User Authentication Protocols

Week 5

User Authentication

" The process of verifying an identity claimed by a
system entity

" Fundamental system security building block
= Basis of access control & user accountability

= Has two steps:
" |dentification — provide claimed identity
= Authentication — verify validity of claim
= User authentication # message authentication

User Authentication: How ?

= Based on something the individual

= Knows - e.g. password, PIN

= Possesses - e.g. key, token, smartcard

= |s (static biometrics): fingerprint, retina

= Does (dynamic biometrics): voice, handwriting
" Can use alone or combined
= All can provide user authentication

= A/l have issues

Authentication Protocols

= Convince parties of each others identity

= Also exchange session keys

= May be one-way or two-way (mutual)

Key issues:

1. Confidentiality
= Protect session keys
= Prior keys or secrets need to exist

2. Timeliness
= Prevent replay attacks

Replay Attacks

= Valid signed message is copied and later re-sent
= Simple replay

= Copy message; replay later
= Repetition that can be logged

= Replay timestamped message within validity interval
= Repetition that cannot be detected

= Suppress original message

= Backward replay without modification
= Send the replay message back to its sender

Replay Attacks: Countermeasures

= Sequence numbers
= Attach sequence number seqgno to message
= Accept message if seqno follows previous value

= Not always practical

= Timestamps
= Message needs to contain timestamp
= Accept message if timestamp is within validity window
"= Need synchronized clocks

Countermeasures (cont’d)

= Challenge/response
= Ensures message freshness
= Challenger sends random nonce R
= Responder’s message needs contain a function of R

1

)
Challenge: R

@

Response:
contains F(R)

Trent T
(Host)

Authentication

= One-way authentication

"= Mutual: two-way authentication
" Using symmetric key crypto

= Using public-key crypto

One-Way Authentication

-
Login A

Trent T
(Host)

Mallory

Authentication Approaches

= Password
= Host stores Alice’s password
= Alice sends password
= Host verifies password

" Problem:
" Trent stores all passwords in clear
= Whoever breaks into Trent can steal passwords

= Solutions
= One-Way Functions
= Dictionary Attacks and Salts

Authentication Using Hashes

= Roger Needham and Mike Guy
= T does not need to know password

= Only differentiate between valid and invalid ones

1
(Login A, pwd)

User ID H(pwd)

Alice H, Trent T
(Host)

Password
file

Password Vulnerabilities

" One-way hashes are vulnerable

= Which password is better ?
= Barney
= 9(hH/A.
= Which one is easier to remember ?

" Dictionary attack
= Compile list of most probable passwords
= Apply hash function to each
= Compare against the password file
" /f match, password has been found !

Defending with Salts!

Salt: per user random value

®

Login A, pwd

UserID salt

H(salt, pwd)

Alice

S

Ha

Password
file

v

Trent T
(Host)

Example: Linux

= Passwords stored in /etc/shadow

= Root readable only

= carbunar:S6SIGHQQKZnS8.eJLvAaliDTFAauGVbFImn
AcjlKyLtH6GIO0OmVgra8weKJ1igU2BmgdDQAalynFQO
QuezQr/ mDTWEPD7sDrW

= S6: hash algorithm
= $1 = MDS5 hashing algorithm.
= S2 =Blowfish Algorithm is in use.
= S2a=eksblowfish Algorithm
= S5 =SHA-256 Algorithm
= S$6=SHA-512 Algorithm

Example: Linux

= Passwords stored in /etc/shadow

= Root readable only

= carbunar:S6SIGHQQKZnS8.eJLvAaliDTFAauGVbFImn
AcjlKyLtH6GIOOmMVgra8weKJ1ligU2BmgdDQAalynFQO
QuezQr/ mDTWEPD7sDrW

= galt
= hash

The Goal of Salts

" Ensure that attacker cannot use the same dictionary
to break all passwords

" |nstead, attacker has to do a per-user dictionary +
computation ...

Improved Dictionary Attack [D. Klein]

1. Copy the password file

2. For each user A with salt s and hash H,
1. Collect dictionary D, of tentative passwords
2. Hashallitemsin D, using salt s
3. Compare result against H,

3. If match exists, found password

= 40% of passwords were guessed on average system !

Building the Dictionary

1. Name, initials, account name

= Example: Daniel V. Klein, account — klone
= kloneO, klonel, ..., dvk, dklein, DKlein, dvklein, etc

2. Words from databases
= Men and women names, nicknames (also famous)
= Places
= \Variations of the above (capitalizations, plurals, etc)

3. Foreign language words
4. Word pairs

Conclusions

= Never use your personal information
= Do not use words (dictionary)
= Use combination of words and characters
" Do not use same passwords for all systems
" Change your password frequently
= Use passphrases
" Example:
="My Password is not easy to crack”
" mpine2C.

SKEY: Authentication for Machines

Use hash-chains

®

A 4

Init, A, X100

2

d . > Trent T
Login, A, Xgq (Host)
Generate R @ .
Login, A, Xgg g Store X9
Compute
x;= H(R)

x,= H(R)=H(H(R))
x5= H(R)=H(H(H(R))

X1 00= Hl 00(R)

Discard x,,, Store X4

Authentication

"= One-way authentication

= Mutual: two-way authentication
= Using symmetric key crypto

= Using public-key crypto

What is Mutual Authentication ?

@
®

Exchange keys

Authenticate

Mallory

Authentication

"= One-way authentication
= Mutual: two-way authentication

= Using symmetric key crypto

= Using public-key crypto

Using Symmetric Keys

®

Exchange keys

®
7/

Authenticate

Wide-Mouth Frog

Simplest Authentication/Key Exchange

1
QGenerate random K

2
<I>A, E,(T,B,K)

3
Decrypt message
using K,

Wide-Mouth Frog Observations

= Alice and Bob trust each other because of Trent
= Timestamps prevent replay attacks (Why ?)
= Trentis single point of failure/bottleneck

= Assumption:
= Aliceis able to generate good random numbers

Yahalom

‘
@'
<
‘5‘
-7

Eq(AK), ELR

3
Trent T QGenerate random K
(Host)

Yahalom Observations

"= This time the protocol is initiated by B (not T)
= Tchooses the key K to be shared by A and B

= Aand B trust each other
= Because of R, and Ry
= Only Tand B have access to Rg

"= Probleminstep1--R,issentin clear
= Can Mallory impersonate B ?

= No!

= |Instep 4, Tincludes the identity of B - A will know who it is
talking to

Needham-Schroeder

6
a
QExtmct key K QExtraCt key K

7
QGenerate random R,

2
QGenerate random K

Needham-Schroeder Observations

= What is the purpose of R, ?
= For Ato prevent replay attacks
= EnsureitistalkingtoT

= What is the purpose of R;?
= For B to prevent replay attacks
= And ensure that it is talking to A

= Weakness
= |f Mallory gets hold of an old key K, it can impersonate A

= Solution: use timestamps

Otway-Rees

1

IIAIB/EA(RA,I,A,B)

5)

7
LEA(RyK)

4
«

3
QGenerate random K Trent T
(Host)

Kerberos - Simplified

Kerberos 5: Variant of Needham-Schroeder

6

Y
EK(A/ t)/ EB(t/ L/ K/A)

@

A

E (t+1)

A B

5
EA(t/ L/ K/ B)/ \
EB(tI L/ K/A)
2
Generate timestamp t

4
3
QGenerate random K Trent T QGenerate lifetime L
(Host)

Kerberos Observations

» What is the goal of the timestamp and lifetime ?
= To prevent replay attacks
= The messages are valid only in [t,t+L]

= Major assumption:
= The clocks are synchronized !
= Not trivial (see Lamport’s clocks)

= |n practice
= Use time servers
= Sync within a few minutes

Authentication

"= One-way authentication
= Mutual: two-way authentication

= Using symmetric key crypto

= Using public-key crypto

Authentication with Public Keys

Assume T has a database of
public keys for each participant

Denning-Sacco

3
QGenerate timestamp T,

a4
Generate random K

5
/
E(pkg Sa(KTp)),
ST(B/ pkB)/ ST(A/ pkA)

v

A B 6
\ Decrypt with its private key
z \ o - Verify A’s signature
?Sr(B, pkg), SH{A, pky)
7
QRecover key K

N

Trent T
(Host)

Attacking Denning-Sacco !

3
Reuse elements from
session with A / \
® X

J
E(pkoS4(K,T,)),
SHC, pko), SHA, pk,)

Carol C

5

Decrypt with its private key
Verify A’s signature

6
QRecover key K

q
"] -
'0

Trent T
(Host)

Denning-Sacco Fix

3
QGenerate timestamp T,

a4
QGenerate random K

v

6
?Decrypt with its private key

Verify A’s signature

@

ecover key K

Denning-Sacco Lessons

= Better be prudent than efficient
= |nclude more rather than less information

= Timestamps, random nonces, names of participants

Woo-Lam
@ @Ven’fy T’s signatures

10
4 Generate random R,

Generate random R, 5

A, E(pky, AR,)

11}

< CE(pk SR, K, A@
64\ — -
. J/
= Alice E(Rg)
Verify T’s signature

6
(:i) A B
Verify R, q ?A; B, E(pk, RA)///

8 —
SHB, pkg) ,/C[;?A, pk,), E(pks, SR, K, A, B))

/

7
Trent T | Generate random K
(Host)

Oauth 2.0

The Problems

= User authentication is difficult
= Passwords are hard to remember
= Many of them, for many sites and apps

= Users cannot port their data from a site to another
= Examples:

= Game would like to access user’s data from
Facebook

" Location based app would like to access user’s
data from Foursquare application

OAuth 2.0

®= Open authorization protocol

* Enable apps and websites to authenticate users with
their credentials for other trusted sites (Facebook,
Twitter ...)

" Enables apps to access the user data of other systems

" Enable apps to call functions of other systems
= Post in Facebook, Twitter

https://gist.github.com/mziwisky/10079157

OAuth 2.0

14. Log into nevx app Z.ﬁccess Alice d}ata
via Facebook from Facebook
App

Service

The user accesses the app

" The app asks the user to login to the app via Facebook
The user logs into Facebook, and is sent back to the app
T

ne app can now access the users data in Facebook

= Call functions in Facebook on behalf of the user: post status
updates)

The Roles

, —

Resource server

7)

Alice: - \
Resource Client app

owner

Authentication server
= Resource owner: person or app that owns the data
= Resource server: server hosting the data
= Client: app needs access to data stored on the resource server

= Authorization server: authorizes client to access the data
= Can be same of different from resource server

Step 1: Client App Registration

= (One time process

Store:
1. Register, R_ URI Oauth_clients: [
Client_app: {
2 1dC, passwordC client_id: IdC
shared_secret: passwordC
Client app redlrect URI: R_URI
Service
Store:
[service_name: Service
- Example R_URI: app.com/oauth_response

client_id: IdC Pie R PP / _resp

shared_secret: passwordC

]

Step 2: User Login

= User starts the app
» Click “Login thru Facebook/Gmail/ ...”
= Redirect user to the authentication server

= Authentication server: display page saying “App wants to
access your data. Do you authorize?”

22 1. Login s
2 ‘/ > .1.i.: -6y =
& 2.1dC, URI @ R
. : Authentication server
Alice: \ Client app

Resource
3. Login IdA, passwordA, IdC, R_URI
owner

2: URI = facebook.com/oauth2/auth?client_id=IdC&redirect_uri=R_URI

Step 2: User Login (cont’d)

= Authentication server:
" Associate one-time-use code R, with app.com
= Redirects user to the “redirect URI” passing R, to it

1. Logi
gin 4. R,
> < :
) 2.1dC, URI RN
NN < ‘
Alice. \ Client app Authentication server
Resource _ 4. Generate
3. Login IdA, passwordA, 1dC, R_URI one-time-use

owner
code R,c

4: app.com/oauth_response?code=R,.

Step 2: User Login (cont’d)

= App takes the code and directly (i.e., not via a REDIRECT)
gueries authentication server

= Server verifies and then invalidates the R,
= Responds with an AccessToken

= App can use Access Token to access the user’s data

4. Rpc

1. Login <

> @ 5.1dC, pwdC, R,
‘ >
& 42' ldG, URI 6. Access Token

i <

Alice: \ Client app

Resource
3. Login IdA, passwordA, IdC, R_URI
owner

Authentication server

5: GET facebook.com/oauth2/token?client_id=IdC&client_secret=passwordC&code=R ,.

Step 3: User Accesses App

4. User data

1. Access app

>
« 2. Display
) user data : Authentication server
Alice: Client app
Resource
3. Verify
owner

Access Token

