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PROFILR: Toward Preserving Privacy and
Functionality in Geosocial Networks

Bogdan Carbunar, Mahmudur Rahman, Jaime Ballesteros, Naphtali Rishe, and Athanasios V. Vasilakos

Abstract— Profit is the main participation incentive for social
network providers. Its reliance on user profiles, built from a
wealth of voluntarily revealed personal information, exposes
users to a variety of privacy vulnerabilities. In this paper,
we propose to take first steps toward addressing the conflict
between profit and privacy in geosocial networks. We introduce
PROFILR , a framework for constructing location centric profiles
(LCPs), aggregates built over the profiles of users that have
visited discrete locations (i.e., venues). PROFILR endows users
with strong privacy guarantees and providers with correctness
assurances. In addition to a venue centric approach, we pro-
pose a decentralized solution for computing real time LCP
snapshots over the profiles of colocated users. An Android
implementation shows that PROFILR is efficient; the end-to-end
overhead is small even under strong privacy and correctness
assurances.

Index Terms— Social implications of technology, technology
social factors, privacy.

I. INTRODUCTION

ONLINE social networks have become a significant source
of personal information. Their users voluntarily reveal

a wealth of personal data, including age, gender, contact
information, preferences and status updates. A recent addition
to this space, geosocial networks (GSNs) such as Yelp [1] and
Foursquare [2] further collect fine grained location informa-
tion, through check-ins performed by users at visited venues.

Overtly, personal information allows GSN providers to
offer a variety of applications, including personalized rec-
ommendations and targeted advertising, and venue owners
to promote their businesses through spatio-temporal incen-
tives, e.g., rewarding frequent customers through accumulated
badges. Providing personal information exposes however users
to significant risks, as social networks have been shown to
leak [3] and even sell [4] user data to third parties. There exists
therefore a conflict. Without privacy people may be reluctant to
use geosocial networks; without user information the provider
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and venues cannot support applications and have no incentive
to participate.

In this paper, we take first steps toward addressing this
conflict. Our approach is based on the concept of location
centric profiles (LCPs). LCPs are statistics built from the
profiles of (i) users that have visited a certain location or (ii) a
set of co-located users.
Contributions. We introduce PROFIL R , a framework that
allows the construction of LCPs based on the profiles of
present users, while ensuring the privacy and correctness of
participants. Informally, we define privacy as the inability
of venues and the GSN provider to accurately learn user
information, including even anonymized location trace pro-
files. Verifying the correctness of user data is necessary to
compensate for this privacy constraint: users may cheat and
bias LCPs anonymously. We consider two user correctness
components. First, location correctness, where users should
only contribute to LCPs of venues where they are located.
This requirement is imposed by the recent surge of fake check-
ins [5], motivated by their use of financial incentives. Second,
LCP correctness, where users should be able to modify LCPs
only in a predefined manner.

First, we propose a venue centric PROFILR , that relieves
the GSN provider from a costly involvement in venue spe-
cific activities. To achieve this, PROFIL R stores and builds
LCPs at venues. Furthermore, it relies on Benaloh’s homo-
morphic cryptosystem and zero knowledge proofs to enable
oblivious and provable correct LCP computations. We prove
that PROFIL Rsatisfies the introduced correctness and privacy
properties.

Second, we propose a completely decentralized
PROFIL Rextension, built around the notion of snapshot
LCPs. The distributed PROFIL R enables user devices to
aggregate the profiles of co-located users, without assistance
from a venue device. Snapshot LCPs are not bound to
venues, but instead user devices can compute LCPs of
neighbors at any location of interest. Communications in both
PROFIL R implementations are performed over ad hoc wireless
connections. The contributions of this paper are then the
following:

• Introduce the problem of computing location centric
profiles (LCPs) while simultaneously ensuring the privacy
and correctness of participants.

• Propose PROFIL R , a framework for computing LCPs.
Devise both a venue centric and a decentralized solution.
Prove that PROFIL R satisfies the proposed privacy and
correctness properties.

1556-6013 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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• Provide two applications for PROFIL R : (i) privacy pre-
serving, personalized public safety recommendations and
(ii) privately building real time statistics over the profiles
of venue patrons with Yelp accounts.

• Evaluate PROFIL R through an Android implementation.
Show that PROFIL R is efficient even when deployed on
previous generation smartphones.

The paper is organized as follows. Section II describes
the system and adversary model and defines the prob-
lem. Section III introduces PROFIL R and proves its privacy
and correctness. Section IV introduces the notion of snap-
shot LCPs and presents a distributed, real-time variant of
PROFIL R . Section V describes two PROFIL R applications.
Section VI evaluates the performance of the proposed con-
structs. Section VII describes related work and Section VIII
concludes.

II. MODEL AND BACKGROUND

We consider a core functionality that is supported by the
most influential geosocial network (GSN) providers, Yelp [1]
and Foursquare [2]. This functionality is simple and general
enough to be applicable to most other GSNs (e.g., Facebook
Places, Google Latitude). In this model, a provider S hosts the
system, along with information about registered venues, and
serving a number of users. To use the provider’s services, a
client application, the “client”, needs to be downloaded and
installed. Users register and receive initial service credentials,
including a unique user id.

The provider supports a set of businesses or venues, with an
associated geographic location (e.g., restaurants, yoga classes,
towing companies, etc). Users are encouraged to report their
location, through check-ins at venues where they are present.
During a check-in operation, performed upon an explicit user
action, the user’s device retrieves its GPS coordinates, reports
them to the server, who then returns a list of nearby venues.
The device displays the venues and the user needs to choose
one as her current check-in location.

Participating venue owners need to install inexpensive
equipment (e.g., a $25 Raspberry PI [6], a BeagleBoard [7] or
any Android smartphone). This equipment can be installed and
used for other purposes as well, including detecting fake user
check-ins [8] preventing fake badges and incorrect rewards,
and validating social network (e.g., Yelp [1]) reviews. Venue
deployed equipment provides a necessary ingredient: ground
truth information from remote locations.

A. Location Centric Profiles

Each user has a profile PU = {pU1, pU2, .., pUd }, consisting
of values on d dimensions (e.g., age, gender, home city, etc).
Each dimension has a range, or a set of possible values. Given
a set of users U at location L, the location centric profile
at L, denoted by LC P(L) is the set {LC P1, LC P2, .., LC Pd },
where LC Pi denotes the aggregate statistics over the i -th
dimension of profiles of users from U .

In the following, we focus on a single profile dimension, D.
We assume D takes values over a range R that can be
discretized into a finite set of sub-intervals (e.g., set of

Fig. 1. Solution architecture (k = 2). The red arrows denote anonymous
communication channels, whereas black arrows indicate authenticated (and
secure) communication channels.

continuous disjoint intervals or discrete values). Then, given an
integer b, chosen to be dimension specific, we divide R into b
intervals/sets, R1, .., Rb. For instance, gender maps naturally
to discrete values (b = 2), while age can be divided into
disjoint sub-intervals, with a higher b value.

We define the aggregate statistics S for dimension D of
LC P(L) to consist of b counters c1, .., cb; ci records the
number of users from U whose profile value on dimension
D falls within range Ri , i = 1..b.

B. Private LCP Requirements

Let k be a security parameter, denoting the level of privacy
we need to provide for users at any location. We then define
a private LCP solution to be a set of functions, P P(k) =
{Setup, Spotter , Check In, PubStats}, see Fig. 1. Setup
is run by each venue where user statistics are collected, to
generate parameters for user check-ins. To perform a check-
in, a user first runs Spotter , to prove her physical presence
at the venue. Spotter returns error if the verification fails,
success otherwise. If Spotter is successful, Check In is run
between the user and the venue, and allows the collection of
profile information from the user. Specifically, if the user’s
profile value v on dimension D falls within the range Ri ,
the counter ci is incremented by 1. Finally, PubStats pub-
lishes collected LCPs. In the following, we use the notation
Prot (P1(args1), .., Pn(argsn)) to denote protocol Prot run
between participants P1, .., Pn , each with its own arguments.

Let CV be the set of counters defined at a venue V .
We use C̄V to denote the set of sets derived from CV as
follows. Each set in C̄V differs from CV in exactly one
counter, whose value increments the value of the correspond-
ing counter in CV . For instance, if CV = {2, 5, 9}, then C̄V =
{{3, 5, 9}, {2, 6, 9}, {2, 5, 10}}. A private LCP solution needs
to satisfy the following properties:
k-Privacy: Let A denote an adversary that controls any
number of venues and let C denote a challenger controlling
k users. C runs Spotter followed by Check In at a venue V
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controlled by A on behalf of i < k users. Let Ci denote the
resulting counter set. For each j = 1..b, A outputs c′

j , its
guess of the value of the j -th counter of Ci . The advantage
of A, Adv(A) = |Pr [Ci [ j ] = c′

j ] − 1/(i + 1)|, defined for
each j = 1..b, is negligible.
Location Correctness: Let A denote an adversary that con-
trols the GSN provider and any number of users. Let C be
a challenger that controls a venue V . A running as a user
U not present at V , has negligible probability to successfully
complete Spotter at V .
LCP Correctness: Let A denote an adversary that controls the
GSN provider and any number of users. Let C be a challenger
that controls a venue V . Let CV denote the set of counters
at V before A runs Check In at V and let C ′

V be the set
of counters afterward. If C ′

V /∈ C̄V , the Check In completes
successfully with only negligible probability.
Check-In Indistinguishability (CI-IND): Let a challenger C
control two users U0 and U1 and let an adversary A control
any number of venues. A generates randomly q bits, b1, .., bq ,
and sends them to C. For each bit bi , i = 1..q , C runs
Spotter followed by Check In on behalf of user Ubi . At the
end of this step, C generates a random bit b and runs Spotter
followed by Check In on behalf of Ub at a venue not used
before. A outputs a bit b′, its guess of b. The advantage of A,
Adv(A) = |Pr [b′ = b] − 1/2| is negligible.

C. Attacker Model

We assume venue owners are malicious and will attempt to
learn private information from their patrons. Clients installed
by users can be malicious, attempting to bias LCPs constructed
at target venues. We assume the GSN provider does not collude
with venues, but will try to learn private user information.

D. Tools

Homomorphic Cryptosystems. We use the Benaloh cryp-
tosystem [9], an extension of the Goldwasser-Micali [10]. It
consists of three functions (K G, E, D), defined as follows:

• K G(l) (Key Generation): l, an odd integer, is a system
parameter, known to all participants, that denotes the
size of the input block. Select two large primes p and
q such that l|(p − 1) and gcd(l, (p − 1)/ l) = 1 and
gcd(l, q − 1) = 1. Let n = pq . Select y ∈ Z

∗
n , such that

y(p−1)(q−1)/ l mod n �= 1. n and y are the public key and
p and q are the private key.

• E(u, m): Encrypt message m ∈ Z
∗
l , using a randomly

chosen value u ∈ Z
∗
n . Output ymul mod n.

• D(z): Decrypt ciphertext z. Let z = ymul mod n. If
z(p−1)(q−1)/ l = 1, then return m = 0. Otherwise, for
i = 1..l, compute si = y−i z mod n. If si = 1, return
m = i .

Benaloh’s cryptosystem is additively homomorphic:
E(u1, m1)E(u2, m2) = E(u1u2, m1 + m2). We further
define the re-encryption function RE(v, E(u, m)) to be
ymulvl = E(uv, m). Note that the re-encryption function
can be invoked without knowledge of the message m.
Furthermore, it is possible to show that two ciphertexts

are the encryption of the same plaintext, without revealing
the plaintext. That is, given E(u, m) and E(v, m), reveal
w = u−1v. Then, E(v, m) = RE(w, E(u, m)).

The above properties are ideal to enable a user to (i) incre-
ment the counter of a bucket even without knowing the
counter’s value or the encryption key and (ii) to re-encrypt
all counters without knowing the encryption key.
Anonymizers. We use an anonymizer [11]–[13] that (i) oper-
ates correctly – the output corresponds to a permutation of
the input and (ii) provides privacy – an observer is unable to
determine which input element corresponds to a given output
element in any way better than guessing. We use Orbot [14],
an Android implementation of Tor [13].
Location Verification. We use one of the protocols proposed
in [8] to verify the location claims of users checking-in.
For completeness, we now briefly describe this protocol. Let
SPOTRV denote the device installed at venue V . When a user
U expresses interest to check-in at venue V, SPOTRV initiates
a challenge/response protocol. It sends to U the currently
sampled time T , an expiration interval �T and a fresh random
value R. U ’s device generates a keyed hash of these values
and sends the result back to SPOTRV . SPOTRV verifies the
authenticity of the hash and ensures that the response is
received within a short interval from the challenge. If the
verification succeeds, SPOTRV uses its private key to sign a
time stamped token and sends the result to U . U contacts the
server S over the anonymizer (see above) and sends the token
signed by SPOTRV . S verifies V ’s signature as well as the
freshness (and single use) of the token.
Secret Sharing. Our constructions use a (k, m) threshold
secret sharing (TSS) [15] solution. Given a value R, TSS
generates m shares such that at least k shares are needed to
reconstruct R. A (k, m)-TSS solution satisfies the property of
hiding: An adversary (provided with access to a TSS oracle)
controlling the choice of two values R0 and R1 and given less
than k shares of Rb, b ∈R {0, 1}, can guess the value of b
with probability only negligible higher than 1/2.

Secret sharing will enable the provider to decrypt encrypted
counters only when at least k users (out of m) have checked-in
at a venue. The k out of m property supports failures: users
who check-in but do not participate in the protocol.

III. PROFIL R

As mentioned before, SPOTRV denote the device installed
at venue V . For each user profile dimension D, SPOTRV stores
a set of encrypted counters – one for each sub-range of R.
Overview. Initially, and following each cycle of k check-ins
executed at venue V , SPOTRV initiates Setup, to request the
provider S to generate a new Benaloh key pair. Thus, at each
venue time is partitioned into cycles: a cycle completes once k
users have checked-in at the venue. The communication during
Setup takes place over an authenticated and secure channel
(see Fig. 1).

When a user U checks-in at venue V , it first engages in the
Spotter protocol with SPOTRV , allowing the venue to verify
U ’s physical presence. A successful run of Spotter provides
U with a share of the secret key employed in the Benaloh
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cryptosystem of the current cycle. For each venue and user
profile dimension, S stores a set Sh of shares of the secret
key that have been revealed so far.

Subsequently, U runs Check In with SPOTRV , to send its
share of the secret key and to receive the encrypted counter
sets. As shown in Fig. 1, the communication takes place
over an anonymous channel to preserve U ’s privacy. During
Check In, for each dimension D, U increments the counter
corresponding to her range, re-encrypts all counters and sends
the resulting set to SPOTRV . U and SPOTRV engage in a zero
knowledge protocol that allows SPOTRV to verify U ’s correct
behavior: exactly one counter has been incremented. SPOTRV

stores the latest, proved to be correct encrypted counter set,
and inserts the secret key share into the set Sh.

Once k users successfully complete the Check In procedure,
marking the end of a cycle, SPOTRV runs PubStats to
reconstruct the private key, decrypt all encrypted counters and
publish the tally. The communication during PubStats takes
place over an authenticated channel (see Fig. 1).

A. The Solution

Let Ci denote the set of encrypted counters at V , following
the i -th user run of Check In. Ci = {Ci [1], .., Ci [b]}, where
Ci [ j ] denotes the encrypted counter corresponding to R j , the
j -th sub-range of R. We write Ci [ j ] = E(u j , u′

j , c j , j) =
[E(u j , c j ), E(u′

j , j)], where u j and u′
j are random obfuscat-

ing factors and E(u, M) denotes the Benaloh encryption of
a message M using random factor u. That is, an encrypted
counter is stored for each sub-range of domain R of dimension
D. The encrypted counter consists of two records, encoding
the number of users whose values on dimension D fall within
a particular sub-range of R.

Let RE(v j , v
′
j , E(u j , u′

j , c j , j) denote the re-encryption
of the j -th record with two random values v j and
v ′

j : RE(v j , v
′
j , E(u j , u′

j , c j , j)) = [RE(v j , E(u j , c j )),
RE(v ′

j , E(u′
j , j))] = [E(u jv j , c j ), E(u′

jv
′
j , j)]. Let

Ci [ j ]++ = E(u j , u′
j , c j + 1, j) denote the encryption of the

incremented j -th counter. Note that incrementing the counter
can be done without decrypting Ci [ j ] or knowing the current
counter’s value: Ci [ j ] + + = [E(u j , c j )y, E(u′

j , j)] =
[yc j+1ur

j , E(u′
j , j)] = [E(u j , c j + 1), E(u′

j , j)].
In the following we use the above definitions to introduce

PROFIL R . PROFIL R instantiates P P(k), where k is the pri-
vacy parameter. The notation P(A(paramsA), B(paramsB))
denotes the fact that protocol P involves participants A and B ,
each with its own parameters.
Setup(V(),S(k)): The provider S runs the key generation func-
tion K G(l) of the Benaloh cryptosystem (see Section II-D).
Let p and q be the private key and n and y the public key.
S sends the public key to SPOTRV . SPOTRV generates a
signature key pair and registers the public key with S. For
each user profile dimension D of range R with b sub-ranges,
SPOTRV performs the following steps:

• Initialize counters c1, .., cb to 0.
• Generate C0 = {E(x1, x ′

1, c1, 1), .., E(xb, x ′
b, cb, b)},

where xi , x ′
i , i = 1..b are randomly chosen values. Store

C0 indexed on dimension D.

• Initialize the share set Skey = ∅.
• Generate system wide parameters k and m > k and

initialize the (k, m) TSS.

Spotter(U(L,T ),V(),S(k)): Let L and T denote U ’s location
and current time. To ensure anonymity, U generates fresh
random MAC and IP addresses. These addresses are used for
a single execution of the Spotter and Check In protocols.
SPOTRV uses one of the location verification procedures
proposed in [8] to verify U ’s presence at L and T (see
Section II-D).

Let U be the i -th user checking-in at V . If the verification
succeeds and i ≤ k, S uses the (k, m) TSS to compute a share
of p (Benaloh secret key, factor of the modulus n). Let pi be
the share of p. S sends the (signed) share pi to U . If i > k,
S calls Setup to generate new parameters for V .
CheckIn(U(pi , n, V), V(n, y, Ci−1, Skey)): Executes only if
the previous run of Spotter is successful. U uses the same
random MAC and IP addresses as in the previous Spotter run.
Let U be the i -th user checking-in at V . Then, Ci−1 is the
current set of encrypted counters. SPOTRV sends Ci−1 to U .
Let v, U ’s value on dimension D, be within R’s j -th sub-
range, i.e., v ∈ R j . U runs the following steps:

• Generate b pairs of random values {(v1, v
′
1), .., (vb, v

′
b)}.

Compute the new encrypted counter set Ci , where
the order of the counters in Ci is identical to Ci−1:
Ci = {RE(vl , v

′
l , Ci−1[l])|l = 1..b, l �= j} ∪

RE(v j , v
′
j , Ci−1[ j ] + +)}.

• Send Ci and the signed (by S) share pi of p to V .

If SPOTRV successfully verifies the signature of S on the
share pi , U and SPOTRV engage in a zero knowledge protocol
ZK-CTR (see Section III-B). ZK-CTR allows U to prove that
Ci is a correct re-encryption of Ci−1: only one counter of Ci−1
has been incremented. If the proof verifies, SPOTRV replaces
Ci−1 with Ci and adds the share pi to the set Skey . Otherwise,
SPOTRV drops Ci and rolls back to Ci−1.
PubStats(V(Ck ,Sh,V),S(p,q)): SPOTRV performs the follow-
ing actions:

• If |Sh| < k, abort.
• If |Sh| = k, use the k shares to reconstruct p, the private

Benaloh key.
• Use p and q = n/p to decrypt each record in Ck , the

final set of counters at V . Publish results.

B. ZK-CTR: Proof of Correctness

We now present the zero knowledge proof of the set Ci

being a correct re-encryption of the set Ci−1, i.e., a single
counter has been incremented. Let ZK-CTR(i) denote the
protocol run for sets Ci−1 and Ci . U and SPOTRV run the
following steps s times:

• U generates random values (t1, t ′1), .., (tb, t ′b) and random
permutation π , then sends to SPOTRV the proof set
Pi−1 = π{RE(tl , t ′l , Ci−1[l]), l = 1..b}.

• U generates random values (w1, w
′
1), .., (wb, w

′
b).

It sends to SPOTRV the proof set Pi =
π{RE(wl , w

′
l , Ci [l]), l = 1..b}

• SPOTRV generates a random bit a and sends it to U .
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• If a = 0, U reveals random values (t1, t ′1), .., (tb, t ′b)
and (w1, w

′
1), .., (wb, w

′
b). SPOTRV verifies that for each

l = 1..b, RE(tl , t ′l , Ci−1[l]) occurs in Pi−1 exactly once,
and that for each l = 1..b, RE(wl , w

′
l , Ci [l]) occurs in

Pi exactly once.
• If a = 1, U reveals ol = vlwl t

−1
l and o′

l = v ′
lw

′
l t

′−1
l ,

for all l = 1..b along with j , the position in Pi−1 and
Pi of the incremented counter. SPOTRV verifies that for
all l = 1..b, l �= j , RE(ol, o′

l , Pi−1[l]) = Pi [l] and
RE(o j , o′

j , Pi−1[ j ]y) = Pi [ j ].
• If any verification fails, SPOTRV aborts the protocol.

C. Preventing Venue-User Collusion

For simplicity of presentation, we have avoided the Sybil
attack problem: participants that cheat through multiple
accounts they control or by exploiting the anonymizer. For
instance, a rogue venue owner, controlling k-1 Sybil user
accounts or simulating k-1 check-ins, can use PROFILR to
reveal the profile of a real user. Conversely, a rogue user
(including the venue) could bias the statistics built by the
venue (and even deny service) by checking-in multiple times in
a short interval. Sybil detection techniques (see Section VII)
can be used to control the number of fake, Sybil accounts.
However, the use of the anonymizer prevents the provider and
the use of the unique IP and MAC addresses prevents the
venue from differentiating between interactions with the same
or different accounts. In this section we propose a solution, that
when used in conjunction with Sybil detection tools, mitigates
this problem. The solution introduces a trade-off between
privacy and security. Specifically, we divide time into epochs
(e.g., one day long). A user can check-in at any venue at most
once per epoch. When active, once per epoch e, each user U
contacts the provider S over an authenticated channel. U and
S run a blind signature [16] protocol: U obtains the signature
of S on a random value, RU,e. S does not sign more than one
value for U for any epoch. In runs of Spotter and Check In
during epoch e, U uses RU,e as its pseudonym (i.e., MAC and
IP address). Venues can verify the validity of the pseudonym
using S’s signature. A venue accepts a single Check In per
epoch from any pseudonym, thus limiting the user’s impact on
the LCP. The privacy breach mentioned above is due to the
fact that now S can correlate Check Ins executed using the
same RU,e. However, S does not know the real user identity
behind RU,e – due to the use of blind signatures.

D. Analysis

Given a set of encrypted counters C , let C̄ denote the set of
re-encryptions of records of C , where only one record has its
counter incremented. To show that ZK-CTR(i) is a ZK proof
of Ci ∈ C̄i−1, we need to prove completeness, soundness and
zero-knowledge.

Theorem 1: ZK-CTR(i) is complete.
Proof: If Ci ∈ C̄i−1, in each of the s steps, U succeeds to

convince S, irrespective of the challenge bit a. If a = 0, U can
produce the random obfuscating values, showing that the proof
sets Pi−1 and Pi are correctly generated from Ci−1 and Ci .

If a = 1, U can build the obfuscating factors proving that
Pi ∈ P̄i−1.

Theorem 2: ZK-CTR(i) is sound.
Proof: We need to prove that if Ci /∈ C̄i−1, U cannot

convince S unless with negligible probability. For simplicity,
we assume Ci /∈ C̄i−1 due to a single record in Ci being “bad”:
Ci−1[ j ] = E(u j , u′

j , c j , j) and Ci [ j ] = E(v j , v
′
j , c′

j , j ′).
In any round of the ZK-CTR protocol, U has two options
for cheating. First, U could count on the bit a to come
up 0. Then, U builds Pi−1[ j ] = E(u j t j , u′

j t
′
j , c j , j) and

Pi [ j ] = E(v jw j , v
′
j w

′
j , c′

j , j ′). If however a = 1, U has to
produce a value α j , such that RE(α j , E(u j , c j )) = E(v ′

j , c′
j )

or RE(α j , E(u j , c j + 1)) = E(v ′
j , c′

j ). In the first case, this
means yc j (u jα j )

l = yc′
j
v ′l

j mod n. Without knowing n’s fac-
torization, U cannot compute l’s inverse modulo φ(n). Then,
the equation is satisfied only if c′

j = c j + zl, for an integer z.
Note however that Benaloh’s cryptosystem only works for
values in Z

∗
l , making this condition impossible to satisfy.

The second case is similar. The second cheating option is
to assume a will be 1 and build Pi [ j ] to be a re-encryption
of Pi−1[ j ]. It is then straightforward to see that if a = 0,
U can only succeed in convincing S, if c′

j = c j + zl, which
we have shown is impossible for z �= 0. Thus, in each round,
U can only cheat with probability 1/2. Following s rounds,
this probability becomes 1/2s .

Theorem 3: ZK-CTR(i) is “zero-knowledge”.
Proof: We show that ZK-CTR conveys no knowl-

edge to any verifier, even one that deviates arbitrarily from
the protocol. We prove this by following the approach
from [17], [18]. Specifically, let S∗ be an arbitrary, fixed,
expected polynomial time interactive Turing machine (ITM).
We generate an expected polynomial time machine M∗ that,
without being given access to the client, produces an output
whose probability distribution is identical to the probability
distribution of the output of 〈C, S∗〉 (which denotes the
protocol run by a client C and S∗).

We now build M∗ that uses S∗ as a black box many times.
Whenever M∗ invokes S∗, it places input x = (L0, L1) on
its input tape I TS and a fixed sequence of random bits on
its random tape, RTS . The input x consists of L0 = C0 and
L1 = C1. The content of the input communication tape for
S∗, CTS will consist of tuples (P2i , P2i+1, πi ), where P2i and
P2i+1 are sets and πi is a permutation. The output of M∗
consists of two tapes: the random-record tape RTM and the
communication-record tape CTM . RTM contains the prefix of
the random bit string r read by S∗. The machine M∗ works
as follows (round i ):

• Step 1: M∗ chooses a random bit a ∈R {0, 1}. If
a = 0, M∗ picks a random permutation πi , gener-
ates tl , t ′l , l = 1..b randomly and computes P2i =
πi {RE(tl , t ′l , Ci−1[l]), l = 1..b}. It then generates random
values wl , w

′
l , l = 1..b, randomly and computes the

set P2i+1 = πi {RE(wl , w
′
l , Ci [l]), l = 1..b}. Note that

M∗ does not need to know the counters to perform this
operation. If a = 1, M∗ generates a random set P2i ,
then generates random values ol, o′

l randomly, l = 1..b.
It then generates a random j ∈ 1..b and computes P2i+1
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such that for all l = 1..b, l �= j , RE(ol , o′
l , P2i [l]) =

P2i+1[l] and for the j -th position, RE(o j , o′
j , P2i [ j ]y) =

P2i+1[ j ].
• Step 2: M∗ sets b = S∗(x, r; P0, P1, π0, .., P2i−2, P2i−1,

πi−1, P2i , P2i+1). That is, b is the output of S∗ on
input x and random string r after receiving i − 1 pairs
(P2 j , P2 j+1, π j ), j = 1..i − 1 and proof P2i , P2i+1 on
its communication tape CTS . We have the following three
cases.
(Case 1). a = b = 0. M∗ can produce
tl , t ′l , wl , w

′
l , l = 1..b and πi to prove that P2i =

πi {RE(tl , t ′l , Ci−1[l]), l = 1..b} and P2i+1 =
πi {RE(wl , w

′
l , Ci [l]), l = 1..b}. M∗ sets bi to b, appends

the tuple (P2i , P2i+1, πi , bi ) to CTM and proceeds to the
next round (i + 1).
(Case 2). a = b = 1. M∗ can produce ol , o′

l , l = 1..b,
and index j such that RE(ol , o′

l, P2i [l]) = P2i+1[l],
l = 1..b, l �= j and RE(o j , o′

j , P2i [ j ]y) = P2i+1[ j ].
M∗ sets bi to b, appends the tuple (P2i , P2i+1, πi , bi ) to
CTM and proceeds to the next round (i + 1).
(Case 3). a �= b. M∗ discards all the values of
the current iteration and repeats the current round
(Step 1 and 2).

If all rounds are completed, M∗ halts and outputs
(x, r ′, CTM ), where r ′ is the prefix of the random bits r
scanned by S∗ on input x . We first prove that M∗ terminates in
expected polynomial time and then that the output distribution
of M∗ is the same as the output distribution of S∗ when
interacting with the client, on input (L0, L1).

• Lemma 1: M∗ terminates in expected polynomial time.
Proof: Given C0 and C1, during the i -th round P2i

and P2i+1 are either built from C0 and C1 or from each
other. During each run of round i , the bit a is chosen
independently. Then P2i and P2i+1 are also chosen inde-
pendently. This implies that the probability that a = b
is 1/2 and the expected number of repetitions of round i
is 2. S∗ is expected polynomial time, which implies that
M∗ is also polynomial time.

• Lemma 2: Let 〈C, S∗〉|(L0, L1) denote the output of the
interaction between client C and the ITM S∗, given input
L0, L1. The probability distribution of 〈C, S∗〉|(L0, L1)
and of M∗|(L0, L1) are identical.

Proof: The output of 〈C, S∗〉|(L0, L1) and of
M∗|(L0, L1) consists of a sequence of t tuples of format
(P2i , P2i+1, πi , bi ). Let �

(x,r,i)
M∗ and �

(x,r,i)
C S∗ be the prob-

ability distributions of the first i tuples output by M∗ and
〈C, S∗〉. We need to show that for any fixed random input
r , �

(x,r,t)
M∗ = �

(x,r,t)
C S∗ . We prove this by induction. The

base case, where i = 0, holds immediately. In the induc-
tion step we assume that �

(x,r,i)
M∗ = �

(x,r,i)
C S∗ = T (i). We

need to prove that the i +1st tuples in �
(x,r,i+1)
M∗ , denoted

by �
(i+1)
M∗ and in �

(x,r,i+1)
C S∗ , denoted by �

(i+1)
C S∗ have

the same distribution. We show that �
(i+1)
M∗ and �

(i+1)
C S∗

are uniform over the set V = {(P2i , P2i+1, πi , b)|b =
S∗(x, r, T (i)||P) ∧ ((P2i = πi RE(C0), P2i+1 =
πi RE(C1), i f b = 0) ∨ (P2i+1[l] = RE(P2i [l]),
l = 1..b, l �= j, P2i+1[ j ] = y RE(P2i [ j ]), i f b = 1)}.

For �
(i+1)
C S∗ , this is the case, by construction. If �

(i+1)
M∗

has output, it is also uniformly distributed in V .
M∗ terminates in expected polynomial time and its output has
the same distribution as the output of the interaction between
S∗ and a client. This completes the theorem proof.

We can now prove the following result:
Theorem 4: PROFIL R provides k-privacy.

Proof: (Sketch) Following the definition from Section II-B,
let us assume that the adversary A has access to an encrypted
counter set Ci generated after C has run Spotter followed by
Check In on behalf of i < k different users. The records of set
Ci are encrypted and A has i shares of the private key. For any
j = 1..b, let c′

j be A’s guess of the value of the j -th counter
in Ci . If |Pr [Ci [ j ] = c′

j ]−1/(k+1)| = ε is non-negligible we
can use A to construct an adversary B that has ε advantage in
the (i) semantic security game of Benaloh or in the (ii) hiding
game of the (k, m) TSS. We start with the first reduction.
B generates two messages M0 = 0 and M1 = 1 and sends
them to the challenger C. C picks a bit d ∈R {0, 1} and sends
to B the value E(u, Md ), where u is random and E denotes
Benaloh’s encryption function. B initiates a new game with A,
with counters set to 0. B runs Spotter and Check In (acting
as challenger) with A. B re-encrypts all counters from A,
except the j -th one, which it replaces with E(u, Md ). B runs
ZK-CTR with A (used as a black box) a polynomial number
of times until it succeeds. A outputs its guess of the values of
all counters. B sends the guess for the j -th counter to C. The
advantage of B in this game comes entirely from the advantage
provided by A.

For the second reduction, B runs Setup as the provider and
obtains the secret key p0 and p1 (renamed from p and q).
B sends p0 and p1 to the challenger C, as its choice of two
random values. C generates a random bit a, uses the (k, m)
TSS to generate i < k shares of pa , sh1, .., shi , and sends
them to B. B generates a new random prime q and picks
randomly a bit d . Let the Benaloh modulus be n = pdq .
Then, acting as i different users, U j , j = 1..i B runs Spotter
with S (which it also controls) to obtain S’s signature on sh j .
For each of the i users, B runs Check In with A. At the end of
the process, A outputs its guess of the encrypted counters. If
the guess is correct on more than d/( j + 1) counters, B sends
d to C as its guess for a. Otherwise, it sends d̄ . Thus, B’s
advantage in the hiding game of TSS is equivalent to A’s
advantage against PROFIL R .

Location Correctness: The user’s location is verified in
the Spotter protocol. A malicious user not present at venue V ,
is unable to establish a connection with the device deployed
at V , SPOTRV . Thus, the user is unable to participate in the
challenge/response protocol and receive at its completion a
provider signed share of the Benaloh secret key. Without the
share, the user is unable to initiate the Check In protocol.

LCP Correctness: A user U can alter the LCP of a venue
V in two ways. First, during the ZK-CTR protocol, it modifies
more than one counter or corrupts (at least) one counter. The
soundness property of ZK-CTR, proved in Theorem 2 shows
this attack succeeds with probability 1/2s . Second, it attempts
to prevent V from decrypting the counter sets after k users
have run CheckIn. This can be done by preventing SPOTRV
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from reconstructing the private Benaloh key. Key shares are
however signed by the provider, allowing SPOTRV to detect
invalid shares.

CI-IND Satisfaction: To see that PROFIL R satisfies the
CI-IND property, let A be an adversary that has an ε advantage
in the CI-IND game. We assume a honest challenger, who does
not run Spotter and Check In twice for the same (user, epoch)
pair. Otherwise, the use of the signed pseudonyms provides
an advantage to A. Note that if pseudonyms are not used, this
requirement is not necessary.

No identifying information is sent by users during the
Spotter and Check In procedures: the pseudonyms are blindly
signed by S, all communication with S takes place over an
anonymizer, and all communication with a venue is done using
randomly chosen MAC and IP addresses. Thus, we can use A
to build another adversary B that has the advantage ε either
against (i) the blind signature protocol [16], or against the
(ii) privacy property provided by the anonymizer.

Finally, we note that an adversary can use the Check In
procedure to launch denial of service attacks against a venue,
consuming its computation resources.

IV. SNAPSHOT LCP

We extend PROFILR to allow not only venues but also users
to collect snapshot LCPs of other, co-located users. To achieve
this, we take advantage of the ability of most modern mobile
devices (e.g., smartphones, tablets) to setup ad hoc networks.
Devices establish local connections with neighboring devices
and privately compute the instantaneous aggregate LCP of
their profiles.

A. Snapshot PROFIL R

We assume a user U co-located with k other users
U1, .., Uk . U needs to generate the LCP of their profiles,
without infrastructure, GSN provider or venue support.
An additional difficulty then, is that participating users
need assurances that their profiles will not be revealed to
U . However, one advantage of this setup is that location
verification is not needed: U intrinsically determines co-
location with U1, .., Uk . Snapshot PROFIL R consists of three
protocols, {Setup, LC PGen, PubStats}:
Setup(U(r), U1, .., Uk()): U runs the following steps:

• Run the key generation function K G(l) of the Benaloh
cryptosystem (see Section II-D). Send the public key n
and y to each user U1, .., Uk .

• Engage in a multi-party secure function evaluation pro-
tocol [19] with U1, .., Uk to generate shares of a public
value R < n. At the end of the protocol, each user Ui

has a share Ri , such that R1..Rk = R mod n and Ri is
only known to Ui .

• Assign each of the k users a unique label between 1 and k.
Let U1, .., Uk denote this order.

• Generate C0 = {E(x1, x ′
1, 0, 1), .., E(xb, x ′

b, 0, b)},
where xi , x ′

i , i = 1..b are randomly chosen. Store C0
indexed on dimension D.

Each of the k users engages in a 1-on-1 LC PGen with U to
privately and correctly contribute her profile to U ’s LCP.

LCPGen(U(Ci−1), Ui ()): Let Ci−1 be the encrypted counters
after U1, .., Ui−1 have completed the protocol with U . U sends
Ci−1 to Ui . Ui runs the following:

• Generate random values (v1, v
′
1), .., (vb, v

′
b). Let j be the

index of the range where Ui fits on dimension D.
• Compute the new encrypted counter set Ci as: Ci =

{RE(vl , v
′
l , Ci−1[l])Ri mod n|l = 1..b, l �= j} ∪

RE(v j , v
′
j , Ci−1[ j ] + +)Ri mod n} and send it to U .

• Engage in a ZK-CTR protocol to prove that Ci ∈ C̄i−1.
The only modification to the ZK-CTR protocol is that all
re-encrypted values are also multiplied with Ri mod n,
Ui ’s share of the public value R. If the proof verifies, U
replaces Ci−1 with Ci .

After completing LC PGen with U1, .., Uk , U ’s encrypted
counter set is Ck = {E j = E(u j , u′

j , c j , j)R1..Rk | j = 1..d},
where u j and u′

j are the product of the obfuscation factors
used by U1, .., Uk in their re-encryptions. The following
protocol enables U to retrieve the snapshot LCP.

PubStats(U(Ck)): Compute E j K , ∀ j = 1..d , where
K = R−1 mod n (R = R1..Rk), decrypt the outcome using
the private key (p, q) and publish the resulting counter value.
U verifies that the j -th decrypted record is of format (c j , j)
and that the sum of all counters equals k. If any verification
fails, U drops the statistics - a cheater exists. Otherwise, the
resulting counters denote the aggregate stats of U1, .., Uk .

Even though U has the private key allowing it to decrypt any
Benaloh ciphertext, the use of the secret Ri values prevents it
from learning the profile of Ui , i = 1..k.

This protocol is a secure function evaluation - the partic-
ipants learn their aggregated profiles, without learning the
profiles of any participant in the process. We note however
that existing SFE solutions cannot be used here: We need to
ensure the input user profiles are correct, that is, each user
increments a single counter.

V. APPLICATIONS

We now propose two PROFIL R applications.

A. Public Safety

Is a person likely to be safe in a specific public space,
presently? The answer to this question is a function of the
context of the space and of the person considered. In addition
to location and time, the context is greatly influenced by the
people present in that space. In previous work [20] we have
proposed a personalized safety recommendation system, that
leverages the history of locations visited by U to define his
safety index. Specifically, we defined U to be safe within a
context Ct , if U has a higher chance of crimes to occur around
him, than the people in Ct .

We propose to use PROFILR to build finer grained per-
sonalized safety recommendations, with privacy. PROFIL R

divides the safety index interval ([0, 1]) into sub-intervals,
and associates a counter with each. PROFIL R enables then
a set of users to privately and correctly compute the dis-
tribution of their safety index values. Then, U is safe in a
context Ct , if the number (or percentage) of users in Ct
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Fig. 2. Yelp venue stats: Distribution of the distance from one venue (“Ike’s
Place”) to the home cities of its reviewers. 3000+ reviews were written by
locals, but a large number of reviews were written by far-away visitors.

whose safety index values are smaller or equal to U ’s safety
index (are safer than U ), exceeds a system wide threshold
parameter.

B. Real-Time Yelp Venue Stats

In a second application, we rely on PROFIL R to enable
venues to collect fine grained, real time statistics over the pro-
files of patrons with Yelp accounts. To motivate participation,
PROFIL R prevents venues from inferring the identity and even
the anonymous profiles of the currently present users.

Yelp is an excellent source of user profile information.
Yelp users own accounts storing a wealth of public and
personal information, including name, home city, friends,
reviews written, photos uploaded, check-ins, “Elite” badges,
etc. Knowing the real time distribution of current patron
profile information, such as locals vs. non-locals, gender, the
types of venues preferred, can help venues understand their
customers. Furthermore, by studying the evolution in time
of such information, e.g., using time series analysis, may
enable venues to generate forecasts and better cater to their
customers.

Fig. 2 illustrates this concept: it shows the distribution of the
(great-circle) distance in miles from “Ike’s Place” venue in San
Francisco, CA and the home cities of its (4000+) reviewers.
More than 3000 reviews were left by locals, but far away
customers also form a sizeable percentage.

VI. EVALUATION

For testing purposes we have used Samsung Admire smart-
phones running Android OS Gingerbread 2.3 with a 800MHz
CPU and a Dell laptop equipped with a 2.4GHz Intel Core i5
processor and 4GB of RAM for the server. For local connec-
tivity the devices used their 802.11b/g Wi-Fi interfaces. All
reported values are averages taken over at least 10 independent
protocol runs.

We have first measured the overhead of the Setup operation.
If d is the number of profile dimensions, N is the Benaloh
modulus size and b the sub-range count of domain D, the com-
putation overhead of Setup is TSetup = Tkeysig +dbTE +TT SS.
Tkeysig is the time to generate the signature key, TE is the
average time of Benaloh encryption and TT SS is the time to
initialize the TSS (i.e., random polynomial generation). The
storage overhead of Setup is StoreSetup = dbN .

Fig. 3. Setup dependence on Benaloh modulus size. Note the significant
increase to 13.5s for a 2048 bit modulus. This cost is however amortized over
multiple check-in executions.

We set the b to be 10, Shamir’s TSS group size to
1024 bits and RSA’s modulus size to 1024 bits. Fig. 3 shows
the Setup overhead on the smartphone and laptop platforms,
when the Benaloh modulus size ranges from 64 to 2048 bits.
Note that even a resource constrained smartphone takes only
2.2s for 1024 bit sizes (0.9s on a laptop). A marked increase
can be noticed for the smartphone when the Benaloh bit size
is 2048 bit long - 13.5s. We note however that this cost is
amortized over multiple check-in runs.

The computation overhead of Check In is TC I = bTRE +
TZ K , where TRE is the Benaloh re-encryption cost and TZ K

is the overhead of the ZK-CTR protocol. The formula does
not consider the cost of modular multiplication, random num-
ber generation and random permutation operations, that are
neglibile compared to the other costs. Given s, the number
of rounds of ZK-CTR, TZ K = 2sbTRE + sbTRE + s

2 bTRE =
7
2 sbTRE . The communication overhead is Tcom_C I = bN +
Tcom_Z K . The communication cost of ZK-CTR, Tcom_Z K is
s(2bN + 1

2 4bN + 1
2 2bN) = 5sbN .

We now focus on the most resource consuming component,
the ZK-CTR protocol. While the above formulas assume
similar capabilities for the client and venue components, we
now measure the client side running on the smartphone and
the venue component executing on the laptop. Fig. 4 shows the
dependence of the three costs for a single round of ZK-CTR
on the Benaloh modulus size. Given the more efficient venue
component and the superior computation capabilities of the
laptop, the venue component has a much smaller overhead.
We have set b = 10. The communication overhead is the
smallest, exhibiting a linear increase with bit size. For a
Benaloh key size of 1024 bits, the average end-to-end overhead
of a single ZK-CTR round is 135ms. The venue component is
29ms and the client component is 106ms. Furthermore, Fig. 5
shows the overheads of these components as a function of
the number of ZK-CTR rounds, when the Benaloh key size
is 1024 bit and b = 10. For 30 rounds, when a cheating
client’s probability of success is 2−30 (1 in a billion), the total
overhead is 3.6s.

We further examine the communication overhead in terms of
bits transferred during ZK-CTR between a client and a venue.
The communication overhead in a single ZK-CTR round is
4bN + 3bN = 7bN . The second component of the sum is
due to the average outcome of the challenge bit. Fig. 6 shows
the dependency of the communication overhead (in KB) on b,
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Fig. 4. The overhead imposed by ZK-CTR as a function of the Benaloh
modulus size. Note the significant overhead increase for a 2048-bit modulus,
of approximately 260ms per ZK-CTR round.

Fig. 5. The overhead of the ZK-CTR protocol as a function of the number
of proof rounds. The linear increase in the number of rounds leads to a 12s
overhead for 100 rounds. 100 rounds reduce however the probability of client
cheating to an insignificant value, 2−100.

Fig. 6. Storage and communication overhead (in KB) as a function of b,
the number of sub-intervals considered in the statistics computation. Even for
b = 20, the storage overhead is only 5KB and the communication is 17KB.

when N = 1024. Even when b = 20, the communication
overhead is around 17KB. Fig. 6 shows also the storage
overhead (at a venue). The storage overhead is only a fraction
of the (single round) communication overhead, 2B N . For a
single dimension, with 20 sub-ranges, the overhead is 5KB.

VII. RELATED WORK

This article significantly extends a short paper [21], [22]
with privacy and correctness definitions, an expanded version
of PROFILR , a decentralized, snapshot PROFIL R , detailed
privacy and correctness proofs and applications.
Location cloaking. Location and temporal cloaking tech-
niques, or introducing errors in reported locations in order
to provide 1-out-of-k anonymity have been initially proposed
in [23], followed by a significant body of work [24], [25], [26].
We note that PROFIL R provides an orthogonal notion of
k-anonymity: instead of reporting intervals containing k other
users, we allow the construction of location centric profiles

only when k users have reported their location. Computed
LCPs hide the profiles of participating users: user profiles are
anonymous, only aggregates are available for inspection, and
interactions with venues and the provider are indistinguishable.
l-diversity. Machanavajjhala et al. [27] have shown that
k-anonymity for published user data, where each record is
indistinguishable from at least k−1 other records (for sensitive
attributes), is not sufficient to provide anonymity. To address
this, they defined an l-diverse data block of tuples from various
users, as one that contains at least l “well-represented” values
for any sensitive attribute. We note that we do not collect
individual (anonymized) user data. Instead, we build statistics
over user data, that can be published only if k users contribute.
GSN privacy. Puttaswamy and Zhao [28] require users to
store their information encrypted on the GSN provider. This
includes ‘friendship” and “transaction” proofs, cryptographi-
cally encrypted tokens encoding friend relations and messages.
The proofs can only be decrypted by those who know the
decryption keys. Transaction proofs are stored in “buckets”
associated with approximate locations (e.g., blocks), enabling
users to retrieve information pertinent to their current location.
PROFIL R takes the next step, by enabling the aggregation of
user data in a privacy preserving manner.

Mascetti et al. [29] propose solutions that hide user location
information from the provider and enable users to control the
information leaked to participating friends (e.g., co-location
events), with a view to improve service precision, computation
and communication costs. Freni et al. [30] argue that the
inherent nature of geosocial networks makes it hard for users
to gauge their privacy leaks. The proposed solution relies on
a trusted third party to process posted locations according
to user preferences, before publishing them on the GSN
provider. Wernke et al. [31] use secret sharing and multiple,
non-colluding service providers to devise secure solutions for
the management of private user locations when none of the
providers can be fully trusted. The position of a user is split
into shares and each server stores one. A compromised server
can only reveal erroneous user positions.

In contrast, PROFIL R provides the novel functionality of
allowing the provider, venues and even users to privately
compute LCPs over visitors or co-located users. PROFIL R does
not require multiple, mutually untrusted servers, or trusted
third parties.

Thompson et. al. [32] proposed a solution in which database
storage providers compute aggregate queries without gain-
ing knowledge of intermediate results; users can verify the
results of their queries, relying only on their trust of the
data owner. In addition to assuming a different environment,
PROFIL R does not assume venue owners to be trustworthy.
Toubiana et. al [33] proposed Adnostic, a privacy preserving
ad targeting architecture. Users have a profile that allows the
private matching of relevant ads. While PROFIL R can be used
to privately provide location centric targeted ads, its main goal
is different - to compute location (venue) centric profiles that
preserve the privacy of contributing users.
Online social network privacy. Recent work on preserving
the privacy of users from the online social network provider
includes Cutillo et al. [34], who proposed Safebook, a distrib-
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uted online social networks where insiders are protected from
external observers through the inherent flow of information in
the system. Tootoonchian et al. [35] proposed Lockr, a system
for improving the privacy of social networks by using the
concept of a social attestation, which is a credential proving
a social relationship. Baden et al. [36] introduced Persona,
a distributed social network with distributed account data
storage. While PROFIL R builds on this work by requiring users
to store their GSN information, its focus rests on protecting
the privacy of users while simultaneously allowing venues
to collect valuable statistics over visitors. This dual goal of
PROFIL R differentiates this paper from previous work.
Sybil account detection. Our work relies on the assumption
that participants cannot control a large number of fake, Sybil
accounts. We briefly describe several relevant techniques for
detecting social network Sybils. When given access to data
collected by the social network provider, Wang et al. [37]
proposed an approach that detects Sybil accounts based on
their click stream behaviors (traces of click-through events in
a browsing session). Molavi et al. [38] introduce a practical
approach that focuses on the effects of Sybil accounts. They
propose to defend against reviews from multiple identities of
a single attacker, by associating weights with ratings and by
introducing the concept of “relative ratings”.

VIII. CONCLUSION

In this paper we have proposed PROFIL R , a framework
and mechanisms for privately and correctly building location-
centric profiles. We have proved the ability of our solutions
to satisfy the privacy and correctness requirements. We have
introduced two applications for PROFIL R . We have shown
that PROFIL R is efficient, even when executed on resource
constrained mobile devices.
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