
1

Query privacy in wireless sensor networks
Bogdan Carbunar, Yang Yu, Larry Shi, Michael Pearce, Venu Vasudevan

Applications Research Center, Motorola Labs
Schaumburg, IL, 60195�

carbunar,yang,larry.shi,michael.pearce@motorola.com,cvv012 � @motorola.com

Abstract— Existing mechanisms for querying wireless
sensor networks leak client interests to the servers per-
forming the queries. The leaks are not only in terms of
specific regions but also of client access patterns. In this
paper we introduce the problem of preserving the privacy
of clients querying a wireless sensor network owned by
untrusted organizations. We investigate two architectures
and their corresponding trust models. For the first model,
consisting of multiple, mutually distrusting servers gov-
erning the network, we devise an efficient protocol, SPYC,
and show that it provides full query privacy. For the
second model, where all queries are performed through
a single server, we introduce two metrics for quantifying
the privacy achieved by a client’s query sequence. We
propose a suite of practical algorithms, then analyze the
privacy and efficiency levels they provide. Our TOSSIM
simulations show that the proposed query mechanisms
are communication efficient while significantly improving
client query privacy levels.

I. INTRODUCTION

The traditional trust model of wireless sensor networks
assumes the owner and deployer of the network to be
the collector and consumer of sensor readings. While
this makes sense for small, experimental networks, this
is likely not to be the case for large scale sensor
networks. Programs and projects such as NEPTUNE [1],
GEOSS [2], ORION [3], Ocean.US and IOOS [4] and
LOOKING [5] are building ocean observatories and sys-
tems (including sensor networks) for observing and re-
porting earth, ocean and atmosphere information needed
to address complex environmental problems. The trust
model for these sensor networks is shaped by two factors.
First, multiple organizations (e.g., government agencies,
universities and companies) are involved, acting both as
funding sources and primary investigators. Even though
network owners need to collaborate for administrative
purposes, they may not fully trust each other, due to
diverging interests (e.g. GEOSS [2] involves 61 coun-
tries, NOPP [6] involves DARPA, the Department of
State and the Department of Homeland Security among
others). Second, external organizations interested in the

areas monitored by the sensor network may be willing
to pay for access to sensor readings.

Providing support for third party (client) queries raises
privacy and efficiency issues. Clients may not be willing
to disclose their areas of interest or access patterns,
whereas the owners of the network want to preserve
the network’s resources. Consider the case of a server
providing access to an under-water sensor network and
an oil company with an interest in the network. The
client’s program may consist of several constructs of the
type illustrated below, using SQL/TinyDB syntax. In this
example, the oil company is interested in temperature
readings of sensors placed in the rectangle of coordinates
[10..20,30..40], every 20 seconds, for 500 seconds.

�������	��
�������	�������	���	�����������	����� �!�"$# �%� # �� #'& � #(�) � � #�*,+.- ��
 (����/10�2 & /�354�2& /�3 #�*768- ��
 (����/.9�2 & /�3;:�2� &�"�< ��� < � >=�! 354�2 #?��!% A@ 2�2 #
Knowledge of the client’s profile, along with its regions
and types of readings of interest may be used by servers
against the client’s interests. The client’s access patterns
may further disclose its execution program. For instance,
the server may discover that a client is interested only
in readings from sensors placed in a certain region (e.g.,
the rectangle in the above example) or accessing multiple
regions in a certain order.

The straightforward solution of the client always
querying the entire network but keeping only readings
from areas of interest imposes a significant load on the
network. This is especially relevant for wireless sensor
networks whose functionality is defined by the limited
battery available to sensors.

In this paper we propose several efficient mechanisms
for privately querying wireless sensor networks. We
investigate two network models, one where access to
sensor readings is provided by a single organization
and one where any of multiple, mutually distrusting
organizations can perform this operation. In our model,
each organization is represented by a server with direct
access to the sensor network. For the latter case, we

2

propose SPYC, a protocol that decomposes a client’s
interaction with the network into two tasks. The first task,
of privately naming each sensor, requires two servers, but
is executed only when the client joins the system. The
second task, requiring only one server, takes advantage
of the virtual name space in order to privately access
sensors of interest and is performed for each client query.
Using standard cryptographic techniques, the client hides
from the servers both the virtual sensor names and the
actual sensors queried. We show that if the servers do
not cooperate, this solution achieves full privacy.

In the former, single server case, we start our work
with the observation that all queries reach the server
unencrypted, thus making privacy possible only through
the use of obfuscation. When queries have a strong tem-
poral dimension (i.e., are relevant only if performed in a
certain order and at specific time intervals) , obfuscation
implies querying regions beyond the ones of interest. We
model this by using a transform � , that, given a region
of interest in a client’s query, produces a set of regions
to be queried by the server. We propose two metrics for
measuring privacy, present a suite of practical transforms
and study their efficiency and privacy achieved.

The paper is organized as follows. In Section II we
survey existing research. In Section III we describe our
system model and introduce the privacy problem we
consider. In Section IV, we propose an algorithm, SPYC,
for the multiple server trust model and in Section V
we study the single server case. Section VI contains
our single and multi server simulation results. Finally,
Section VII concludes the paper.

II. RELATED WORK

Anonymizers: The first anonymous system, the Mix-
Net design, was proposed by Chaum [7]. The system
hides the correspondence between senders and receivers
of messages by repeatedly encrypting messages with the
public keys of a predefined set of mixes. A mix is a
server that decrypts received encrypted messages with
its corresponding private key and reorders them before
forwarding them to the next mix. Dingledine et al. [8]
introduced Tor, an Internet anonymizing system. Tor
sequentially creates circuits of “onion routers”, pseudo-
randomly chosen from a predefined set of servers. The
set and state of onion routers is maintained by multiple
directory servers.

While the multi-server solution proposed in this paper
resembles a mix-net, we note two major differences.
First, our solution does not require dynamically estab-
lishing a cascade of routers for each region to be queried.
This operation involves a high communication overhead,

prohibitive for a wireless sensor network. Second, the
simplicity of our solution stems from a different trust
model. Specifically, access to the sensor network is only
given through a small (two) set of servers. This is clearly
not the case of Internet or peer-to-peer anonymizers.

Reiter and Rubin [9] introduced Crowds, which pro-
vides anonymity for web users. It groups users into
a large, geographically distributed group, that issues
requests to web servers on behalf of group members.
It is difficult to adapt the random walk of Crowds
to sensor networks. Since Crowds members may be
geographically distributed, a simple forward operation
may traverse multiple routers. While feasible in the
internet, this operation could generate heavy traffic in
a sensor network.
Database PIR: Database private information retrieval
from a single curious-but-honest server with unlimited
computation power can only be achieved by transferring
the entire database [10]. Chor et al. [10] proposed
database replication among multiple non-cooperating
servers as a framework for reducing communication be-
tween the client and servers. Several solutions have been
proposed for the replicated database environment [10]–
[13]. For a comprehensive analysis of database PIR we
refer the reader to the survey of Gasarch [14].

The solution proposed in Section IV also uses two
non cooperating servers to provide fully private query-
ing mechanisms. However, we address the problem of
providing client privacy in wireless sensor networks,
thus facing different communication and computation
constraints. Since each server holds a local copy of the
database, PIR strives to minimize client/servers commu-
nication. Since sensor readings are not locally available
on the servers and due to sensor battery constraints, the
main goal of our query privacy solution is to reduce
both the communication overhead between servers and
sensors and the computation required from sensors.
Location Privacy in Sensor Networks: Gruteser and
Grunwald [15] propose a middleware architecture that
can be implemented by a centralized location broker
service to support anonymous usage of location-based
services. It prevents the location information transmitted
by a user from being used to re-identify the user. The
solution adjusts the resolution of location information
along spatial or temporal dimensions to meet certain
anonymity requirements. It prevents precise location
information from being used to identity the users. Our
work uses a completely different definition of privacy.
Our main concern consists in hiding the regions of
interest and access patterns of clients.

Kamat et al. [16] propose a technique called phantom
routing to protect the source location of sensor network

3

communication, particularly, the location of the reporting
sensors. The technique uses localized flooding instead of
full scale flooding, to prevent attackers from discovering
the source sensor by eavesdropping on hop-by-hop wire-
less communications. Our work proposes a definition of
privacy and protection that is much broader, since source
privacy is only one aspect of our privacy solution. The
phantom routing technique is orthogonal to the solutions
proposed in our work. Thus, it may be combined with our
solution to prevent physical side-channel exploits that try
to defeat the protection by physically tracing the source
of sensor messages.

III. SYSTEM ASSUMPTIONS AND NOTATIONS

We consider a sensor network that is operated by
dedicated server(s), and shared among multiple clients.
Clients can access the network by sending queries to
the server(s), which in turn issue the queries into the
network. We use the curious-but-honest server model,
where servers may record client data and use it to deduce
client behavior. Thus, clients do not trust the server(s)
with their queries. We assume sensors are bootstrapped
with the public keys of the servers and install only
code that is correctly signed by one of the servers. In
the multi server case, we assume that the servers may
communicate in order to manage the network, but do
not trust each other and do not share client information.
Moreover, each server may also query the network on
behalf of its organization and intends to keep the other
servers unaware of its interests.

Each server installs its execution code on each sensor
and inspects the code installed by the other organizations.
Furthermore, each server constantly monitors the sensor
network in order to detect abnormal behavior. This
includes looking for corrupted sensors or communication
eavesdropping attacks, performed by other servers or
third-party intruders. This model is natural not only for
governmental and military departments with well defined
privacy and secrecy rules, but also for cooperating com-
mercial companies with rigid privacy contracts.

We assume an existing routing tree in the underlying
network, over which queries are disseminated from the
root and sensing results are gathered back to the root
of the tree. In this work we consider on-demand sensor
network queries, consisting of acquiring sensor readings
from specific regions of interest. While the solutions we
present support both on-demand queries and registration
of interest in regions of interest, in the following we
focus only on client queries.

Without loss of generality, we assume that the entire
area covered by the network is divided into a set of �

regions, identified by
�������	� � ��
 � * * * � ����

. Each query
targets a subset of regions specified through their iden-
tifiers. For ease of analysis, we assume that each query
targets a single region. Let � ��� ��� � ��
 � * * * � ����� denote
a query sequence of length � . The region of interest
for a query

���
, � ��� � * * * � , is given by the function��� �	� � * * * � � �! �

, which takes as input the index of
the query and returns the region identifier. For ease of
presentation, we also use � ��� �#" � �%$ � �#" �
�$ � * * * � �&" ��� $ �
to denote the query sequence. Moreover, we say

�'�)(�
to denote the fact that

�*�
is queried in � .

We define a query transform as a function � � � �!+-,
, where

+-,
is the power set of

�
. Thus, a transform

of
�%�.(� is represented as � " ��� $ �0/ , where

/213�
.

The transform is said to be correct if �#" � �4$ (5/
.

The size of a transform is defined as the size of
/

,
denoted as 6 / 6 . Applying the transform � to each query
of a query sequence � , produces the sequence 7 �
� / � � /
 � * * * � /8���

, where each set
/ � 19�

, � ��� � * * * � � .
In this paper we only study transforms for which the
value 6 /:� 6 is constant. An example transform is �<; ,
where �=; " �%� $ ��� , � �>� � * * * � � . �=; requires the server
to always query all the regions.
Transform Cost: We define the cost of a transform
� , denoted as ? " �

$
, to be the network traffic incurred

when querying the regions contained in 7 . To evaluate
? " �

$
, we consider the regions

�
to be organized in

a grid shape. The servers are placed at one corner
of the grid. We assume that the network traffic of
querying a region scales linearly with the Manhattan
distance between the server and the region. While in this
model we abstract intra-region data aggregation, we do
consider inter-region aggregation (this fits into clustering
protocols such as LEACH [17]).

The expected distance between a region and the server
can be computed as @BA

�� @)A
�� "DCFE0G $IH C H GKJ � �ML � .

Then, under this model, the cost of the previously
presented �=; transform is ? " �N; $ �PORQ � Q � L � , where

O
is a constant determined by the size of the query data
and by the radio of the sensor nodes. Moreover, ? " �<; $
represents the upper bound on the cost of any transform.

IV. MULTIPLE SERVERS

In this section we propose SPYC, an efficient solution
providing full privacy guarantees when multiple servers,
owned by different, mutually distrusting organizations,
provide access to the sensor network. SPYC decomposes
the query process into two orthogonal tasks and assigns
each task to the servers providing access to the network
(see Figure 1). The first task, executed once for each
client, consists of constructing a virtual naming space

4

Client A

Generate virtual name space

join join

. . .

. . .

Server S1 Server S2

vn1(A,1)
vn2(A,1)1

2

3

4

5

vn1(E,1)
vn2(E,1)

vn1(A,5)
vn2(A,5)

vn1(E,5)
vn2(E,5)

vn(C,3)=vn1(C,3) xor vn2(C,3)

A B C D E

Client A

Server S

1

2

3

4

5

A B C D E

Query region (C,3)

Query:

H(k,vn(C,2))

k, H(k,vn(C,1))

H(k,vn(C,3))

R1

R2

k’, H(k’,vn(C,3))

vn(c,1)

vn(c,2)

vn(c,3)

Client A

Server S

1

2

3

4

5

A B C D E

Query region (C,3)

vn(c,1)

vn(c,2)

vn(c,3)

Results

wait

(a) (b) (c)

Fig. 1. Operation of the two server solution. (a). Client registers with the service, by contacting two servers ��� and ��� and requesting the
generation of a new virtual name space for network regions. (b). Client performs query using any server � . The query is obfuscated using
virtual region names, unknown to � and a fresh, public key � . Sensors in a region whose keyed hashed name matches one of the hashes in
the query packet, further broadcast the packet. (c). The target region (C,3) satisfies the condition included in the last field of the packet, that
is, ���
	��
��������� equals the value in the last field. Sensors in that region do not need to further broadcast the packet, but delay their answer
for a time interval equivalent to traveling over two more hops. Then, they send the results of the query to their parent region.

mapping to actual region identifiers. The second task,
executed for each client query, consists of routing in the
sensor network based on virtual region names. Initially,
after completion of the network deployment step and be-
fore clients can join the system, the following procedure
is executed by each server S.
Initialization: Let ��� be a system-wide security pa-
rameter. Server � generates an asymmetric encryption
key pair "������

���
 � ����!#" $

and stores �$��!#" on each sensor.
Moreover, it stores on each sensor in a region

�'�
a

symmetric encryption key � � " � $. � also generates a seed
uniformly at random from the space

�#% � �'�& � and uses it
to initialize a pseudo-random number generator ' . The
following operation is then executed every time a client
joins the system.
Task 1. Virtual Name Space Generation: When client(

registers with the service, it first creates a pseudo-
random number generator '*) . It then contacts two of the
servers, � � and �
 . Both servers perform the same oper-
ation, exemplified for ��+ , , � � � + . Server �-+ generates �
pseudo-random numbers .	� �/) " ��� $, � ��� * * � , using ' / .�-� � * * � ���

denote the regions in the sensor network. ��+
sends to each sensor in region

�*�
the following message& 3�3 " & � ��0�� �214365�7986: " & ��;�� 7 8< " ��= $ $ $ �

When receiving an
(?>@>

message, a sensor in region���
first verifies �A+ ’s encryption. If it verifies, it stores

.	� #/) " ��� $ under client
(

. This step could be performed
using specialized mechanisms such as the ones included

in the SPINS [18] suite. When a sensor in region
�'�

has received virtual names from both � � and �
 for
client

(
, it stores .	� �B) " ��� $�C .	� ED) " ��� $ as its virtual name

under client
(

. When this process completes, ��+ sends
client

(
the region-based topology of the sensor network

(including a routing tree) and a table " �'� � .	� #/) " ��� $ $,� � � * * � , of mappings between actual region names and
virtual names. The client can then build the virtual name
of each region

�*�
as the XOR of the names received from

� � and �
 , . �F) " ��� $ � . � GB) " ��� $HC .	� ED) " ��� $.
The following operation is executed each time a reg-

istered client needs to perform a query. Even though we
use source routing to forward queries, our solution could
be used in conjunction with other routing protocols.
Task 2. Region-Based Source Routing: Let

(
’s query

refer to region
�EI

and let
� �I � * * � � � I be the � ancestor

regions of
�EI

in the routing tree of the sensor network,
that is, the regions that need to forward packets from the
root sensor to

�EI
. Let � be the height of the routing tree

,i.e, the maximum number of regions a packet needs to
traverse from the root to any region.

(
picks a server

� , that could be either � � or �
 or a different server,
if available, to perform the query.

(
also chooses two

new keys J and JLK uniformly at random from the space�#% � �'E& � and sends the following ROUTE packet to �
 �!GM
�� " & �9N �) " N ��;�� < " ��OP $ $ � * * �) " N>��;�� < " �2QP $ $ �) " N>��;�� < " � P $ $ �

 O � * * � AR4S Q S O �9N K �) " N K ��;�� < " � P $ $ $

5

�
is used to denote a one-way function, e.g., a crypto-

graphic hash function.
� � � * * � � � S � S � are pseudo-random

numbers generated using '*) . Their size is equal to the
size of the output of the function

�
, thus concealing

the distance between ��� and the region of interest,�#I
. While not explicitly included in the above ROUTE

packet, the packet also contains the query for
��I

, en-
crypted with key ����G I ��� " .	�F) " �EI $ $. Only the client
and sensors in

� I
can derive ����G I . (chooses fresh J

and J K values for each of its queries.
Server � sends the ROUTE packet to the root of the

network that on its turn forwards it using a broadcast
primitive. A sensor � from region

�*�
that receives this

packet compares
� " J � . �) " ��� $ $, where J is the second

field of the packet, with the third field of the packet,� " J � .	�F) " � �I $ $. If there is no match, it drops the packet.
Otherwise, it verifies whether

� " J K � .	�F) " ��� $ $, where J K
is the one to last field of the packet, equals the last field
of the packet,

� " J K � . �F) " �#I $ $. If they differ, � strips
the third field,

� " J � . �) " � �I $ $, from the packet, and
uses its local knowledge to forward the resulting packet
toward sensors in neighboring regions. Sensors receiving
the forwarded ROUTE packets record the source region
as their parent region, and repeat this “compare and
forward” procedure to route the packet to

��I
.

If the test
� " J K � .	�) " � �4$ $ ��� " J K � .	�) " � I�$ $ holds,

� belongs to the region of interest,
��I

. Only the client and
sensors from

�EI
can derive this information. � performs

the specified query, appends . �) " ��� $ to the result and en-
crypts the resulting string with key ����G � ��� " .	�) " � � $ $,
producing the following RSLT packet,

 ����
 � � 1	��
 3 " �	������� �� " # $ ��;�� < " ��= $ � � " � P $ $
where � " �EI $ denotes the number of sensors in region� I

. In order to hide from server � the distance to the
client’s region of interest, � fakes the sending of ROUTE
broadcast packets to bogus regions

� � � * * � � � S � S � , by
waiting " ��� ��� � $ " + ��� E � � $ seconds before sending
the RSLT packet to its parent region. In this equation,
��� is an approximation of the time required to send
a packet across two neighboring regions and � � is an
approximation of the time required to process a ROUTE
packet in a region (two hash computations and two
comparisons for all the nodes in the region). Sensors in
region

�EI
send their RSLT packets to the parent region of�#I

using a broadcast primitive. The sensors in the parent
region forward RSLT packets on their turn to their own
parent region and so on, until the packets reach server
� and then client

(
.
(

uses key
� " .	�) " �#I $ $ to decrypt

the received RSLT packets. A valid decrypted message
consists of a query result followed by . �) " �#I $ and � " �EI $.

To see why SPYC provides full client privacy, when
the servers do not collaborate, consider the following
argument. Server � learns nothing from the queries, even
if � � � � or � � �
 . This is because � � and �

can compute the virtual names of sensor only if they
cooperate. Moreover, a client changes the keys J and
J K during each query. Even if the client queries the
same region,

���
, multiple times, the value

� " J � .	� " �*� $ $
will change for different J values. If � can find J �
and J
 such that

� " J � � . � " ��� $ $ ��� " J
 � . � " ��� $ $ for
any virtual region name .	� " �*� $, it can also reverse the
cryptographic hash function, which is a assumed to be
computationally infeasible.

All queries have the same length, � . This, along with
timed delay used in the protocol conceal the distance be-
tween the root sensor and the queried regions. Encryption
of sensor readings hides possibly known associations
between sensor readings and existing regions. Encryption
also authenticates the readings, since only the client
and sensors in region

�EI
know . �F) " �EI $. Moreover, a

malicious server � cannot drop arbitrary reports since
any RSLT packet contains the number of RSLT packets
the client should receive, � " � I%$.
A. Discussion

We analyze several properties of SPYC, propose op-
timizations, then describe several attacks and defenses.
Storage Considerations: Considering infeasible an ex-
haustive search in the space

�#% � * * � +���� � �' [19] we
restrict the size of virtual names of regions to 80 bits.
This enables a sensor with 0.1MB available memory to
simultaneously support more than 10000 clients 1.

By truncating the output of
�

to 2 bytes and con-
sidering TinyOS packets with a payload of 40 bytes,
a ROUTE type packet can be used to query a sensor
network with a 16 hop diameter. The truncation generates
a chance of region name collisions of

+ S ���
. However,

the chance of collisions decreases exponentially with the
distance between the root node and the queried region,
becoming

+ S ��� �
for a region 10 hops away from the

root. While collisions may create additional network
traffic, they do not decrease the privacy offered by SPYC.
The client may only receive more replies than expected,
replies that can be easily discarded.
Region Heads: A possible mechanism for further re-
ducing communication costs is to elect a region head
for each region. The ROUTE packets are transmitted
via region heads only, until they reach the head of
the intended region. The head in the intended region

1While the 80 bit limit is valid until 2010, when it increases to 112
bits, by 2010 the storage space on sensor nodes may also increase.

6

broadcasts the ROUTE packet to all sensor nodes in
its region. The sensor readings of these nodes are then
transmitted in unicast packets back to the head. The
head may choose to aggregate these readings before
transmitting them back to the server via region heads.
This has the additional benefit of hiding from querying
server � the number of sensors in the queried region,
which, in specific circumstances may leak information
about the region. Several existing techniques for cluster-
leader election and routing in sensor networks [17] can
be applied in this context.
Virtual Name Leaks: Client privacy can be compro-
mised if sensors can report to servers their virtual names
or details of queries forwarded or executed. However,
similar to clients, servers can also query the network
on behalf of their organizations, thus, needing the same
privacy guarantees. This makes the servers willing to
allow sensors to run only server signed code and provide
mechanisms for sensors to report the code they are
running, along with the corresponding server signature,
when requested. These mechanisms can allow any par-
ticipant to discover corrupted sensors and trace insiders
benefiting from covert channels inserted in the code.
Client Leaks: A malicious participant could collaborate
with corrupt clients or could register fake clients with
servers � � and �
 in order to retrieve sensor names.
However, since each client maintains its own virtual
name space for the sensor network and can only share its
own view of the network, the privacy of non-cooperating
clients would not be affected. Moreover, the client regis-
tration process could be made more rigorous, for instance
requiring a public key certificate, to prevent registration
of bogus clients.
Battery Level Monitoring: Servers playing an admin-
istrative role may be able to query the remaining battery
levels of sensors. If a server performs such an operation
before and after a query, it can detect the exact sensors
involved. This is however an expensive operation, requir-
ing not only a flood but also a complete converge-cast
operation. To prevent this attack, various restrictions may
be placed on the battery level query types. For instance,
if servers can query battery levels periodically, e.g. only
3 times a day, associations between clients and queried
regions will be obfuscated as a function of the number
of client queries performed in 8 hours.
Source RF Attacks: A resource-rich attacker (including
one of the servers) may place multi-directional antennas
inside the sensor network, or jammers in the vicinity
of sensors, in order to identify the source or relayers of
packets. Since the accuracy of predictions increases with
the number of such devices deployed, these attacks are
costly and prone to detection by other servers or clients.

V. SINGLE SERVER

While the multi-server model considered above pro-
vides full privacy guarantees as long as the servers do
not cooperate, a question worth answering is what can
be achieved when a single server governs the sensor
network. The solution space for the single server model
is bounded by two transforms. The first transform, � ; ,
maps the query of any region to the entire space

�
,

which provides maximum privacy and incurs maximal
cost. Also, we can verify that maximum privacy can
only be achieved by �N; . The second transform keeps
the query sequence unchanged, providing no privacy, but
imposing a minimal cost. Let �

�
denote this transform,

i.e., �
� " ��� $ �0�����I . We can estimate ? " �

� $ �3O � L � .

A. Practical Privacy Metrics

We are interested in various practical solutions within
the space defined by �

�
and �=; , achieving graceful

tradeoffs between the privacy level and the associated
costs. We quantify these tradeoffs using two metrics for
evaluating a transform’s ability to conceal the spatial and
temporal patterns of the original query.

1) Spatial Privacy Level: Using the notations of Sec-
tion III, let

�� denote the set of unique regions in � ,
and

�7 denote the set of unique regions in 7 . Let �
denote the size of

�� , i.e., � � 6 �� 6 . Intuitively, a trans-
form conserves spatial privacy if, given the transformed
sequence 7 , it is difficult for the server to guess the
regions in � . Let � " �

$
denote the spatial privacy level

of a transform � . We define � " �
$

as the inverse of the
server’s probability to guess a region in

�� , given
�7 .A

larger � " �
$

indicates a better spatial privacy level. For
example, � " �=; $ �

�
& , since

�7 � � . This is the best
spatial privacy level achievable by any transform. Also,
� " �
� $ � �

, since
�7 � �� .

2) Temporal Privacy Level: From a temporal privacy
perspective, we consider the query frequency of regions
in sequence � . Let

�
denote a random variable with

discrete vocabulary
�

. Consider the distribution of
�

in � with probability function � � ��� �K� � � � � (� �
.

Ideally, the corresponding distribution of
�

in 7 should
differ from

� � � to conceal the frequency pattern in � .
We use the notion of Kullback-Leibler divergence

(
>����

) to measure the difference of two distributions.
Consider the distribution of

�
in 7 with probability

function �� � �	� �K� � � ��� (� �
. Since a transform

appends regions of no interest to queried regions, it may
be that
 ������ �� ��� � . In such cases, we proportionally
scale �� � values, such that
 � � �� �� � � � . Specifically,
when computing

>����
we consider the scaled distri-

bution function � K� � ������� ����� �� � . Let
� " �

$
denote the

7

temporal privacy level of a transform � . We have
� " �

$ � >���� " � � �I 6 6 � � K� $ ���
���� ,

� ������� �
�

� K� (1)

Based on information theory,
� " �

$
is always non-

negative, i.e.,
� " �

$	� %
, with

� " �
$ � %

if and only
if � � � � K� , for all

���:(��
. A greater

� " �
$

indicates
a larger distortion between the two distributions. Thus,
we intend to maximize the cross entropy to conceal
frequency patterns of initial query sequence.

Consider the example of �N; . We have �� �<�
�� for each� � (�

, and after scaling, � K� �
�
& . Then,

� " �=; $ � �
���� ,

� � ����� � � � �
����� � E �
���� ,

� � ����� � � *

Let
� " � $ denote the information entropy of � , i.e.,� " � $ � �
 � � , � ������� � � . We have

� " �=; $ ������� � �� " � $. It is easy to see that
� " �

� $ � %
.

Since
� " �

$
is defined based on the distribution of

the query frequency of regions,
� " �

$
does not capture

information such as correlation among queried regions,
for instance, when region

�'

is queried every time after�-�

is queried. We plan to investigate higher order Markov
source models in our future work to address this issue.

B. Privacy v.s. Cost Tradeoffs

We study practical solutions in the space bounded by
�
�

and �=; , i.e., for any transform � in this space,
�� � " �

$ � �
�
�

(2)%�� � " �
$ ������� � � � " � $ � (3)O � L � � ? " �
$ � O �N� L � * (4)

In the following we consider query sequences gener-
ated either off-line or on-line. Off-line queries are often
used for routine monitoring or surveillance purposes.
For example, the requirement “report the temperature in
region

� �
every 5 minutes, and in

�

every 10 minutes

” generates a query sequence
� �	� � �-� � �*
 � �-� � �-� � ��
 � * * * �

.
On-line queries can occur in instances where the client
follows moving objects or diffusing phenomena.

1) Off-Line Queries: In the case of off-line queries,
the entire initial query sequence is known a priori. We
propose and study three off-line transforms, the union
transform, randomized transform and hybrid transform.
Union Transform (UT): Given � , UT performs the
transform � � " �%� $ ��� I / �� � �#" � + $, i.e., each query is
transformed to the set of all regions that appear in � . For
example, for a query sequence � � � �	� � ��� � �-� � ��� � ��� � , we
have � � " ��� $ � � � " ��� $ � � � " ��� $ �0���-� � ��� � ���' . Since
all regions in 7 appear in � , we have � " � �

$ � �
. Also,

the distribution of all regions in 7 is uniform. Thus,
�� � � ��K� �

�
& , for

��� (7 (recall that � is the number
of unique regions in �). Thus,

� " � �
$ �
����� � � � " � $.

Moreover, we have ? " � �
$ �PO ��� L � .

Randomized Transform (RT): Given � , FT transforms
each query into a randomized set of regions,
which includes the original region to be queried.
That is, for every

��� (� , FT randomly chooses� � � regions, denoted as
��

, from
� � � �#" ��� $,

where � is a pre-specified parameter. Then, we
have

�
� " ��� $ � � � � � �&" �%� $. For example, for

a query sequence � � � �	� � ��� � ��� � �-� � ��� � ��� � * * * �
,

the transformed sequence can be 7 �
� ��� � � � � � ���' � ��� � � ��� � ���* � ���
 � � � � � � � ��� � � � � � � � � * * * � .

Given a query sequence � (whereby � and � are
fixed), the number of unique regions in � � " � $ is a
function of � , denoted as � "�� $ � 6 �7 6 . Using hyper-
geometric distribution, we estimate the expected value
of � "�� $ as

� � � "�� $ �&� � " � �!
�#" � $ �

(5)

where � � � �� and � is the length of the query
sequence. Thus, � � � " � �

$ ��� $ 5�%G5 � : :& . The temporal
privacy of FT is

� " � �
$ � �
 � ���&��� "('��� E*) $, where+ � � S �& 5 � S � : " � S � and) �

� S �& 5 � S � : " � S � . It can be verified
that while lower-bounded by zero,

� " � �
$

increases with
� and � . Moreover, for a fixed � and � � ’s,

� " � �
$

is
maximized to

����� " � $ � � " � $ when � � � . Finally, it is
straightforward to see that ? " � �

$ �3O � � L � .
Hybrid Transform (HT): We observe that while UT
achieves better temporal privacy over RT, RT enables
more spatial privacy. A hybrid transform can be designed
by combining the basic ideas of UT and RT. Given
� , we first randomly choose a set of � K regions from� � �� , denoted as

��-,
. Then, HT performs the transform�

� " �%� $ �.� I / �� �&" � + $ � �/�-, . It can be verified that
� " � �

$ � & " �-,& ,
� " � �

$ �
�&��� � � � " � $, and ? " �
� $ �

O � " � E0� K $ L � .
We summarize these results by listing the privacy

levels and costs of UT, RT, HT, �
�
, and �=; in Table I.

Since � " � "�� $ $ approaches � as � increases, it can be
seen that RT degenerates to �<; when � approaches � .
When � � � , RT degenerates to �

�
. Also, HT degenerates

to �=; when � K E � approaches � , and degenerates to
UT when � K � �

. Therefore, based on application
requirements and cost budget, a suitable transform can
be chosen with appropriate parameter settings.

2) On-line Queries: We now consider the case of
on-line queries, where the client generates the query
sequence on-the-fly. While RT can still be applied in
this case, both UT and HT are not directly applicable,

8

TABLE I

PRIVACY LEVELS AND COSTS OF THREE TRANSFORMS

� ��� � � ��� � � ��� �
��� 1 0 ���
	 �
UT 1 �������� ���
� � ������	 �
RT ������������� � �"!$#������$��%'&)(*!$#
�+�����
� � ����,-	 �
HT �.&/, � � �������0� ���
� � �1�6�2�3&), � � 	 �
�54 6 � �����$� �2�+�����
� � �1� �+	 �

since the client lacks a complete
�� to perform the trans-

form. However, information about the query sequence
accumulated during the query process can be effectively
used in the transform to improve achieved privacy levels.
To handle this new setting, we generalize the definition
of a transform function introduced in Section III.

In Section III, the transform function is defined as
� � � �! + , , indicating the same transform to be applied
for a specific region, regardless of its position in the
query sequence. Here, we define the function as � ��87:9��! + ,

, where
9

is the set of positive integers.
Therefore, the transform of the same region may vary
over time.

We propose a dynamic transform (DT) algorithm,
described in Figure 2, where � denotes the predefined
transform size and ; is an input parameter. In DT, we use
RT for the first ; queries. During the querying process,
the client keeps track of the distribution of regions in 7 .
Then, during each query

� + , ,=<>; , the transform chooses� � � regions from 7 with the lowest distribution. That
is, similar to HT, the transform attempts to “uniformize”
the distribution of regions in 7 . However, the process
is done adaptively. There is no guarantee on the uniform
distribution of regions occurring in the output of the
transform. The closeness to uniformity depends on the
initial query sequence and the size of the transform, � .

Begin
1. Use RT for the first ; queries, with parameter �
2. Calculate the probability distribution of regions in �
3. For each new query

� �
4. Generate � " ��� $ using RT, with parameter �
5. Pick the least frequent region

�
in � ,

� J(� " �*� $
6. Pick a random region

� K (� " �%� $, � K@?� �#" �%� $
7. Replace

� K with
�

8. Update the probability distribution of regions in �
End

Fig. 2. Pseudo-code for DT

VI. SIMULATION RESULTS

We implemented and evaluated the proposed tech-
niques on a packet-level TOSSIM [20]. Using TOSSIM’s
empirical communication model [21], a A %B7 A % deploy-
ment grid with a 4-foot spacing was generated, with the
radio transmission range of sensors set to 50 feet. The
network was divided into

��%C78��%
equally sized regions,

with each region consisting of 9 nodes. We denoted these
regions as

� � � * * * � � � ��� .
To reduce network traffic and avoid congestion, we

implemented a region-based routing scheme. Specifi-
cally, one node in every region was designated to be
region head. Region members only communicated with
their heads, which may communicate to other heads
in adjacent regions (the distance between each pair of
adjacent heads being 12 feet on average). Moreover, we
allowed up to 5 retransmissions per lost packet.

In our simulations, queries were always injected by
the server into the head of

�	�
. The queries were then

routed towards the destination region through a multi-
hop route consisting only of region heads. After reaching
the destination region, the query packets were broadcast
by the region head to all region members. The members
then transmitted their sensor readings to the head. After
packing all sensor readings into one data packet, the
head routed the data packet back to the server. In the
following, details of the routing protocol are described
for single-server and multi-server cases, respectively.

A. Single-Server

We implemented over TOSSIM a tree-based routing
scheme to efficiently deliver query packets to region
heads. A binary routing tree, rooted at the head of

� �
,

was generated to connect all heads to the head of
� �

through shortest paths. We assumed that every head
knows the region heads in its subtree. Maintaining the
subtree information is practical, since the number of
heads is much smaller than the number of sensor nodes.

We implemented a query protocol for simultaneously
querying multiple regions. A query packet consisting
of all queried regions was generated at the server and
injected to the head of

�	�
. Based on its subtree informa-

tion, the head of
���

divided the query into at most two
subqueries and transmitted them to its children heads
accordingly. The children further divided the queries, if
necessary, and transmitted them towards the intended
destinations. When data packets were generated at the
queried regions, the routing process was reversed to
transmit the data packets back to the server. This process
allowed us to effectively reduce the number of transmit-
ted packets.

9

10 30 50 70 90

1

2

4

6

8

10

of queried regions, s

S
pa

tia
l p

riv
ac

y,
 S

(T
)

Upper bound
UT
RT (z=4)
HT (z’=10)
Baseline

10 30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

of queried regions, s

T
em

po
ra

l p
riv

ac
y,

 R
(T

)

Upper bound
UT
RT (z=4)
HT (z’=10)
Baseline

10 30 50 70 90
0

100

200

300

400

500

of queried regions, s

of

 p
ac

ke
ts

UT
RT (z=4)
HT (z’=10)
Baseline

10 30 50 70 90
0

20

40

60

of queried regions, s

T
im

e
de

la
y

(S
ec

.)

UT
RT (z=4)
HT (z’=10)
Baseline

(a) (b) (c) (d)

Fig. 3. Simulation results for Union, Random, and Hybrid Transforms (900 sensor nodes, ��� ����� , ����� ��� , ,	��
 , , � � ���

For each simulation run, we generated a query se-
quence as follows. We first randomly chose � regions
to query, with � varying from 10 to 90, in increments
of 10. For each region, we chose an expected query
rate uniformly distributed in

��� �� �
. A query sequence

of length 300 was then generated using a Poisson distri-
bution with the expected querying rates. In the off-line
case, the query sequences were fed to the transforms as a
whole, while in the on-line case, the transform algorithm
(Figure 2) processed the queries in a real-time fashion.

We recorded the number of packet transmissions re-
quired to execute the queries over the routing tree. Note
that we did not count the number of intra-transmissions,
because intra-region communication requires much less
power than inter-region communication, due to a shorter
transmission range.

1) Off-Line Queries: For the off-line experiments we
chose � ���

for RT and � K � ��% for HT. �
�

was used
as the baseline, and �N; was used to provide the upper
bound of spatial and temporal privacy. We depict the
results averaged over 200 random runs in Figure 3.

It can be observed that the spatial privacy of RT
achieved the upper bound. This was because with � ���
and � � A %$% , � " � "�� $ $ was very close to � . Also, the
spatial privacy of HT was between UT and RT. The
temporal privacy of all transforms increased with � ,
confirming our analysis. However, the temporal privacy
of RT was only 10% of the upper bound for � � ��% , and
68% for � � % . As expected, the cost of RT, in number
of packet transmissions, was almost constant (approxi-
mately 2 times larger than the baseline). However, the
cost of UT increased fast with � : approximately 6 times
higher than the baseline for � � ��% , and 24 times higher
for � � % . Similar trends could be observed for HT. RT
also achieved an almost constant time delay, consistently
lower than the delay of UT and HT. However, even RT
incurred approximately 4 times the delay of the baseline.
By looking into detailed data trace, we discovered that
the increased delay of UT and RT was mainly because
of severe packet collision resulted from the large amount

of communication requests, which were resolved by
time consuming re-transmissions. This indicated (1) UT
and RT are suitable for delay tolerant applications, and
(2) techniques including multi-packet reception (e.g.,
CDMA, FDMA) can be applied to mitigate the increased
delay. In conclusion, while RT achieves lower temporal
privacy, it is more practical for larger values of � . This is
due to RT’s constant costs. However, for relatively small
values of � , UT and HT should be preferred, since they
provide higher temporal privacy levels for a small cost.

2) On-Line Queries: For the on-line algorithm, we
generated a query sequence of length 300 using the
method described above, with � � + % , � ��� , and ; ����% .
We recorded the temporal and spatial privacy levels
resulting from the on-line transform after the execution
of each query. Figure 4 shows the results for DT along
with the privacy levels of a pure RT method, and the
upper bound of the privacy levels.

We observed that for the first 50 queries, both spatial
and temporal privacy levels of RT and DT were the same.
For the remaining queries, the spatial privacy of DT was
still very close to that of RT. However, DT achieved
a level of temporal privacy much closer to the upper
bound than RT did. This was because the DT algorithm
attempted to balance the distribution of regions that had
already been queried. We performed several simulations
with different settings of � and ; . Similar trends were
observed in the results.

B. Multiple Server

We now document our experience with the TOSSIM
implementation of SPYC (see Section IV). We simulated
runs of SPYC for the network configuration described at
the beginning of this section, consisting of 900 sensor
nodes placed in 100 regions. We successfully injected
queries, in the shape of hashed source routing packets,
into the network and retrieved data from the network.

The structure of a query packet was the following: 1
byte contained the client identifier, 2 bytes were used
for every key (J and J K) and hash value (indicating

10

50 100 150 200 250 300
3

5

7

9

Query indices

S
pa

tia
l p

riv
ac

y
Upper bound
DT
RT

(a) Spatial privacy

50 100 150 200 250 300
0

0.1

0.2

0.3

Query indices

T
em

po
ra

l p
riv

ac
y

(b) Temporal privacy

Fig. 4. Simulation results for the on-line transform (� � � � , , ��
 ,� ��� �)

routing information and stopping condition). Since for
the grid structure of regions used in this experiment the
maximum path length is 20, the payload of a query
packet is 47 bytes. Compared to the baseline which
used a plain source routing packet (assuming a query
path of 20 hops, with 1 byte region identifier for each
hop), this incurred a cost of 27 bytes. However, we
recorded almost the same number of packet transmis-
sions for SPYC and the baseline (shown in Figure 3(c)).
Moreover, the observed time delay required to complete
a query was approximately twice of the baseline delay
shown in Figure 3(d). This was because on average, a
baseline query required both query and data packets to be
transmitted over 10 hops. However, due to the mandatory
delay in our query scheme, SPYC always mimicked the
transmission of query and data packets over 20 hops.

VII. CONCLUSIONS

In this paper we studied the problem of preserving
the privacy of clients querying sensor networks, through
untrusted servers. We proposed single and multi-server
systems and trust models. Our TinyOS simulations show
that our multi-server solution introduces reasonable over-
head when compared to a straightforward, non-private
query mechanism. For the single server model, the
simulations show how the parameters of our algorithms
can be used to provide clients with various tradeoffs
between privacy and efficiency levels.

REFERENCES

[1] Bruce M. Howe and Timothy McGinnis. Sensor
networks for cabled ocean observatories. http:
//www.neptune.washington.edu/pub/whats_
neptune/whats_neptune.html.

[2] Taking the Pulse of the Planet: EPA’s Remote Sensing Infor-
mation Gateway. http://www.epa.gov/geoss/.

[3] Orion. http://www.orionprogram.org/.
[4] The National Office for Integrated and Sustained Ocean Obser-

vations. http://www.ocean.us/.
[5] The Laboratory for the Ocean Observatory Knowledge INtegra-

tion Grid (LOOKING). http://lookingtosea.ucsd.
edu/.

[6] National Oceanographic Partnership Program. http://www.
nopp.org/.

[7] David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In 13th USENIX Security Symp,
2004.

[9] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity
for web transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92,
1998.

[10] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Pri-
vate information retrieval. In FOCS ’95: Proceedings of the
36th Annual Symposium on Foundations of Computer Science
(FOCS’95), 1995.

[11] A. Ambainis. Upper bound on the communication complexity
of private information retrieval. In Proceedings of the 24th
International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 401–407, 1997.

[12] Yuval Ishai and Eyal Kushilevitz. Improved upper bounds
on information-theoretic private information retrieval (extended
abstract). In STOC ’99: Proceedings of the thirty-first annual
ACM symposium on Theory of computing, pages 79–88, 1999.

[13] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-Francois
Raymond. Breaking the o(n1/(2k-1)) barrier for information-
theoretic private information retrieval. In FOCS ’02: Pro-
ceedings of the 43rd Symposium on Foundations of Computer
Science, pages 261–270, 2002.

[14] W. Gasarch. A survey on private information retrieval. The
Bulletin of the EATCS, 82:72–107, 2004.

[15] M. Gruteser and D. Grunwald. Anonymous usage of location-
based services through spatial and temporal cloaking. In
Proceedings of MobiSys, 2003.

[16] Pandurang Kamat, Yanyong Zhang, Wade Trappe, and Celal
Ozturk. Enhancing source-location privacy in sensor network
routing. In Proceedings of ICDCS, pages 599–608, 2005.

[17] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari
Balakrishnan. Energy-efficient communication protocol for
wireless microsensor networks. In HICSS ’00: Proceedings of
the 33rd Hawaii International Conference on System Sciences-
Volume 8, 2000.

[18] Adrian Perrig, Robert Szewczyk, Victor Wen, David E. Culler,
and J. D. Tygar. SPINS: security protocols for sensor netowrks.
In Mobile Computing and Networking, pages 189–199, 2001.

[19] Burt Kaliski. TWIRL and RSA key size. http://www.
rsasecurity.com/rsalabs/node.asp?id=2004,
2003.

[20] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate
and scalable simulation of entire tinyos applications. In ACM
SenSys, pages 126–137, Nov. 2003.

[21] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of multihop routing in sensor networks. In ACM
SenSys, Nov. 2003.

