Multi-predicate Queries.: Multiple predicate
evaluations can be accommodated naturally. Confidentiality
can be provided for the attributes involved in binary FMPs.
For example, in the following database schema, the association
between patients and diseases is confidential but any other
information is public and can be used in joins. To return a
list of Manhattan-located patient names and their antibiotics
(but not their disease) the server will access both confidential
(disease) and non-confidential (name,zip-code) values.

SELECT patients.name,antibiotics.name
FROM patients,antibiotics
WHERE md(patients.disease,antibiotics.name)
AND patients.zipcode = 10128

Only the predicatemd() will utilize the private evaluation sup-
port. This will be achieved as discussed above, by encrypting
the patients.disease attribute and generating metadata for
the antibiotics relation (which contains a list of diseases
that each antibiotic is recommended for).

IV. PREDICATE INSTANCES

To illustrate, we choose to detail two predicate instances:a
simple, range join and a Hamming distance predicate requiring
custom predicate-specific extensions.

A. Range JOIN
Consider the binary FMPp(x, y) := (v1 ≤ (x − y) ≤ v2)

wherex, y ∈ Z. An instance of this predicate is the following
travel agency query, allocating buses to trips, ensuring 5 (but
no more than 10) last-minute empty slots per trip:

SELECT buses.name,trips.name
FROM buses,trips
WHERE (buses.capacity-trips.participants) >= 5
AND (buses.capacity-trips.participants) <= 10

Executing such a query remotely with privacy can be
achieved efficiently by deploying the solution presented in
Section III. The parameter generation algorithm,G and the
join algorithmJ will be the same. As above, the data encoding
algorithm encodes in the Bloom filterBF (ai) of elementai

all integer values inP (ai) := {y|p(ai, y) = true} namely

with values∈ [x − v2, x − v1]. Note that given the size of
the range, n and a fixed probability of false positives,pfp, we
have that the optimum Bloom filter size isl = −

n ln pfp

(ln 2)2 .

B. Hamming JOIN

It is often important to be able to evaluate Hamming dis-
tance on remote data with privacy in untrusted environments.
This has applications in forensics, criminal investigation (e.g.,
fingerprints), biological DNA sequence matching, etc.

Let x and y be b bit-long strings and let0 < d < b
be an integer value. We usedH(x, y) to denote the Ham-
ming distance ofx and y. We consider the join predicate
predFM (x, y) := (dH(x, y) ≤ d). An example is the fol-
lowing fingerprint matching query that retrieves the names and
last dates of entry for all individuals with physical fingerprints
(in some binary representation) close enough to the ones of
suspects on the current FBI watch list:

SELECT watchlist.name,
immigration.name,
immigration.date

FROM watchlist,immigration
WHERE Hamming(watchlist.fingerprint,

immigration.fingerprint)<5

A private execution of this join operation can be deployed
using the solution introduced in Section III. The implemen-
tation of the Hamming part of the predicate requires specific
adjustments. In particular, in pre-processing, the clientpseudo-
randomly bit-wise permutes all the data elements consistently.
It then splits each data element intoβ equal sized blocks,
where β is an input parameter discussed later. Then, for
each such block, it generates three data items: one item will
allow later private comparisons with other blocks for equality
(Hamming distance 0). The other two (a Bloom filter and
a “locked” obfuscated value) will be used by the server to
identify (with privacy) blocks at Hamming distance 1. In the
following we describe the(dH , GH , EH , JH) solution, as an
extension of the solution presented in Section III.

The parameter generator,GH , takes two additional param-
eters,β and b. b is the bit length of elements fromD andβ
is the number of blocks into which each data element is split.
We assumeβ > d is constant, much smaller than the number
of elements stored in a database column. Possible values for
β are investigated later in this section.

GH (N,t,β,b). : Choose a values →֒R {0, 1}∗ and gener-
ate a secret pseudo-random permutationπ : {0, 1}b → {0, 1}b.
For each data columnA ∈ D 1, computesA = H(s, A). Use
sA to seed a pseudo-random number generator PRG. Use PRG
to generate3β secret, duplicate-free pseudo-random values
xA(1), .., xA(β), yA(1), .., yA(β), zA(1), .., zA(β) →֒R Zq.

EH(A, K, xA(k), yA(k), zA(k)), k = 1..β, A ∈ D. :
For each elementai, i = 1...n of A, computeai’s bit-
wise permutationπ(ai), then split π(ai) into β blocks of
equal bit length,ai1, .., aiβ . For each blockaik, k = 1..β,
generate an obfuscated valueO(aik) = H(aik)xA(k) mod q.
Then, createaik ’s Bloom filter by generating all valuesv

1A here is the column’s unique server-side name.
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for which dH(aik, v) = 1. That is, generate all values with
Hamming distance 1 from blockaik. For each valuev, let
ek

A(v) = gH(v)yA(k) mod p. Encodeek
A(v) into aik ’s Bloom

filter, using operationBF (aik).insert(eA)k(v)). Compute an
additional structure allowing the server to assess (with privacy)
equality of the kth block of ai with the kth blocks of
other values,Z(aik) = H(aik)zA(k) mod q. Finally, output
[EK(ai), O(aik), Z(aik), BF (aik)], for all k = 1..β. Hence
elementai is stored on the server as a tupleDT (A, i) =
[EK(ai), O(aik), Z(aik), BF (aik)], similar to the solution in
Section III.

Algorithm 1 The JH algorithm performing a Hamming
join between columnsA andB.

hammingJOIN(A, B, rA(k), rB(k), rk, k = 1..β)
forall ai ∈ A and k = 1..β do

v(aik) = rA(k)
Z(aik) mod p;

forall bj ∈ B and k = 1..β do

v(bjk) = rB(k)
Z(bjk) mod p;

u(bjk) = r
O(bjk)
k mod p;

forall bj ∈ B do

forall ai ∈ A do

c← 0;
for (k← 1; k ≤ β; k← k + 1)

if v(aik) 6= v(bjk) then

if BFij(A).contains(u(bjk)) then

c← c + 1;
else

c← −1; #signaldrop

break;
if c = −1 then continue; #drop(ai, bj)
if c ≤ d then output[EK(ai), EK(bj)];

To join two columnsA and B on predicatepredFM , JH

receives the following3β trapdoor values from the client (3
for each block) (i)rA(k) = gRk/zA(k) mod p, (ii) rB(k) =
gRk/zB(k) mod p and (iii) rk = gyA(k)/xB(k) mod p, for k =
1..β, whereRk →֒R {0, 1}∗ (generated at the client side). See
Algorithm 1 for the pseudo-code ofJH .

JH(A, B, rA(k), rB(k), rk), k = 1..β. : For each ele-
ment ai from A and for eachk = 1..β, computev(aik) =
rA(k)Z(aik) mod p. For each elementbj from B and for each
k = 1..β, computev(bjk) = rB(k)Z(bjk) mod p. For each
elementbj ∈ B and each elementai ∈ A, set counterc to
0. For eachk = 1..β, if BF (aik).contains(r

O(bjk)
k ) then do

c = c+1 andk = k+1. Else, ifv(aik) = v(bjk), dok = k+1.
Otherwise, move to the next element,ai+1, from A. If at the
end of thek loop,c < d, return〈EK(ai), EK(bj)〉. Else, move
to the next element fromA, ai+1.

Note that for future query purposes the client does not
need to remember the values (xA(k), yA(k), zA(k)) for each
column A. Instead, it generates them by seeding its PRG
with sA. For this, the client only needs to store one value,s.

1) Analysis: We now prove the following result for the
Hamming join solution proposed above.

Theorem 4:Any given pair of elements fromA and B
at Hamming distance less than or equal tod is found with
probability at leaste−d/β(1 + d−1

β ).
Proof: The operation of splitting the permuted elements

into β blocks and then comparing the Hamming distance
between blocks can be viewed as a balls and bins process,
where blocks represent bins and bit-wise differences represent
balls. That is, bit-wise differences between any two elements
ai and bj are thrown uniformly at random intoβ blocks. If
dH(ai, bj) ≤ d, for two elementsai and bj , then using the
balls and bins paradigm, the probability of a pair of blocks
(aik, bjk), k = 1..β, having Hamming distance exactlyl is
Pl =

(

d
l

)

1
βl (1 −

1
β )d−l. The probability of blocks(aik, bjk)

to have Hamming distance smaller than or equal to 1 is then
P0 + P1 = (1− 1

β )d−1(1 + d−1
β ) ≈ e−d/β(1 + d−1

β ).
We now have to prove that if any pair of blocks from two

valuesai andbj has at most one bit-wise difference, algorithm
JH indeed returns the pairai, bj. To see why this is the case,
consider that

r
O(bjk)
k = (gyA(k)/xB(k))H(bjk)xB(k) = gyA(k)H(bjk) mod p.

The values v for which dH(aik, v) = 1 are en-
coded in aik ’s Bloom filter in the format gyA(k)H(v). If
BF (aik).contains(r

O(bjk)
k ) then dH(aik, bjk) = 1 and the

counterc associated with the pair〈ai, bj〉 is incremented. If
the above condition is not satisfied, then

v(aik) = rA(k)Z(aik) mod p = (gRk/zA(k))H(aik)zA(k) =

= gRkH(aik) mod p.

Similarly,
v(bjk) = gRkH(bjk) mod p.

If aik = bjk, thenv(aik) = v(bjk) and the counterc should
not be incremented.

As an example, for a valueβ = 800 and d = 100, the
probability of finding a matching pair is 99.39%. Besides using
a largerβ, this probability can be further increased by trading
off data storage and privacy. For instance, the server could
store for each blockaik of a data elementai a Bloom filter
containing all possible blocks at Hamming distance 2, a Bloom
filter for all possible blocks at Hamming distance 3 and so on,
until the desired precision level is reached.

Note on Predicate Safety. : The reasoning used
in Theorem 2 can be easily used to show that the
(dH ,GH ,EH ,JH) solution satisfies the confidentiality
requirement. The predicate safety requirement, however,
remains only partially true. The server can in fact determine
the actual Hamming distance between matching (but
encrypted) (ai, bj) pairs (satisfying thedH(ai, bj) < d
condition). Moreover, the server can also find the Hamming
distance of some encrypted(ai, bj) pairs for which
d < dH(ai, bj) ≤ β. While out of scope here, a solution can
be provided for this case by prefixing originalai, bj values
with a random number of special symbols with controllable
Hamming distances.
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2) Complexity Analysis:Let Tencr be the time to encrypt an
element,Texp the time to perform one modular (p) exponen-
tiation, Tmul the time to perform a modular (q) multiplication
andThash the time to perform a crypto-hash operation.h is the
number of hash functions used to encode elements in a Bloom
filter. Then, if t is the number of attributes in the relation, the
following results hold.

Lemma 1:The initial client overhead istn(Tencr +
2β(Texp + Thash + Tmul) + b(Texp + (h + 1)Thash + Tmul)).

Proof: The per-element initial overhead is the sum of
three factors: (i) the cost to encrypt the element, (ii) the cost
to generate the obfuscatedO and Z values and (iii) the cost
to generate theβ Bloom filters, each storingb/β elements.
The cost of storing one element in a Bloom filter is equal to
the cost of generating the obfuscated element (a crypto-hash
application and an XOR) plus the cost of anotherh crypto-
hashes for generating the bit-wise positions to be set to 1.

Lemma 2:The server-side storage overhead isO(tnNβ),
whereN is the bit size ofp. The computation overhead for a
Hamming join operation over two columns ofn elements is
O(nβ(Texp + hThash)).

Proof: The original database hasO(tn) elements. Since a
Bloom filter encodings numbers takesO(s) bits (see Section
II) and the number of valuesy that are at Hamming distance
1 from a bit string of lengthb/β is b/β, the storage required
by theβ Bloom filters of an element isO(b). The first result
follows then from the observation that each of theβ blocks
of an element, stored as output of theO and Z functions,
requiresO(b/β) bits.

The second result is due to the fact that the Hamming join
computation overhead consists ofβ Bloom filter searches for
all the blocks for each ofn2 pairs of elements from the two
joined columns.

See Section V for a discussion on why for practical
purposes a single crypto-hash application may be enough to
replace theh Bloom filter hashes.

3) Extensions:
Arbitrary Alphabets. : The above solution can also be

deployed for an arbitrary alphabet, that is, when the elements
stored in the databaseD are composed of symbols from multi-
bit alphabets (e.g., DNA sequences). This can be done by de-
ploying a custom binary coding step. LetA = {α0, .., αu−1}
be an alphabet ofu symbols. In the pre-processing phase,
the client represents each symbol overu bits (u/ logu-fold
blowup in storage), such that symbolαu = 2i. That is,
dH(αi, αj) is 1 if i 6= j and 0 otherwise. If each data item
has b symbols, each of the item’s blocks will havebu/β
bits, and, due to the coding, pairs of elements of symbol-
wise distanced will have a 2d bit-wise Hamming distance.
Thus, after the coding phase, the above algorithm can be
deployed without change. As an example, for an alphabet of
4 symbols{A,C,G,T}, the following encoding will be used
{A=0001,C=0010,G=0100,T=1000}. To compare the strings
ACG and ACT (alphabet distance 2), the following two
binary strings will be compared instead: 000100100100 and
000100101000 (binary Hamming distance 2).

Enc(a1)

A

Enc(a2)

Enc(ai)

Enc(an)

ai − (randomly permuted)

ai1’ ’ ai3’

ai1 ai2

ai4’ai2’

Enc(ai1) Enc(ai2)

Enc(ai1)

O(ai2)

Z(ai2)

BF(ai2)

Fig. 1. Data structure for hierarchical private Hamming distance. The
hierarchy in the example has three layers. On layerl each element is split into
2l blocks. The red rectangles denote theO, Z andBF structures associated
with each block. Together withEK(ai), they are the only values stored on
the server.

Arbitrary Distances. : One drawback of the previous
solution is the fixed nature of the Hamming distanced that can
be considered. To accommodate a different distance, additional
metadata would need to be generated by the client accordingly.
Instead, it would be desirable to provide a single solution for
any distances. In the following we show how to extend the
above solution for arbitrary distances.

For this purpose, the encoding algorithmEH is modified
to perform a hierarchical generalization of the previous
shuffle-and-divide pre-processing step. The new algorithm,
EFH calls EH log b times, for β = {1, 2, 22, .., b}. As a
result, each data element haslog b layers of metadata, one
for each value ofβ (the individual block size). Figure 1
illustrates the output of functionEFH for two layers.

The extended join algorithm,JFH , is initially executed by
the client and takes as an input parameter the distanced of
interest. Based ond and the desired miss rate,JFH decides
upon the appropriate layer of metadata on which the join
should be performed and callsJH , to be executed on the
server, with the corresponding parameters, detailed earlier. For
instance, if the join is done on the metadata for the layer
corresponding to the valuee = 2⌈log d⌉+1, then the miss
rate can be upper bound by 8%. The following result is then
straightforward.

Theorem 5:(Overheads) The server-side storage overhead
for supporting arbitrary distance Hamming joins increases
by a factor of log b over the Hamming join overhead. The
computation and traffic overhead remain the same.

Note that the server-side storage overhead for supporting
arbitrary distance Hamming joins increases by a factor oflog b
over the Hamming join overhead. The computation and traffic
overhead remain the same.

Variable Data Sizes.: For illustration purposes, the
algorithms above have been presented considering elements
of the same, known size. We now show how to deploy them
also for data columns with values of different representation
bit sizes.

In the pre-processing stage, given an alphabetA = {α0, α1

... ,αu−1}, the client introduces an additional symbol,α∗. It
then represents each of theu + 1 alphabet symbols onu + 1
bits, with αi = 2i andα∗ = 2u.
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Let l be the expected maximum symbol length of elements
stored in the database andlA ≤ l the symbol length of
elements in columnA. The client then reduces this problem
to the previous setting by “padding” each column withα∗

symbols up to lengthl. For example, it appends(l − lA)
symbols of typeα∗ to each element inA. The padding is
done before the random bit-wise permutation of the elements,
to prevent the server from differentiating the padding symbols.

Hamming distance predicates will then be rewritten accord-
ingly. For example, to find all pairs of elements from columns
A andB whose Hamming distance is less than or equal tod,
the client searches for all pairs at distanced + |lA− lB|. This
method has an additional padding-related storage overhead
that depends on the distribution of the data column symbol
lengths. It functions best if this distribution is very narrow.
For flatter distributions, other non-padding mechanisms could
be envisioned.

C. Additional Examples

We illustrated above two predicate instance extremes: one
very simple and straightforward range predicate and a more
complex Hamming distance scenario, requiring custom, predi-
cate - specific mechanisms. In the following we list just a few
more (and some of their application domains), straightforward
to deploy using the solution above.

p(x, y) := (f(x, y) R r). Financial, geographic location
queries. For examplef(x, y) = x2 + y2 andR =‘<’.

p(x, y) := (x
y ∈ Z; x, y ∈ Z).

p(x, y) := (x ≡ ye mod q). Cryptography.

p(x, y) := (antibiotic x matches bacteriay). Health care
diagnostics.

p(x, y) := (patient x has diseasey). Census, health care.

V. EXPERIMENTAL RESULTS

Implementation Details.: We conducted our experi-
ments using a C++ implementation of the private predicate join
algorithms, on 3.2GHz Intel Pentium 4 processors with 1GB
of RAM running Linux. We implemented the cryptographic
primitives using OpenSSL 0.9.7a. Our goal was to investigate
the feasibility of the algorithms in terms of computation,
communication and storage overhead, both on the client and
the server side.

To understand the costs of encryption and hashing, we have
evaluated several symmetric encryption and crypto-hashing
algorithms. In our setup we benchmarked RC4 at just bellow
80MB/sec, and MD5 at up to150MB/sec, shown in Figure 2.
We also benchmarked integer hashing throughput at more than
1.1 million MD5 hashes per second, showing the ”startup” cost
of hashing.

As recommended by the Wassenaar Arrangement [32], we
set N , the size of the primep to be 512 bits and the
size of the prime q to be 160 bits. From our benchmarks,
shown in Figure 3, we have concluded that 512-bit modular
exponentiations (with 160 bit exponents) take274usec while
512-bit modular multiplications take only687nsec.
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Fig. 2. Comparison of RC4, 3DES, MD5 and SHA1. MD5 can supporta
throughput of up to 150MB/sec in our setup.
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Fig. 3. Modular exponentiation costs when the modulus size ranges from
512 to 4096. They axis is shown in logarithmic scale.

We have considered three types of applications for the
private join algorithms. In a first application we used SNPs
( single nucleotide polymorphisms ) from a human DNA
database [2]. An SNP is a variation of a DNA sequence that
differs from the original sequence in a single position. Thegoal
of a join is to identify all pairs of sequences from two columns,
that differ in a single position. To achieve this, the Bloom
filter of a DNA sequence contains all the sequence’s SNPs.
For each value from the data set from [2] there are 25 SNPs,
whose values are drawn from the four nucleotides, A, C, G,
and T. Thus, each Bloom filter stores 100 values (MMS=100).
Note that we have simplified the SNP evaluation for the
purposes of illustration, as each SNP is actually composed
of two nucleotides (one from the father and one from the
mother. This effectively doubles the number of bits needed to
represent them. Our second application performs fingerprint
matching, that is, identifying similar pairs of fingerprints. We
have used fingerprint data from [1] where each fingerprint
consists of 100 features. For this application we considered
only fingerprints that differ in at most one feature to be
a match, thus, Bloom filters store 100 values (MMS=100).
The last application identifies picture similarities, using digital
images from the LabelMe [41] and Caltech 101 [17] databases.
A set of images are annotated with scores for lightness, hue
or colors of interest [16], [20]. The Bloom filter associated
with an image contains score ranges of interest, which for this
application was set to 100 values around the image’s score
(MMS=100). To compare two images for similarity, the score
of one image is searched in the Bloom filter associated with
the other image.
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Client Computation Overheads. : We now describe
our investigation of the initial client pre-processing step. Of
interest were first the computation overhead involved in gener-
ating the encryption, obfuscation and Bloom filter components
associated with a database of 100000 elements of 16 bytes
each. We experimented with four combinations of encryption
algorithms (RC4 and AES) and hashing algorithms (MD5 and
SHA1), in a scenario where Bloom filters store 100 items
each. Figure 4 depicts our results (log scale time axis). For
each encryption/hash algorithm combination shown on the x
axis, the left hand bar is the encryption cost, the middle bar
is the Bloom filter generation cost and the right hand bar is
the obfuscation cost. Our experiments show the dominance of
the Bloom filter generation, a factor of 30 over the combined
encryption and obfuscation costs. The total computation cost
of each implementation is roughly 320 seconds with the min-
imum being achieved by RC4/MD5. We further investigated
the RC4/MD5 combination by increasing the MMS value from
10 to 100. Figure 5 shows that the pre-processing overhead
increase is linear in the MMS value. The total costs range
between 40 seconds (MMS=10) and 7 minutes (MMS=100).
We stress that this cost is incurred by the client only once,
during the computation of the initial data structures.

Server Computation Costs.: In order to evaluate the
performance of the private join algorithm we used columns
of 10000 images each, collected from the LabelMe [41] and
Caltech 101 [17] databases. For each image we deployed
1024-bit Bloom filters (h = 12 hashes) with MMS=100. The
join operation returns all pairs of images that have scores
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Fig. 6. Server cost: Join costs for columns of 10000 elements. Our solution is
2-4 orders of magnitude faster than other solutions that use1024-bit modular
operations.
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Fig. 7. Server cost: Bloom filter storage overhead, as percentage of the size
of the cleartext data. The overhead is 42% for SNP databases,but under 3%
for fingerprint or image databases.

within a given range of each other. In our implementation, for
each element from one column we perform a 512-bit modular
exponentiation with a 160 bit modulus, followed by a crypto-
hash, fragment the result into 12 parts and use each part as a
bit position into each of the Bloom filters associated with the
elements of the other column.

As, to the best of our knowledge no other solutions exist
for arbitrary private joins on encrypted data, we chose to
compare our solution against a hypothetical scenario which
would use the homomorphic properties of certain encryption
schemes such as Paillier [39]. This comparison is motivated
by recent related work (e.g., [19]) that deploy this approach to
answer SUM and AVG aggregation queries on encrypted data.
Moreover, we also considered the cost of solutions that would
use RSA encryptions or decryptions to perform private joins.
Finally, we have also compared our solution against a base
case with no privacy: the server stores the data in cleartext,
performs joins on request from the client and returns the exact
results.

Figure 6 compares our solution against (i)CP , that performs
one modular multiplication within the Paillier cryptosystem
with a 1024-bit modulus, for every two elements that need
to be compared, (ii)C(enc), that uses one 1024-bit RSA
encryption for each comparison (iii)C(dec), that uses one
1024-bit RSA decryption operation and (iv) NP, a no-privacy
solution where the data is stored in clear at the server. The
y axis represents the time in logarithmic scale. The first
bar shows the cost of the base case with no privacy (NP).
The second bar shows the performance of our FMP join
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algorithm. The cost is dominated by108 × 12 verifications
of Bloom filter bit values (the cost of computing104 hashes
and exponentiations (modulo a 512-bit prime) is under 3.5s).
With a 21.3s computation overhead, the FMP join solution
performs two orders of magnitude faster thanCP (third bar)
taking 1525s, three orders of magnitude faster thanC(enc)
(fourth bar), taking 19168s and four orders of magnitude faster
than C(dec) (fifth bar), taking 408163s. One reason for the
large overhead of the modular multiplications in the Paillier
system (used also in [19]) is the fact that while the modulus
n has 1024 bits, the multiplications are actually performed
in the spaceZ∗

n2 . That is, the active modulus has 2048 bits.
Using less than 1024 bits forn is not recommended [3], [32].
Note that as expected our solution is two orders of magnitude
(21.3s) less efficient than the trivial solution (0.23s) that stores
the data in cleartext at the server.

Storage Overhead.: Since we use symmetric encryption
algorithms, the size of theE values stored on the server is
roughly the same as the original size of the elements – thus
no significant overhead over storing the cleartext data. The
size of theO value for each element isN = 512 bits, which
is small and data-independent. Finally, Figure 7 shows the
overhead of the 1024 bit Bloom filters as a percentage of the
size of the original data. The largest overhead is 42%, for the
SNP database, due to the smaller size of SNPs. However, for
image databases, the overhead is under 3% and for fingerprints
is under 1%. Note that the total space storage overhead for
100000 items is 18.31MB.

Transfer Overhead.: We have measured the communi-
cation overhead of the initial database transfer between sites
located in Chicago and New York, more than a thousand miles
apart. With the bottleneck being the uplink capacity of the
client, of around 3 Mbps, the overhead of transferring the
Bloom filters associated with 100000 items was roughly 32
seconds.

Summary. The experimental evaluation of the main overhead
show that they are reasonable. The small initial costs of
generating metadata and transferring the database are only
incurred once. The storage overhead of the metadata is small
and independent of the size of the data items. Finally, the
cost of executing 100 million private FMPs is 2-4 orders
of magnitude faster than that of implementations using the
homomorphic properties of certain asymmetric encryption
algorithms to provide privacy.

Hamming Join vs. Generic Solution: To understand
the advantages of the Hamming Join solution when compared
with the generic solution, we consider our fingerprint matching
problem. Each fingerprint has 100 features (b=100) and we are
interested in matching fingerprints that have up to 4 different
features (d=4). In the Hamming Join solution, we consider a
value of β=16, that is, we divide the 100 bit feature strings
into 16 blocks, of 7 bits each. Let the total space allocated
for the Bloom filter associated with a fingerprint be 1024 bits.
Then, for each of the 16 blocks of bits of a fingerprint, the
associated Bloom filter has 64 bits. Each Bloom filter has
to store 7 values, leading to a false positive rate per block
Bloom filterfp ≈ 0.6264/7 = 0.012. The overall false positive
rate (probability of returning a pair with distance larger than
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Fig. 8. Hamming Join: Completeness (the probability of returning a matching
pair) as a function of the value ofβ – the number of blocks used for dividing
feature strings.

4) is upper bounded by the false positive rate inany of the
16 Bloom filters,fptotal = 16 × fp = 0.2022. Let us now
use the generic solution to solve the same problem. A single
Bloom filter, needs to store

∑4
i=1

(

100
i

)

= 4087975 elements.
To achieve the same false positive rate as the one achieved
by the Hamming Join solution, the generic solution’s Bloom
filters have to have 13,596,925 bits. Thus, the storage overhead
of the generic solution is more than 13000 times larger than
the one of the Hamming Join approach.

Figure 8 shows for the same problem, the completeness of
the result of the Hamming join (the probability of returninga
matching pair) as a function of the value ofβ. Note that for
β=16, this probability exceeds 0.975.

VI. RELATED WORK

The paradigm of providing a database as a service recently
emerged [25] as a viable alternative, likely due in no small
part to the dramatically increasing availability of fast, cheap
networks. Given the global, networked, unreliable, possibly
hostile nature of the operation environments, providing secu-
rity and integrity assurances has become essential.

Extensive research has focused on various aspects of DBMS
security and privacy, including access control and general
information security issues [5], [4], [6], [7], [12], [13],[26],
[27], [29], [30], [33], [37], [38], [40], [42]. Statisticaland
Hippocratic databases aim to address the problem of allow-
ing aggregate queries on confidential data (stored on trusted
servers) without leaks [4], [5], [12], [13], [31].

Hacigumus et al. [24] introduced a method for executing
SQL queries over partly obfuscated outsourced data. The
data is divided into secret partitions and queries over the
original data can be rewritten in terms of the resulting partition
identifiers; the server can then partly perform queries directly.
The information leaked to the server is claimed to be1-out-
of-s where s is the partition size. This balances a tradeoff
between client-side and server-side processing, as a function of
the data segment size. At one extreme, privacy is completely
compromised (small segment sizes) but client processing is
minimal. At the other extreme, a high level of privacy can be
attained at the expense of the client processing the queriesin
their entirety. We believe this client load requirement to defeat
the very purpose of data outsourcing.
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Similarly, Hore et al. [28] deployed data partitioning to build
“almost”-private indexes on attributes considered sensitive. An
untrusted server is then able to execute “obfuscated range
queries with minimal information leakage”. An associated
privacy-utility tradeoff for the index is discussed.

Ge and Zdonik [19] have proposed the use of a secure
modern homomorphic encryption scheme, to perform private
SUM and AVG aggregate queries on encrypted data. Since a
simple solution of encrypting only one value in an encryption
block is highly inefficient, the authors propose a solution for
manipulating multiple data values in large encryption blocks.
Such manipulation handles complex and realistic scenarios
such as predicates in queries, compression of data, overflows,
and more complex numeric data types (float). In Section V
we show that the overhead of the operations used in [19] is
very large, exceeding the overhead of FMP predicate joins by
three orders of magnitude.

The problem of searching on encrypted data has also been
studied extensively. The setting of this problem consists of
clients that need to store encrypted documents on an untrusted
server and later wish to privately retrieve the documents
containing certain encrypted keywords, without revealingto
the server the keywords of interest. Song et al. [45] intro-
duced an elegant solution that uses only simple cryptographic
primitives. Chang and Mitzenmacher [11] proposed a solution
where the server stores an obfuscated keyword index which is
then used by the client to perform the actual searches. Golle
et al. [23] provide a solution with the additional feature of
allowing conjunctive keyword searches. In a similar context
Boneh et al. [9] proposed the notion of “public key encryption
with keyword search”. They devised two solutions, one using
bilinear maps and one using trapdoor permutations. While
ensuring keyword secrecy, these techniques do not prevent
servers from building statistics over searched keywords.

Goh [21] proposed the notion of a “secure index”, which
is a data structure associated with a file. The secure index is
stored on a remote server and allows clients to privately query
an item into the file. The operation can be performed only if
the clients have knowledge of a particular trapdoor value. The
construction of a secure index uses pseudo-random functions
and Bloom filters. Since this solution requires knowledge
of the trapdoor associated with the searched item, secure
indexes are not flexible enough to be used for private joins
on outsourced data.

Yang et al. [46] study the complementary problem of au-
thenticating the results of joins in outsourced databases,where
the server needs to construct a proof of correctness, which
can be verified by the client using the data owners signature.
The work introduces three join algorithms and demonstrates
experimentally that they outperform two benchmark algo-
rithms, by several orders of magnitude, on all performance
metrics. We note that this work complements our solutions: we
provide the privacy of the outsourced data and of the returned
results, while the work of Yang et al. [46] provides proofs of
correctness and completeness of the results.
Summary. Previous related work focuses on the problem
of performing private search, range and aggregate queries on
encrypted data. In this paper we address a different problem,

of privately performing join operations on encrypted attributes,
using arbitrary FMP predicates. While previous work cannot
be used to solve this problem, increased outsourced database
functionality can be provided when our solutions are used in
conjunction with existing results.

VII. CONCLUSIONS

In this paper we introduced mechanisms for executing JOIN
operations on outsourced relational data with full computa-
tional privacy and low overheads The solution is not hard-
coded for specific JOIN predicates (e.g., equijoin) but rather
works for a large set of predicates satisfying certain properties.
We evaluated its main overhead components experimentally
and showed that we can perform more over 5 million private
FMPs per second, which is between two and four orders of
magnitude faster than alternatives that would use asymmetric
encryption algorithms with homomorphic properties to achieve
privacy.
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