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Abstract. Location based social or geosocial networks (GSNs) have re-
cently emerged as a natural combination of location based services with
online social networks: users register their location and activities, share it
with friends and achieve special status (e.g., “mayorship” badges) based
on aggregate location predicates. Boasting millions of users and tens of
millions of daily check-ins, such services pose significant privacy threats:
user location information may be tracked and leaked to third parties.
Conversely, a solution enabling location privacy may provide cheating
capabilities to users wanting to claim special location status. In this pa-
per we introduce new mechanisms that allow users to (inter)act privately
in today’s geosocial networks while simultaneously ensuring honest be-
havior. An Android implementation is provided. The Google Nexus One
smartphone is shown to be able to perform tens of badge proofs per
minute. Providers can support hundreds of million of check-ins and sta-
tus verifications per day.

1 Introduction

Location based services offer information and entertainment services to mobile
users, that rely on the geographical position of their mobile devices. A recently in-
troduced but popular example, is the geosocial network (GSN) — a social network
centered on the geographical position of its users. Services such as Foursquare [1],
Yelp [2] or Gowalla [3] allow users to register or “check-in” their location, share
it with their friends, leave recommendations and collect prize “badges”. Badges
are acquired by checking-in at certain locations, following a required pattern
simultaneously with other users, i.e. multiplayer games, or obtaining the highest
number of check-ins during a time window (“mayor” badge).

Besides keeping track of their friends’ location, the user incentives for par-
ticipation include receiving promotional deals, coupons and personalized recom-
mendations. The main source of revenue for service providers lies in ad target-
ing. Boasting millions of users [4] and tens of millions of location check-ins per
day [5], GSNs can provide personalized, location dependent ads. As such, the



price of participation for users is steep: compromised location privacy. Service
providers learn the places visited by each user, the times and the sequence of
visits as well as user preferences (e.g., places visited more often) [6,7]. The im-
plications are significant as service providers may use this information in ways
that the users never intended when they signed-up (e.g., having their location
information shared with third parties [8, 9]).

While compromised privacy may seem a sufficient reason to avoid the use
of such services, it may not be necessary. Instead, we propose here a frame-
work where users themselves store and manage their location information. The
provider’s (oblivious) participation serves solely the goal of ensuring user cor-
rectness. This enables users to privately and securely check-in and acquire special
location based status, e.g., in the form of badges. Badges are defined as aggre-
gate predicates of locations. We then devise solutions to support a variety of
such predicates, including (i) registering a pre-defined number of times at a lo-
cation or set of locations, (ii) registering the most number of times (out of all
the users) at a location and (iii) simultaneously registering with &k other users
at a location.

Given the recent surge of location privacy breaches and the ensuing liabili-
ties issues [10], implementing privacy solutions may ultimately be in the service
provider’s best interest.

The problem is two-faceted. On one side, clients need strong privacy guar-
antees: The service provider should not learn user profile information, including
(i) linking users to (location,time) pairs, (ii) linking users to any location, even
if they achieve special status at that location and (iii) building user profiles —
linking multiple locations where the same user has registered. On the other side,
when awarding location-related badges, the service provider needs assurances of
client correctness. Otherwise, since special status often comes with financial and
social perks, clients have incentives to report fake locations [11], copy and share
special status tokens, or check-in more frequently than allowed.

We note that, despite being seemingly attractive, the simple use of client
pseudonyms as a means to provide client privacy during check-ins and special
status requests is vulnerable to profile based de-anonymization attacks [12,13].

In this work we first define essential privacy and correctness properties for
the aggregate location predicate problem. We then introduce SPOTR , a venue-
oriented location verification protocol, that allows GSN providers to certify
the locations claimed by users. SPOTR relies on single-use, 2 dimensional QR
(Quick Response) codes, displayed on devices inside participating venues. Fur-
thermore, we propose three privacy-preserving solutions, GeoBadge, GeoM and
M PBadge, for the three aggregate location predicates described above. The so-
lutions deploy cryptographic techniques such as zero-knowledge proofs, quadratic
residuosity constructs, threshold secret sharing and blind signatures. Clients col-
lect special, provider-issued tokens during check-ins, which they either aggregate
to build generic, non-traceable badges, or use to build zero-knowledge proofs of
ownership. Client correctness is partly ensured by the use of blind signatures of
single-use tokens.



We have implemented and evaluated the performance of our solutions on
a Revision C4 BeagleBoard, Google Nexus One smartphones and a 16 quad-
core server. Experimental results are extremely positive. The GSN provider can
support thousands of check-ins and special status verifications per second, while
a smartphone can build strongly secure aggregate location and correctness proofs
in just a few seconds.

2 Related Work

Location Cloaking: Anonymization, pseudonimization, location and temporal
cloaking techniques (introducing errors in location reports to provide 1-out-of-k
anonymity) have been initially proposed in [14], followed by a significant body of
work [15-18]. These techniques are vulnerable to de-anonymization attacks [12,
13]: the identity of a user frequently reporting a residential address may be
revealed by computing intersection sets of of cloaked reports.

Location Verification: Saroiu and Wolman [19] introduced the location proof
concept — a piece of data that certifies a receiver to a geographic location. The
solution relies on special access points (APs), that are able to issue such signed
proofs. Luo and Hengartner [20] extend this concept with client privacy, achieved
with the price of requiring three independent trusted entities. Note that both
solutions rely on the existence of specialized APs or cell-towers, that modify their
beacons and are willing to participate and sign arbitrary information. To address
the central management problems, Zhu and Cao [21] proposed the APPLAUS
system, where co-located, Bluetooth enabled devices compute privacy preserving
location proofs.

Proximity Alerts: Zhong et al. [22] have proposed three protocols that pri-
vately alert participants of nearby friends. Location privacy here means that
users of the service can learn a friend’s location only if the friend is nearby.
Manweiler et al. [23] propose several cloaking techniques for private server-based
location/time matching of peers. Narayanan et al. [24] proposed several other
solutions for the same problem, introducing the use of location tags as a means
to provide location verification. Our work is different, by enabling private and
correct aggregate location predicates in GSNs.

This paper extends our previous work [25] with a location verification solu-
tion, SPOTR , detailed descriptions of the private aggregate location predicate
protocols (GeoBadge, GeoM and M PBadge), proofs of correctness and privacy,
details of Foursquare as well as implementation results of SPOTR , GeoBadge
and GeolM .

Summary: Existing work has focused on (i) hiding user location from LBS
providers and other parties and on (ii) enabling users to prove claimed locations.
Besides proposing a novel, venue oriented approach for location verification, in
this paper we focus on the next step, of anonymizing location aggregates defined
by geosocial networks.



3 Model
3.1 The System

We consider a geosocial network provider, S. Each subscriber (or user) has an
account with S. Subscribers are assumed to have mobile devices equipped with
a GPS receiver and a Wi-Fi interface (present on most smartphones). To use the
provider’s services, a client application needs to be downloaded and installed.
Subscribers can register and receive initial service credentials, including a unique
user id; let Id4 denote the id of user A. In the following we use the terms user
and subscriber to refer to users of the service and the term client to denote the
software provided by the service and installed by users on their devices.
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Fig. 1. Foursquare stats: (a) CDF of days out, check-ins and things done by users. (b)
Badge and friends evaluation.

Foursquare: In the following, we model the online geosocial network provider
S after the most popular in existence to date, Foursquare [1]. In Foursquare,
users report their location, through check-ins at venues of interest, share it with
friends (e.g., imported from Facebook or discovered and invited on Foursquare)
and are awarded points and “badges”. A user with more check-in days at a
venue than anyone else in the past 60 days becomes the “Mayor” of the venue.
Foursquare has partnered with a long list of venues (bars, cafes, restaurants, etc)
to reward the Mayor with freebies and specials. Foursquare imposes a discrete
division of time, in terms of epochs. A user can check-in at one venue at most once
per epoch. This strategy has made Foursquare quite popular, with a constantly
growing user base, which we currently estimate at over 14 million users.

In order to understand the need for our solutions, we have collected profiles
from 781,239 randomly selected Foursquare users. Our first question was how
active are Foursquare users. Figure 1(a) shows the CDF of the number of check-
ins, days out (days the user was actively performing check-ins) and things done
(e.g., reviews left for a venue) by users. Note that 45% of the collected users have
between 80 and 950 check-ins, for between 50 and 300 days of activity (at this
time Foursquare is 2 years and a half old). This shows that many Foursquare



users are very active. Our second question regards the popularity of badges
in geosocial networks. Figure 1(b) shows the cumulative distribution function
(CDF) of the number of badges earned by users as well as their friends. Note
that 45% of the users (between the median and the 95th percentile) have between
10 and 50 badges and between 20 and 95 friends. This, coupled with the large
numbers of check-ins reported strengthens our belief that private badge protocols
are needed.
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Fig. 2. (a) Scatterplot check-ins vs. users in a small town. (b) Per-venue check-in
distribution over time for two random venues.

We corroborate the check-in data in a location-aware fashion: Figure 2(a)

shows the scatter plot of check-ins vs. users in one of the most active locations
in our dataset, the city of Babylon in Long Island, NY. Each point on the plot
denotes a venue, the x axis shows the total number of check-ins recorded at
the venue and the y axis shows the total number of users that have performed
the check-ins. Note that a few venues record 1000-5000 check-ins, from more
than 500 users. Most venues however range from a few tens to a few hundred
check-ins and users. Finally, Figure 2(b) shows the evolution between August
2010 and February 2011 of the number of check-ins per day for two randomly
selected venues. The number of check-ins range between 3 to almost 70 per day.
Our conclusions are that Foursquare users are actively checking-in and venues
record many daily check-ins. This data rich environment can be a goldmine
for rogue GSN providers. Moreover, the number of recorded check-ins suggests
that badges and mayorship are likely to become objects of contention. These
points show that devising private and secure “badging” protocols is a problem
of primary importance for GSNs.
Geo: A private GSN. A full-fledged privacy solution is composed of a set of
protocols Geo = {Setup, RegisterVenue, Subscribe, CheckIn, StatVerify}.
Setup is executed initially by the service provider to generate system-wide pa-
rameters and RegisterVenue is used to register a new venue with the provider
S. Subscribe is initiated by a client when registering with the service. CheckIn
is executed by a client to report its presence at a venue to S and StatVerify
is executed when the client has accumulated sufficient check-ins and claims its
special status. Each operation returns -1 to report failure or 0 for success.



We support three special status types. First, location badges (see Section 6),
issued after the client runs CheckIn during k different epochs at a venue V' (e.g.,
“local” badge in Foursquare [1]) or after the client runs CheckIn at k different,
select, locations (e.g., “adventurer” badge). Second, mayorships (see Section 7),
issued when the client has the largest number of CheckIn runs, at most one
per epoch, in the past m epochs at a given venue V. m is a system parameter.
Third, multi-player badges (see Section 8), issued when the client runs CheckIn
simultaneously with s other users at the same location. s is a system parameter.

3.2 Privacy and Correctness Properties

Server Model. The provider S is honest, yet curious. S follows the protocol
correctly, but is interested in collecting tuples of the format (Id,V,T'), where Id
is a user id, V is a venue and 7' is a time value. To this end, it may collude with
existing clients and generate Sybil clients to track users of interest. The provider
has no interest in colluding with users to issue badges without merit. To achieve
privacy, intuitively, the provider should learn nothing about Geo clients. First,
this includes the venues at which users run the CheckIn function, how many
times and when they run CheckIn (in total and for any venue). We note that
this necessarily includes also hiding correlations between venues where a given
client has run CheckIn. We formalize this intuition using games run between an
adversary A and a challenger C. A controls the service provider and any number
of clients, thus controls the initial parameter generation functionality (e.g., the
Setup function). A shares public parameters with C. C controls two clients Cy
and C. C initially runs the Subscribe function with A for the two clients and
obtains their unique identifiers.

In a first Checkln-Indistinguishability game, we model the adversary’s in-

ability to distinguish between clients during C'heckIn executions, even when the
adversary controls an initial trace of CheckIn executions. The game is defined
for a given venue V.
CheckIn Indistinguishability (CI-IND). A generates [ bits c¢i,..,¢; and
sends them to C. For each bit ¢;, C executes CheckIn(C,,(V), A). After pro-
cessing all [ bits, C flips a bit b € {0,1} and runs CheckIn(Cy,A). A outputs
a bit b'. A solution is said to be CI-IND if the advantage of A in the CI-IND
game, Adv(A) = |Pr[b = b'] — 1/2—, is negligible.

In a second, StatVerify-Indistinguishability game, the adversary (e.g., service

provider) should be unable to distinguish between clients running StatVerify,
even if the adversary is able to trace client C'heckIn executions.
StatVerify Indistinguishability (SV-IND). C performs [ CheckIn and m
StatVerify operations on behalf of Cy and C, as requested by C. A StatVerify
operation succeeds only if special status has been achieved by the corresponding
client in the previous CheckIn runs. A generates k > 2s new bits ¢y, .., ¢ such
that at least s of them are 0 and at least s of them are 1. A sends ¢y, ..,cx to
C. For each bit ¢;, C runs CheckIn(C,,(V), A). Finally, C flips a coin b € {0,1}
and runs StatVerify(Cy(V,s),S). A outputs a bit b’. A solution is said to be
SV-IND if the advantage of A, Adv(A) = |Pr[b=b'] — 1/2|, is negligible.



Note that even though the CheckIn runs are executed for the same venue V,
irrespective of the client, the SV-IND game is also suitable for the mayor badge
— only one of the clients (Cp) will become mayor. However, for mayor badges,
the value s needs to exceed the number of CheckIn executions run on behalf of
any client in the first step of the SV-IND game. Finally, we also need to allow
the server to collect venue-based statistics:

Provider Usability. The service provider can count the number of C'heckIn
executions for any venue as well as list the issued badges and mayorships.

Client Model. The client is assumed to be malicious. Malicious clients can
be outsiders that are able to corrupt existing devices or may be insiders, i.e.,
subscribers, users that have installed the client. Malicious clients can try to cheat
on their location (claim to be in a place where they are not [11]), attempt to
prove a status they do not have, or disseminate credentials received from the
server to other clients. The latter case includes any information received from
the server, certifying presence at a specific location. Formally, we need a solution
that has the following properties.

Status Safety. The challenger C controls the service provider and the adversary
A controls any number of clients. The challenger runs first the Setup protocol and
provides A with its public parameters. A4 runs Subscribe any number of times
to generate clients. 4 then runs C'heckIn with C for any number of venues, but
at most k — 1 times for any venue. A runs StatVerify with C. The advantage of
A is defined to be Adv(A) = Pr[StatVerify(C(paramsc), S(privs)) = 1]. We
say that a solution is safe if Adv(.A) is negligible.

Note that a safe solution also prevents clients from running CheckIn for
venues where they are not located — otherwise A would succeed in StatVerify
with less than k CheckIn runs at a site.

Token Non-distributability. No client or coalition thereof can use the same
set of tokens more than once.

Token-Epoch Immutability. No client or coalition thereof can obtain more
than one token per site per epoch.

4 Tools

Cryptographic Tools. We use a semantically secure cryptosystem, as well
as unforgeable signature schemes. Let Sx (M) denote the signature of a mes-
sage M by participant X. Unforgeability is defined in terms of security “against
one-more-forgery”, where the user engaged in [ runs of the signature algorithm
with the signer cannot obtain more than ! signatures. We also use blind signa-
tures with the standard (i) blindness and (ii) unforgeability properties. Blindness
means that the signer learns nothing about the signed messages. We use cryp-
tographic hashes that are easy to compute and are (i) pre-image resistant, (ii)
second pre-image resistant and (iii) collision resistant. We use z € S to denote
the random choice of x from set S.

Anonymizers. We assume the existence of a network anonymizer, Miz, such as
Tor [26]. Anonymizers or mix-nets [26,27] are tools that make communication



untraceable and unlinkable. Untraceability implies the infeasibility of finding
the identity of the issuer of a given set of messages. Unlinkability implies the
infeasibility of discovering pairs of communicating entities.

Anonymous Authentication. We rely on anonymous authentication tech-
niques with revocation and identity escrow, e.g., [28], performed over Miz, to
enable users to prove they are service subscribers.

QR-Assumption. Given a large composite n = pq, where p and ¢ are safe
primes and given n but not p and g, it is computationally hard to decide if any
value v, whose Jacobi symbol (v|n) is 1, is a quadratic residue or not. v is a
quadratic residue if there exists a value y such that y?> = v mod n.

5 Spotr : Secure Location Verification

In this section, we propose SPOTR , a solution that allows the GSN provider
to privately verify the claimed locations of clients. Since venues have the most
incentives to correctly reward users, SPOTR relies on the co-operation of venue
owners: owners need to install and operate a device inside their venues. We show
that simple, off-the-shelf equipment is sufficient and no Internet connectivity is
required — thus imposing solely a one time investment. SPOTR relies on Quick
Response Codes (QR codes), 2D barcodes consisting of black modules arranged
in a square pattern on a white background, that can store up to 2,953 bytes.

Let SPOTRy denote the device installed at venue V. When registering SPOTRy ,
the owner instructs SPOTRy to generate a public/private key, store the private
key, encode the public key in a QR code and display it on the screen. The owner
takes a picture of the QR code, decodes the public key and reports it to .S, the
GSN provider. S associates with each venue, the owner’s public key. At any time,
SpoTRy displays a QR code encoding T', AT, So (H (T, ¢tr)), containing the time
when the QR code was generated, an expiration increment AT and the owner
O’s signature on these values. During a check-in at V/, the following takes place:
CheckIn(C(Id,V,T,pubs), S(privs, pubo)): The user approaches SPOTRy , snaps
a picture of the displayed QR code and sends it, along with the venue identity,
over Miz, to S. With the public key pubo of the owner O of venue V', S verifies
the correctness of the received signature, and that the current time is between
[T,T + AT)]. If the verifications succeed, S validates the check-in. Otherwise, it
returns -1. SPOTRy changes the QR code to encode a fresh timestamp when
either (i) the current time approaches T'+ AT or (ii) it detects that the current
QR code has been read (see Section 9 for implementation details).

We are exploring alternative, challenge-response based location verification
protocols involving Wi-Fi/Bluetooth/NFC communication between the user smart-
phone and the venue’s device. They are not included here due to space lim-
itations. SPOTR will be used as a building block by all subsequent solutions,
GeoBadge, GeoM and MPBadge. Its security is proved as part of GeoBadge.

6 Geo-Badge

GeoBadge is a private protocol that allows users to prove having visited the same
location k times. At the end of the section we show how to adapt it to support



private proofs of visiting k different places. GeoBadge works as follows: each
subscribed client contacts the provider over the anonymizer Mixz, authenticates
anonymously, proves its current location and obtains a blindly signed, single use
nonce and a share of a secret associated with the current venue. When k shares
have been acquired (after k check-ins at the same venue) the client is able to
reconstruct the secret - which is the proof required for the badge of the venue.
The single use nonces prevent users from distributing received shares (or proofs).
GeoBadge extends Geo and provides the skeleton on which we build the
subsequent solutions. Each client maintains a set T'k, storing all the tokens ac-
cumulated during C'heckIn runs. When the client accumulates enough tokens in
Tk to achieve special status, it runs StatVerify, aggregating the tokens in Tk.
In the following we instantiate each protocol, executed between a client C' and
the GSN provider S.
Setup: The server chooses a large prime p and generates a random key K. The
server publishes p and keeps K secret,.
RegisterVenue(C/(), S(privs)): The client C that registers venue V', called the
owner of the venue, sends to S its public key. For each new venue V', S gen-
erates a secret My randomly. S uses a threshold secret sharing solution to
compute shares of My, by generating a polynomial Pol of degree kK — 1 whose
free coefficient is My: Pol(x) = My + ¢z + c22* + ... + cx_12% 1. S keeps
Pol’s coefficients secret but publishes the degree k and the verification value
Very = H(MyHg (V) mod p). S stores Pol’s coefficients for V| along with the
public key of V’s owner - to be used as part of SPOTR (see Section 5).
Subscribe(C(), S(pubs, privs)): The communication in this step is performed
over Miz, to hide C"’s location from S. C runs the setup stage of the Anonymous
Authentication protocol of Boneh and Franklin [28] to obtain tokens that allow
it later to authenticate anonymously with the server.
CheckIn(C(Id,V, T, pubs), S(privs)): Let time T be during epoch e. The fol-
lowing actions are performed by a client C' and the service provider S:
— Anonymous Authentication: C' runs the anonymous authentication pro-
cedure of Boneh and Franklin [28] to prove to S that it is a subscriber. This step
is performed over Mix.
— Location Verification: C runs SPOTR (Section 5) to prove presence at V.
— Token Generation: C generates a fresh random value R and sends the
blinded R to S, as O(R). S computes z. = Hg (e) mod p and y. = Pol(x.) mod p.
S sends to C' (as a reply over the anonymizer) the tuple (z., ce, Ss(O(R))), where
ce = Hg(V)y. mod p and the last field denotes the blindly signed R. C' “un-
blinds” the signed nonce, obtaining s, = Ss(R) and stores (z.,ce, Se) into its
token set T'k.

StatVerify (C(Id,V,k,Tk,pubs), S(privs)): Let Tk = {(z1,c1, Ss(Ry1)), ..,
(@, ck,Ss(Re))}. Let Uj(x) = In=1..k,mj ;J:”gg’; mod p be the Lagrange coeffi-
cients. The following steps are executed, over Mix:

— C computes SS = Yj—1.xc;l;(0). C verifies that H(SS) = Very. If the veri-
fication fails, C' outputs -1 and stops. Otherwise, it sends S5, along with the set

of signed nonces, (Ss(R1), .., Ss(Ry)) and the venue V to S.




— S verifies that (i) the k£ random values are indeed signed by it, (ii) that
Ry, .., Ry, are unique and have not been used before and (iii) that H(SS) = Very.
If either verification fails, S outputs -1. Otherwise, S stores the values Ry, .., Ry,
then issues a badge Ss(“GeoBadge”,V,T.) for the venue V, where T. is the
current issuance time. S sends this badge to C' (as a reply over Miz).

6.1 Analysis

Correctness. The following holds due to Lagrange interpolation:

k k
SS = ¢;l;(0) = Hi(V) Y Pol(x;)l;(0) = Hx (V) Pol(0) = Hi (V) My

Theorem 1 GeoBadge is CI-IND.

Proof. (Summary) Following the CI-IND game, A’s view consists of the outcome
of | + 1 anonymous authentication procedures, [ + 1 venue signatures (from QR
codes) and [ + 1 blinded random values. The venue signatures carry no informa-
tion identifying the client. The blinded random values are information theoretical
secure. Then, if A4 can distinguish between Cjy and (' in the last step of the game,
we can build an adversary that has a non-negligible advantage against either (i)
the anonymous authentication solution of Boneh and Franklin [28] or (ii) the
untraceability property of Mix.

Theorem 2 GeoBadge is SV-IND.

Proof. (Summary) At the completion of the SV-IND game C can reconstruct
the SS values for both Cy and C;. A has published a pre-commitment for SS —
Very. Note that C’s verification of H(SS) = Very prevents A from guessing b
based on the value C to reconstruct during StatVerify. Thus, if the adversary
has non-negligible advantage in the SV-IND game then we can also build an
adversary that has non-negligible advantage against either (i) the untraceability
property of Mixz, (ii) the semantic security of the blinding algorithm E, or (iii)
the information theoretic security of the threshold secret sharing mechanism.

Theorem 3 GeoBadge provides Status Safety.

Proof. (Summary) SPOTR efficiently prevents a single attacker from falsely claim-
ing presence at V: without being present, the attacker is unable to predict or
forge the signature displayed on SPOTRy (see the security against one-more-
forgery of the signature scheme from Section 4). Then, if there exists an adver-
sary that has non-negligible advantage in the Badge-Safety game we can build
an adversary that has a non-negligible advantage against (i) the pre-image re-
sistance property of hashes (inverting Very = H(SS)) or (ii) the information
theoretic threshold secret sharing technique (including combining shares gener-
ated at multiple sites).



Note that trivially GeoBadge also provides the Token Non-Distributability
property — the single use, server signed random nonces prevent more than one
run of StatVerify for a given set of tokens. The Token-Epoch Immutability
property holds (no colluding clients can obtain more than one token for a venue
during any epoch e), since the pair (z., c.) is a deterministic function of e.

7 Geo-M

Using the Foursquare terminology, the user that has run CheckIn the most
number of times, at a venue .S, within the past m epochs, becomes the mayor of
the place. We now propose GeoM, a solution that allows users to achieve this
status with privacy, while allowing anyone to verify correctness. GeoM extends
GeoBadge: First, it allows clients to prove any number of check-ins, not just
a pre-defined value k. Second, the check-ins are time constrained: clients have
to prove that all check-ins have occurred in the past m epochs. Finally, client
issued proofs can be published by the provider to be verified by any third party,
without the risk of being copied and re-used by other clients.

GeoM achieves these features by requiring the service provider to issue only
one token for each venue during any epoch. When a user has accumulated &
tokens for a venue, it proves to the provider that it has k£ out of the m tokens
given in the past m epochs for that venue. The proof is in zero knowledge (ZK)
and if it verifies is published by the server.

Setup: The server generates two large safe primes p and ¢ and the composite
n = pq. Let N denote n’s bit length. S publishes n and keeps p and ¢ secret.
RegisterVenue(C(), S(privs)): For each newly registered venue V', S generates
anew random seed ry and uses it to initialize a pseudo-random number generator
Gy . During every epoch e;, for the venue V', S generates a fresh random token
ti, using Gy, and publishes 2 mod n.

CheckIn(C(Id,V,T, q,pubs), S(privs)): Inherits the Anonymous Authentica-
tion and Location Verification steps from GeoBadge. If they succeed, let time
T be within epoch e;, when the provider’s published token value is t? mod n.
C' generates a random nonce R, engages in a blind signature protocol with S
and obtains Sg(R). S also sends to C the value ¢;, the square root of the value
published for the epoch e;. C' stores t; in the set T'k along with the signed nonce,
Ss(R). All communication takes place over Mizx.

StatVerify (C(Id,V,k,Tk,pubs), S(privs)): Without loss of generality, let T =
{(t1,S5(R1)), .-, (tr, Ss(Rg))} be the set of all tokens issued by S for venue
V in the past m epochs and let 72 = {t?,t2,..,t2,} denote the corresponding
published values. Note that the membership of 7?2 changes during every epoch.
The client and the server run the following steps s times (ZK proof of the client
knowing k square roots of values from 72). If successful, at the end of the s steps
S will be convinced with probability 1 — 27%.

— C generates ¥y, ..,¥m €r 10,1} and a random permutation . C' computes
the set M = m{t?y?,..,t2,y% } and sends it to S. Note that C' does not need to
know t1, ..,t;, to compute M.



— C generates z1, .., zx €g {0,1}" and a random permutation 72 and computes
the set Proof = ma{t121,..,tgzx}, which it sends to S.

— S flips a coin b and sends it to C.

— If b=0, C sends yi,..,ym to S, which then verifies that for every t? € 72,
t?(y;)? occurs once in M.

— If b=1, C generates and sends A = my{a; = 27 Y1, .., ax = zk_lyk}. S verifies
that for every p; € Proof and corresponding a;, (p;a;)? occurs in M once.

If any step fails, S outputs -1 and stops. Otherwise, it generates a signed
“mayor” token Sg(“Mayor”,V,T.) for venue V issued at time T, and sends it
to C. All communication in this step is done over Mix. To reduce delays, the ZK
proof can be non-interactive — in the standard way, by making the challenge bits
depend in an unpredictable way on the values sent to the server. This allows
C to send the entire proof at once. S publishes the ZK proof for the current
“mayor”, which can be downloaded and verified by any third party.

7.1 Analysis

Theorem 4 The StatVerify protocol of GeoM is a zero knowledge proof sys-
tem of k square roots from T?2.

Proof. (Summary) To see that GeoM is a proof system, we need to prove com-
pleteness and soundness.

Completeness — an honest server will be convinced by an honest client of
the correctness of the proof. If b=0, S is convinced that M is obtained from 72 by
multiplication with quadratic residues, y?. That is, for each t; € T2, t?y? € M.
If b=1, S is convinced that C knows the square roots of k elements in M. This is
because C' can provide a; values that satisfy (p;a;)? = (tiziz; ‘y:)? = t2y? € M.
In conjunction, these two cases prove to S that C' knows the square roots of &
elements from 7?2 with probability 1 —27°.

Soundness — if the statement is false, no cheating client can convince an
honest server that the statement is true, except with small probability. Without
loss of generality, let us assume that C' knows only k — 1 square roots of 772,
t1,..,tp—1. If C expects the challenge to be b = 0, C generates y1, -., ¥, as in the
protocol, builds M correctly but generates Proof = ma{ti2z1,..,th—12k—1, 2k},
where 2, is random. If the challenge ends up being b = 1, C' has to produce one a;
value that is equal to yjzj*l(t?)lﬂ, for one j € k..m. Due to the QR-Assumption,
C' is unable even to tell whether any t? is a quadratic residue or not. If C' expects
the challenge to be 1, it builds Mm = {t}w?,...t3 | wi |, w},.., w2}, where the
w;’s are random. It then build Proof to be
Proof = mo{t121, .., tk—12k—1, 2 }. If b = 1, C can provide square roots for k
values in M. If b = 0 however, C' has to produce m — k + 1 values y; such that
yj = wj(tf)l/ 2. which contradicts again the QR-Assumption. The chance of a
cheating client to succeed after s repetitions is 277,

Zero Knowledge — if the statement is true, no cheating server learns any-
thing except this fact. We prove this by following the approach from [29,30].



Specifically, let S* be an arbitrary, fixed, expected polynomial time server Turing
machine. We generate an expected polynomial time machine M* that, without
being given access to a client C' (or the square roots of any elements from 72,
produces an output whose probability distribution is identical to the probability
distribution of the output of < C,S* >.

While we skip details due to space limitations, we note that M™* is built by
using S* as a black box. For each of the s steps of the protocol, M* flips a coin
a and builds the sets M and Proof anticipating that the challenge bit b will
equal a. It then feeds these values to S*, which then outputs b. If b = a, M*
outputs the transcript of the transaction and moves to the next step. Otherwise,
it repeats the current step. M™* terminates in expected polynomial time (each
of the s steps is executed on average twice). The probability distributions of the
output of < C,S* > and of M* are identical, which is proved by induction.

Theorem 5 GeoM is CI-IND and SV-IND.

Proof. (Intuition) The CI-IND proof is inherited from GeoBadge: CheckIn pro-
tocol differs solely in the provider’s issuance of a square root value. For the
SV-IND proof, we note that StatVerify is a ZK proof system. Then, an ad-
versary with advantage in the SV-IND game can be used to build an adversary
against Mix’s untraceability property.

Theorem 6 GeoM provides Status Safety.

Proof. Results directly from Theorem 4: StatVerify is a proof system of having
k square roots from 72. A cheating client can succeed with probability 2%,
where s is the number of proof iterations.

The single-use blindly signed nonces generated during C'heckIn ensure the
token non-distributability property of GeoM . GeoM trivially provides the token-
epoch immutability property, as S issues a single token per venue per epoch.

8 Multi-Player: MP-Badge

The multi-player badge is issued when a user presents proof of co-location and
interaction with k& — 1 other users at a venue V. k is a parameter that may
depend on the venue V. We now present M PBadge, an extension of GeoBadge
that provides this functionality with privacy. M PBadge relies on threshold sig-
natures, where each client is able to provide a signature share and k unique
signature shares generated at the same venue in the same epoch (see protocol
MP — CheckIn). The shares can then be combined to produce a signed co-
location proof. An additional difficulty here lies in the ability of an anonymous
user to cheat: run CheckIn multiple times in the same epoch, obtain k signa-
ture shares and generate by itself the co-location proof. We solve this issue by
allowing a user to run CheckIn only once per venue per epoch - using the blind
signature generation, BSGen, protocol (see below).

Setup: The server S generates two large safe primes p and ¢ and the composite
n = pq. Let N denote n’s bit length. S publishes n and keeps p and ¢ secret.
RegisterVenue(C(), S(privs)): The following steps are executed:



— S stores a key table KT, indexed by venues and epochs. KT[V,e] contains
a unique key, used only for signing values for a venue V' during epoch e. Let v
denote the total number of venues supported.

— For each venue V and epoch e, S generates a value My, €g {0,1}" and a
random polynomial Poly . with degree k —1, whose free coefficient is My . My,
and Poly, are secret.

BSGen(C(Id,e,pubs), S(privs)): Executed once per epoch e by each client C
(when active) with provider S, over an authenticated channel. C' generates v
random values, one for each venue in the system, Ry, .., R,. C and S engage in
a blind signature protocol, where each R; is blindly signed by S with KT[P;, €].
S records the epochs when C' has executed this step and returns -1 if C' at-
tempts to run this step twice for the same epoch. Otherwise, the client obtains
BSKT[PZ-,e] (R), Vi=1.v.

CheckIn(C(Id,V,T,n,pubs), S(privs)): C and S run the Anonymous Authen-
tication and Location Verification steps of GeoBadge. If they succeed, C sends
R, BSkr(v,(R) to S over Mix — the values correspond to the venue V' and
epoch e where C' runs CheckIn. S verifies that (i) R has not been used before
and (ii) the validity of its signature. If either step fails, S returns -1. Otherwise,
S stores R and generates a share of My,: (z¢,y.), where z, is random and
Ye = Polyc(z,). S sends (x,,y.) to C as a reply over Miz, and C stores them.
MP-CheckIn(C, (Idy,V,T),Cao(Ids, V,T, z¢ 2, Ye,2)): This step is executed when
a client C contacts a co-located client Cy to build a co-location proof for V'
during epoch e (containing current time 7"). The communication is done over
Miz. Cy contacts Cy with the message M = (“M PBadge",V,e). If Cy has al-
ready executed CheckIn at venue V and epoch e, let (z 2,¥e,2) be its share of
My,.. Cy then generates o.» = MY=? mod n and sends back to C the tuple
(®e,2,0¢,2,R2, BSy ¢(R2) mod n). Ry is the value that Cy has had the server
blindly sign: BSy(R2). C1 stores these values in the set T'k.

StatVerify (C(Id,V,k,Tk,e,pubs), S(privs)): Without loss of generality, let Tk =
{(ei,0¢,, Ri, BSy,e(Ri)}, Vi = 1..k. C and S run the following steps:

— C computes 0 = Hle O'Zi(o) = M*¥veili®) = MMvie O sends o, R;, BSy .(R;),
for all k& R; values received from co-located clients to S over Mix.

— S verifies that (i) the time when the communication of the previous step has
been initiated is within epoch e, (ii) that (“M PBadge",V,e)™V.e = ¢ and (iii)
that all BSy,.(R;) signatures verify for venue V' during epoch e. S checks that
the exact set of k revealed blind signatures has not been used before more than
k-1 times: S records the set of k£ blind signatures and allows it to be used only &
times. Subsequent uses of the tokens are allowed, as long as the newly revealed
set contains at least one fresh blind signature. If any verification fails, S outputs
-1 and stops. Otherwise, S generates an MPBadge: Ss(“M PBadge",V, e, T,),
where T, is the time of issue, and sends it over Miz to C.

While we omit the proofs due to space constraints, we note that M PBadge
is CI-IND and SV-IND.



9 Evaluation

Spotr Implementation: We have implemented SPOTR in Android and have
tested it on a Revision C4 of the BeagleBoard [31] system, featuring an OMAP
3530 DCCB72 720 MHz and a Google Nexus One smartphone featuring a 1
GHz Scorpion processor, Adreno 200 GPU with 512 MB RAM. We use the
ambient light sensor of the Nexus One to detect when anyone takes a picture
of the displayed QR code (light level changes). Figure 3 shows a picture of the
BeagleBoard displaying a generated QR code. The time to generate a QR code
on the BeagleBoard is 50ms. The time to decode the QR code on the Nexus One
is 190ms, at a distance of 20cm.

We have implemented GeoBadge

and GeoM in Android and Java
and have tested the client side on
the Nexus One smartphone and
the server side on a 16 quadcore
server featuring Intel(R) Xeon(R)
CPU X7350 @ 2.93GHz and 128GB
RAM. We have stress-tested the
server side by sequentially sending
multiple client requests. All the re-
sults shown in the following are computed as an average over at least 10 inde-
pendent runs.
GeoBadge: We study the most compute-intensive functions of GeoBadge:
Setup, the GSN provider side of CheckIn, the client and provider sides of
StatVerify. We investigate first the dependence on the modulus bit size. The
Setup cost, a one time cost for the GSN provider, ranges from 277ms for 512 bit
keys to 16.49s for 2048 bit keys.

Fig. 3. SPoTR on BeagleBoard.
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Fig. 4. GeoBadge dependence on (a) modulus size, (b) k, the check-in count.

Figure 4(a) shows the performance of the remaining three components in mil-
liseconds (ms) using a logarithmic y scale. The z axis is the modulus size, ranging
from 512 to 2048 bits. The value of k, the number of C'heckIn runs required to



acquire the badge is set to 50. On a single core, the CheckIn cost, is 13ms even
for a 2048 bit modulus size. The cost of the provider side of StatVerify is al-
most constant for different key bit sizes, also around 13ms — on an OpenSSL
sample, the cost of performing one signature verification for 2048 bit is 0.1ms,
thus dwarfed by the cost of string operations. Thus, the provider can support
more than 4800 C'heckIn or StatVerify runs per second, or more than 412 mil-
lion operations per day. The client side of StatVerify requires 16.5s for 2048 bit
keys, on the Nexus One.
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Fig. 5. GeoM: (a) Dependence on N, the modulus size, (b) StatVerify client and server
side, function of k, the number of check-ins.

Figure 4(b) shows the performance dependency of the same protocols on k,
the number of check-ins required, when the key size is set to 1024 bits. The client
StatVerify takes up to 21s when & = 100. The provider components are much
faster: the StatVerify takes less than 27ms, allowing the provider to support
more than 2400 such operations per second (more than 207 million ops per day).
The CheckIn cost is even smaller, less than 10ms for k=100, allowing more than
6500 simultaneous check-ins, or more than 560 million check-ins per day.

Nexus One [ 16 Quadcore GeoM: For the next experiment, we

10%° studied GeoM. We have first tested
10° key bit sizes ranging from 512 to
- 2048. A one time occurrence for the
£ 1w GSN provider, the Setup cost ranges
g from 227ms to 1.5s and is negligi-
T ble. Figure 5(a) shows the perfor-
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w0t ‘ ‘ ‘ ‘ ‘ StatVerify (client and server side)
20 s: nuﬁ%er of Sr%of Setio 100 in ms, as a function of the key bit
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Fig. 6. StatVerify dependence on s, the ms, in logarithmic scale. s, the num-
number of proof iterations. y axis is time ber of proof rounds is set to 40, m,
in milliseconds, in logarithmic scale. the number of past epochs is set to 60
and k, the number of CheckIn runs



is set to 30. The client side StatVerify, executed on the Nexus One platform ,
requires between 1.7s to 7.5s. Since the provider is the bottleneck, the sensitive
operations are CheckIn and the provider side of StatVerify. These operations
are fast: Requiring one table lookup and a signature generation, CheckIn takes
4.8ms. On a 16 quadcore server, the provider can support more than 13,000
check-ins per second - more than 1.1 billion ops per day. The provider side of
StatVerify is less compute intensive than the client side: it ranges from 36ms
to 309ms (form 2048 bit keys).

We further evaluate the dependency of StatVerify (client and server side) on

the value of k& when the modulus size N is 1024, m=60 and s=40. Figure 5(b)
shows that the server side exhibits small linear increases with k, but is only
124ms when k = m = 60. The server can support 512 simultaneous StatVerify
runs per second or 44+ million per day. The client side is less then 4.6s even
for 60 check-ins. Finally, Figure 6 shows the dependency of StatVerify on the
value of s, the number of proof sets. IV is set to 1024, m is set to 60 and k is set
to 30. Both costs are linear: up to 211ms, or 184 million runs per day for the
provider and 7.2s for the client.
Summary. The server side overhead of GeoBadge and GeoM is small. The
provider can support thousands of CheckIns and StatVeri fys per second. While
on the order of a few seconds, the client side overhead of StatVerify is not time
sensitive and can be executed in the background.

10 Conclusions

We studied privacy issues related to aggregate location predicates in GSNs and
proposed solutions that privately and securely enable aggregate location pred-
icates. We showed that our solutions are efficient, as the provider can support
between tens of millions to 1.1 billion operations per day. We leave for future
work the issue of allowing the provider to privately collect aggregates over user
information. This will address the provider’s reluctance to offer services without
being able to collect valuable user information.
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