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ABSTRACT
Illicit crypto-mining leverages resources stolen from victims to
mine cryptocurrencies on behalf of criminals. While recent works
have analyzed one side of this threat, i.e.: web-browser crypto-
jacking, only commercial reports have partially covered binary-
based crypto-mining malware.

In this paper, we conduct the largest measurement of crypto-
mining malware to date, analyzing approximately 4.5 million mal-
ware samples (1.2 million malicious miners), over a period of twelve
years from 2007 to 2019. Our analysis pipeline applies both static
and dynamic analysis to extract information from the samples,
such as wallet identifiers and mining pools. Together with OSINT
data, this information is used to group samples into campaigns. We
then analyze publicly-available payments sent to the wallets from
mining-pools as a reward for mining, and estimate profits for the
different campaigns. All this together is is done in a fully automated
fashion, which enables us to leverage measurement-based findings
of illicit crypto-mining at scale.

Our profit analysis reveals campaigns with multi-million earn-
ings, associating over 4.4% ofMonerowith illicit mining.We analyze
the infrastructure related with the different campaigns, showing
that a high proportion of this ecosystem is supported by under-
ground economies such as Pay-Per-Install services. We also uncover
novel techniques that allow criminals to run successful campaigns.

CCS CONCEPTS
• Security and privacy→Malware and itsmitigation; • Social
and professional topics → Malware / spyware crime; • General
and reference → Measurement.
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1 INTRODUCTION
Mining is a key component responsible for thewealth of Blockchain-
based cryptocurrencies. This process requires a network of intercon-
nected miners to solve a complex mathematical problem in order
to link blocks and maintain the integrity of the transactions. In
exchange, miners receive an amount of the mined cryptocurrency
as a reward.

The high value of cryptocurrencies has attracted a large num-
ber of malicious actors that use hijacked resources to mine these
currencies. The illicit crypto-mining threat has grown considerably
over the recent years [1], and it is considered one of the top-most
cybersecurity threats, even surpassing ransomware according to
recent reports [46].

Illicit crypto-mining is typically conducted using either one of
these two modes: (i) by using browser-based crypto-mining pro-
grams (dubbed cryptojacking [30]), where the mining process is
run in scripts (typically JavaScript) embedded in web content; or
(ii) by using binary-based crypto-mining malware, where the min-
ing process is embedded in the payload of a malware running in
infected machines that are connected to the Internet. In both cases,
by using hundreds of hijacked machines, perpetrators can obtain a
hash-rate similar to medium-sized mining farms. Each mode has
different characterizing features and unique challenges, specially
when it comes to devising effective countermeasures. For example,
in browser-based cryptojacking the damage ceases when the victim
stops browsing the site. Also, users can reduce the threat by re-
stricting the use of JavaScript. Meanwhile, crypto-mining malware
entails classical malware-related challenges, such as persistence and
obfuscation. Also, since mining increases the CPU load, thus reduc-
ing the computer’s performance, it might be noticed by end-users.
Thus, we observe a new paradigm aimed at evading user- rather
than AntiVirus-detection using techniques such as idle mining (min-
ing only when the CPU is idle) or reducing CPU consumption when
monitoring tools (e.g., Task Manager) are running.

Motivation. While illicit crypto-mining has been less notorious
than other threats such as ransomware, it poses nonetheless an
important threat to users and organizations; and its presence is
an indicator of weaknesses in security practices that must be ad-
dressed [24]. First, the profits generated by their miners introduce
massive incomes to cyber-criminals. These incomes fuel the under-
ground economy and gear other cyber-criminal activities [41].
Second, this threat causes important economical loses to their
victims. By draining the CPU-usage, corporations see how their
electricity bills increase and how their hardware rapidly deterio-
rates [39, 46]. Finally, this indirectly causes a non-negligible envi-
ronmental footprint [15]. Due to these concerns, browser-based
crypto-mining has been widely studied recently, both analyzing it
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as a crime [8, 13, 17, 36] and as an alternative business model to
monetize web content [29, 31, 35]. However, the literature lacks of
a systematic approach to measure the binary-based mining threat
at scale.

The first and only seminal work putting this threat in perspective
is from 2014 [9]. Authors analyzed 2K malware samples mining
Bitcoin and their methodology relied on the analysis of public
transactions. However, there has been a significant increase in the
number of malware samples monetizing this threat since 2014 [1, 7].
Also, criminals’ attention has shifted to other cryptocurrencies,
mainly motivated by: i) the proliferation of ASIC mining, which
uses dedicated hardware and renders the use of desktop computers
no longer profitable for mining bitcoins, and ii) the development of
protocols that provide transaction anonymity (such as those used
in Zcash or Monero). Anonymous currencies are used by criminals
to thwart traceability and they are on demand in underground
markets. Commercial reports, in the form of blog posts [7, 30]
or white papers [24] provide a further, but limited, view of the
magnitude of the problem and the landscape. Security firms have
analyzed isolated cases of decontextualized mining operations [10,
11]. However, these studies are limited by the simplicity of the
analysis.

In this paper, we aim to bridge these gaps by addressing the
following research questions: (1) What are the preferred crypto-
currencies mined by criminals? (2) How many actors are involved
in this ecosystem and what are their profits? (3) What is the level of
sophistication used in different campaigns and how does this affect
the earnings? (4) What is the role of underground markets and what
are the tools and techniques adopted from them? (5) How canwe im-
prove current countermeasures and intervention approaches? Due
to potential ethical concerns arisen from this work (see Appendix),
we obtained approval from our REB office.

Contributions. Our work focuses on crypto-mining malware as
key novelty. By looking at a wide-range of underground commu-
nities, where knowledge and tools are shared, we have observed
increased interest in this malware. This suggests that cybercrime
commoditization plays a key role in the wealth of illicit crypto-
mining.We design ameasurement pipeline to automatically analyze
malware samples observed in the wild and to extract information
required to identify the miners and pools, using both dynamic and
static analysis. Then, we build a graph-based system that aggre-
gates related samples into campaigns based on a series of heuristics.
The system is designed to distinguish campaigns using third-party
infrastructure such as Pay-Per-Install (PPI) services or binary obfus-
cators. This allows to analyze to what extent this threat is sustained
by different underground markets [41]. Our analysis system enables
the research community to leverage crypto-mining measurements
at scale. To the best of our knowledge, this paper presents the largest
systematic study of malicious binary-based crypto-mining, provid-
ing a reliable lower bound of the earnings made by this criminal
industry.

In summary, the main contributions of this paper are:
(1) We analyze and describe the role of underground commu-

nities for the proliferation of the illicit crypto-mining busi-
ness (§2).

(2) We present a system that uses both static and dynamic
analysis to extract relevant mining-related information from
crypto-mining malware, such as wallet addresses and pool
domains (§3). Our system uses different techniques to aggre-
gate related samples into larger campaigns represented as a
graph that is then mined for further analysis. Additionally,
we feed the system with information gathered from various
Open-Source Intelligence (OSINT) repositories to further
classify and analyze the campaigns.

(3) We present a longitudinal study of the crypto-mining mal-
ware threat using data spanning over more than a decade (§4
and §5). Then, by focusing on Monero, we rely on informa-
tion gathered from mining pools to measure the earnings
gained by each campaign. We also analyze the infrastructure
used by criminals and extract the attribution to stock mining
software.

(4) We propose a number of countermeasures, and discuss the ef-
ficacy of existing ones together with the open challenges (§6).
Then, we contextualize the most important findings of our
study with respect to relevant works in the area (§7).

Finally, to foster research in the area, we release our dataset in our
online repository.1 We encourage readers to visit this repository
and the extended version of this paper [32] as it provides a wider
presentation of the measurements left out of this paper due to space
constraints.

2 BACKGROUND
In this section, we first provide an overview of the cryptocurrency
mining process. Then we describe the underground economy sup-
porting the illicit crypto-mining threat.
Cryptocurrency Mining. Cryptocurrencies are digital assets that
can be exchanged in online transactions. These transactions are
grouped into blocks and added to a distributed database known
as the blockchain. Each block is linked to its previous block, and
the addition of new blocks is done by voluntary miners. In order
to provide integrity, miners compute a cryptographic hash of the
block together with the solution to a complex mathematical puzzle
known as ‘Proof-of-Work’ (PoW). As a reward, miners receive a
certain amount of the cryptocurrency.

The increased value of cryptocurrencies such as Bitcoin or Ethe-
reum has lead to the growth of mining farms using specialized
hardware known as ASICS, which makes end-user machines use-
less for mining. However, in 2014 a new PoW known as Cryptonote
required not only CPU power but also memory, turning ASIC-based
mining inefficient. Additionally, the PoW algorithm changes period-
ically, thus discouraging ASIC development (which is optimized for
specific algorithms) [19]. This allows individuals to mine with their
end-user machines. Examples of cryptocurrencies using Cryptonote
as PoW are: Monero and Bytecoin.

When mining a block, only the first one solving all PoWs gets
the reward. Thus, mining has become a race which highly depends
on the hashrate (i.e., number of hashes computed per second) of a
miner. A higher hashrate increases the probability of mining a block.
A common approach is to mine through public mining pools, which

1https://github.com/gsuareztangil/cryptomining-malware
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can be viewed as partnership between workers where the com-
plexity of the mining challenge is distributed among the partners.
Each partner contributes with a given hashrate aimed at solving
the puzzle, and when the pool successfully mines a block, the re-
ward is divided proportionally to the workers’ hashrate. To receive
rewards, the workers are identified in the pool. Some pools use
proprietary site-keys, like CoinHive, which was the major provider
of browser-based mining services until March 2019. Other pools
use emails or wallet addresses. The communication between each
miner and the pool is done by using the Stratum protocol. This is a
clear-text protocol that uses JSON-RPC format to transmit infor-
mation, including authentication tokens, block puzzles and mined
hashes. We refer to the work by Recabarren and Carbunar for a
complete analysis of this protocol [34].

Illicit crypto-mining refers to mining carried out by criminals
using resources stolen from their victims. This threat appeared
with Bitcoin in 2009 [9], but it has increased notably since 2014
due to the inception of PoW algorithms resistant to ASIC-based
mining. Illicit crypto-mining is performed in the device of a victim
by either embedding a payload in web resources (scripts) executed
by browsers [8, 17], or distributing the payload in the form of
malware.
The Underground Economy. Underground markets play a key
role in the business of malicious crypto-mining. Users with few
technical skills can easily acquire services and tools to set up their
own mining campaign. Forums are also used for sharing knowledge.
To put our study in context, we have analyzed a dataset of posts
collected from various underground forums [33], looking for con-
versations related to crypto-mining. We observe that crypto-mining
malware can be easily purchased online, for a few dollars (e.g., the
average cost for an encrypted miner for Monero is 35$).

In particular, we have seen an online service which allow to
create customized binaries (e.g., for a particular cryptocurrency
and/or a given pool) to mine cryptonote based currencies, for $13.2
It provides several stealthy-related techniques such as idlemining or
the use of execution-stalling code [16] targeted to certain conditions
(e.g., when the Task Manager is running). Other providers opt to
share their miners for free, in exchange for a donation: “Miner is free,
we charge a fee of 2% to cover the time coding.” The extended version
of this paper [32] shows a longitudinal analysis of posts related to
crypto-mining in these forums. Here, we show that Monero is the
most prevalent currency nowadays.

We also observed that a common topic of conversation concerns
(i) “friendly” pools, i.e.: pools that do not generally ban users dis-
playing botnet-like behaviors, or (ii) how to remain undetected
otherwise. For instance, users claim that a good trade-off between
profitable hash-rates and a long-lasting mining strategy is using
botnets with less than 2K bots. For bigger botnets, many discussions
and tutorials explain how to configure proxies and provide advice
on how to reduce the risk of being exposed: “The best option is to use
a proxy and you can use any pool. Contact me for PM, I am willing to
help”. Also, we found various conversations with users looking for
partners and offering custom (private) mining pools: “In my pool
there is no ban by multiple connections.”

2For ethical reasons we do not disclose the URL of this service

Finally, we note that it is also possible to purchase all-you-need
packages, including tools and services, with a guarantee period and
maintenance (e.g., re-obfuscation when the miner is detected, or
updates to new versions).

Take-Away: The support offered by underground communities to
criminals explains the sharp growth on the amount of malware
monetizing their victims. This motivates the need for a longitudinal
measurement of this threat. We show that Monero is currently the
most discussed crypto-mining coin by underground forum users.

3 MEASUREMENT METHODOLOGY
A general overview of the measurement methodology is presented
in Figure 1. For the sample collection, we query both public and
private repositories of malware and different intelligence feeds as
described in §3.1. We make a number of sanity checks for each
sample to ensure that we only feed crypto-mining malware to our
pipeline (see §3.2). We also collect OSINT related to running botnets
and relevant Indicators of Compromise (IoCs) observed in malware
samples.

A key phase in our pipeline is to analyze relevant samples both
statically and dynamically as described in §3.3 (Binary, Sandbox,
and Network Analysis in Figure 1). The goal of this multi-step phase
is to extract the following information from each miner: (i) the
pool or address which the crypto-mining malware connects to for
mining, and the identifier used to authenticate themselves into this
pool, (ii) the addresses of the e-wallets where mined cryptocoins are
paid to3, which in most cases coincide with the identifier, (iii) URLs
where the malware connects to or is seen at, and (iv) other metadata
obtained from intelligence feeds such as when the sample was first
seen or related samples (e.g., dropped binaries).

The next step is to analyze the mining pools that the miners
work with. We decouple connections made to proxies (that in turn
connect to pools) from the connections to the actual pools. We then
look at the profit reported by each of the wallets in a pool. These
two steps are described in §3.4 and are referred to as Profit Analysis
in Figure 1.

Finally, we aggregate related samples into campaigns and analyze
them separately in the Aggregation step as described in §3.5. For
this, we create a graph which interconnects crypto-mining malware
that: (i) share a common execution ancestor (i.e., dropper) or are
packed together, (ii) accumulate their earnings into the same wallet,
(iii) share common infrastructure (e.g., proxies or hosting servers),
or (iv) relate to the same IoC related with mining campaigns —
gathered both from OSINT reports and our own investigation. We
then enrich every interconnected sub-graph (campaign) to include
details about related infrastructure used in each campaign (i.e.,
stock mining software or Pay-Per-Install services).

3.1 Data Gathering
We collect malware samples, metadata and OSINT information, and
known mining tools from various sources.

Malware. We rely on public and private feeds from:

3The terms address and wallet are used interchangeably in the literature.
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Figure 1: Overview of our processing pipeline and measurement methodology.

(1) Virus Share. This is an online community that shares tor-
rents to malicious binaries. We use it to gather our initial
dataset of raw binaries.

(2) Virus Total. This is an online service containing both pub-
licly and privately available services to the security commu-
nity through an API (Application Programming Interface).
This service is a subsidiary of Google that runs multiple
AntiVirus (AV) engines and offers an unbiased access to re-
sulting reports. We use the private API to download malware
binaries. We then query the public API to obtain threat in-
telligence (which we refer to as metadata in the paper). In
particular, we collect metadata from all the samples obtained
through all sources listed in this section.

(3) Hybrid Analysis. This is an online community provid-
ing malicious binaries and threat intelligence obtained from
static and dynamic analysis of the samples. Thus, we use
this community to fetch readily available intelligence when
possible.

(4) Other Sources. We have developed a crawler to fetch sam-
ples from a variety of online communities such asmalc0de.com
or vxvault.net. Our pipeline also aggregates malware feeds
from cybersecurity companies. For the purpose of this paper,
we have received feeds from Palo Alto Networks.

Refer to [32] for details about the dataset overlaps.
Metadata. When available, we primarily rely on the following
metadata to put our study in context: (i) the first time the sample
was seen in the wild, (ii) the URLs where the sample was seen,
(iii) the list of parents that are known to have dropped the binary
under analysis, and (iv) the list of contacted domains.
StockMining Software. We also collect binaries from known min-
ing frameworks, such as xmrig4 or xmr-stak5, that are hosted in
various public repositories. While these binaries are not badware
per se, their usage is deemed malicious when run by malware. Our
assumption is that the usage of proprietary software to mine is not
the norm. Anecdotal evidence observed during the course of a pre-
liminary investigation has shown that miscreants rely on legitimate
4https://github.com/xmrig/xmrig
5https://github.com/fireice-uk/xmr-stak

— open-source — mining tools. The modus operandi of the malware
is to fetch one of these tools (i.e., acting as a dropper) and run it
in infected machines. Mining is configured with the wallet of the
miscreant, where the rewards are paid by the network. One of our
goals then is to understand if this assumption holds true and how
many campaigns are using stock mining software illicitly.
Summary. Our data collection registers over 4.5 million samples
(see §4.1 for a breakdown), which have been active between early
2007 and early 2019. This includes about 1K versions of known
mining tools from 13 different frameworks. Our initial data contains
a wide-range of samples, many of which are irrelevant to this study
(e.g., web-based cryptojackers). Thus, we next describe the rules we
use to consolidate the dataset where we report our findings with.

3.2 Sanity Checks
One important aspect when systematizing the analysis of malware
is properly curating the dataset [20].

We perform the following sanity checks for each sample: (i) is it
malware? (ii) is it a miner?, and (iii) is it an executable sample?

First, we rely on Virus Total reports to learn if a sample is mal-
ware. Virus Total have been shown to perform remarkably well
when providing malware feeds according to a recent comparative
analysis of Threat Intelligence [21]. In particular, Virus Total was
able to detect 99.94% of the threats over one of the largest non-
targeted6 malware aggregators. We assume that a sample is mal-
ware if at least 10 AV vendors flag the sample as malicious. While
this is a common practice in other works in the area [12, 25, 26], we
acknowledge that having a solid ground-truth is essential (see dis-
cussion in §6). Thus, we use a white-list with the hashes of known
mining tools, to ensure that they are not considered as malware
samples in our study. This white-list is compiled from binaries
collected from various online open-source repositories. A wallet
extracted from a malware sample is considered an ‘illicit’ wallet
throughout our dataset. Therefore, we exceptionally keep samples
with less than 10 AV positives when it contains an illicit wallet.

6Meaning that they target malware threats to generic platforms. Other targeted mal-
ware aggregators focus on threats that specifically target platforms like Facebook and
“that are not as relevant to most Virus Total users” [21].
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Second, we assume amalware is a crypto-mining tool when there
are IoCs that reveal activity related to mining, such as connections
made through the Stratum protocol or DNS resolutions for web
mining pools. To this end, we apply publicly available YARA rules7
to our samples. Additionally, we compare OSINT information re-
lated to known mining campaigns with IoCs extracted from the
samples (e.g., file hashes or network data). We also use advanced
queries from Virus Total and Hybrid Analysis to look for malware
that meet the following criteria: (i) samples that contact domains
of known mining pools, (ii) communicate through the Stratum pro-
tocol, and (iii) are labeled as “Miner” (or related variants) by more
than 10 AVs.

Finally, to understand whether a malware is executable, we rely
the magic number from its header, and consider only those related
to executables like PE, ELF or JARs. §6 provides discussion of the
limitations behind these assumptions.

3.3 Extraction of Pools and Wallets
With our dataset of crypto-mining malware, we rely on:

(1) Static Analysis: we perform binary inspection to extract evi-
dences of mining activity embedded into the binary.

(2) Dynamic Analysis: we then use environmental information
obtained from the execution of the binary in a sandbox. Specif-
ically, we obtain the network traffic, the dropped files, pro-
cesses opened, and command line parameters passed to the
binaries. When available, we rely on reports provided by
Virus Total and Hybrid Analysis through their API service.

In some cases we are able to find identifiers (e.g., wallets or
emails) and pool names using static analysis. In other cases, we rely
on dynamic analysis to extract these identifiers from the network
activity or the command line processes. In both cases, we process
the output of these two analyses using heuristics and regular ex-
pressions to extract the following information:

Cryptocurrency wallets. Miners connect to the pools using the
Stratum protocol [34]. Upon connection to the pool, they send a
request-for-work packet with the identifier of the miner in a ‘lo-
gin’ parameter. This identifier can be extracted from the command
line options passed to the mining tool or directly from the net-
work traffic. We also process the type of wallet to understand the
cryptocurrency (e.g.: Monero, Bitcoin or Ethereum) the malware is
intending to mine.

Mining pools. We collect additional information such as domains
and IPs of mining pools and proxies. Similarly to wallet addresses,
this information is typically extracted from either the command
line of the process invoking the mining tool or from the network
traffic. Typically, miners connect to a known pool.8 In some cases,
the miner either uses a proxy or mines against a private/unknown
pool.9 We consider that a miner is using a proxy if we record mining
activity for the corresponding wallet in a known pool (see §3.4).

7https://github.com/Yara-Rules
8We consider known pools as those listed in public sources, e.g.: http://moneropools.
com/ or http://www.blockchain.com/pools.
9While the use of private pools is encouraged in certain underground communities,
we have observed few samples using private pools.

3.4 Collecting Mining Activity
One of the main challenges when measuring the impact of the
malicious crypto-mining campaigns is the difficulty to accurately
estimate the profits. In browser-based cryptojacking, recent works
use estimations of the number of visitors per hour for similar web-
sites and the average hashrate of a single visitor (victim) [5, 8, 17].
This is highly inaccurate as evidenced by the variances reported
by concurrent related works (see §7). In the case of crypto-mining
malware, the actual wallet which the mining reward is paid to can
be extracted. We leverage public information obtained from mining
pools (which include total reward paid to wallets) to get a more
approximate estimation of the profits.

For all the extracted wallets, we queried the most prevalent
mining pools to collect activity associated with these wallets. While
the amount of information offered by each pool varies, it always
contains the timestamp of the last share, the current (last) hashrate
and the total amount of currency paid to the wallet. Additionally,
some pools also provide the historic hashrate of the wallet and
the list of payments done to the wallet (including timestamp and
amount). While the total paid is always available, some pools only
provide payment data for the last period (e.g. a week or month).
Since we are interested on studying how the payments evolve across
time, we use public APIs to collect this information periodically for
a period of 10 months (July’18-April’19). As a single wallet can use
more than onemining pool, we queried all the wallets against all the
pools. Then, to estimate profits, we aggregate all the payments sent
by the pools to the wallets. In general, we report payments using
XMR. To ease readability we also report the equivalent in US dollars
(USD). However, we note that we do not have information about
when the criminals have cashed-out their earnings (if ever). Thus,
it is hard to extract an exact figure in USD (and other currencies)
due to the fluctuations on the value of Monero. To approximate
this value, we dynamically extract the exchange rate between XMR
and USD of the date when the payments were made, if available.
We use the average exchange rate of 54 USD/XMR in cases where
historical payments are unavailable.

3.5 Campaign Analysis
Two major limitations in related works are: i) the simplicity in
which they analyze related mining campaigns, and ii) the inability
to study anonymous cryptocurrencies such as Monero (as discussed
in §7). Thus,d we aggregate samples into campaigns following a
novel methodology that leverages various characterizing features
observed in the wild.

Spreading Infrastructure. We distinguish two types of infras-
tructure used to spread the malware: one that can be owned and
another one that belongs to a third-party and can be rented (e.g.,
botnets that are monetized as PPI services and that are used for
mining). When available, we link samples to known botnets by
querying OSINT information with IoCs extracted from the samples.
We refrain from using these botnets to aggregate samples as we
detail later. However, we use them to enrich the information of the
campaigns in a post-aggregation phase. This way, we can draw con-
clusions about the number of campaigns using known third-party
infrastructure. However, since we rely on public intelligence feeds,
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a limitation of this approach is that samples using unknown third-
party infrastructure (e.g., offered in underground markets) might
be aggregated together in a single campaign. In these cases, we can
guarantee that the campaign runs on top of the same infrastruc-
ture. This is relevant to law enforcement agencies when devising
take-downs strategies. Thus, our analysis considers campaigns that
are either from the same actor or a group of actors that use the
same infrastructure, independently from the monetizing approach
used by the operators of the infrastructure that spreads the samples.
Analyzing whether profits from a campaign are given to a single
actor or a group of actors is out of the scope of this paper.

Grouping Features. We rely on the following features to group
samples into campaigns:
Same identifier: In order to get rewards from the mining pools,
workers must mine using a unique identifier, which in most cases
corresponds with the wallet address to which payments are made.
In other cases, these are e-mails or other identifiers, like user-
generated names. If two samples contain the same identifier, it
means that they are accumulating earnings in the same wallet and
thus they are grouped together. Some mining tools contain dona-
tion wallets to reward the developer, which is done by mining for
a certain time (typically 2-5%) using the donation wallet. While
this is configurable and can be turned off, we have observed a few
samples doing donations. We note that the CPU cycles donated
are also hijacked from the victim and therefore inflict harm to her.
However we are primarily interested in measuring the earnings of
the miscreants, and thus donation addresses are excluded from the
aggregation. For this reason, we create a white-list by manually ex-
tracting donation wallets from known mining software repositories.
We also enrich our white-list using Google searches (e.g., looking
for “Monero” and “donation”) and manually analysing the results.
We have white-listed 14 donation wallets directly obtained from
the developers’ sites. Due to limitations in the manual extraction
process, we could be missing donation wallets. This can result in
the over-aggregation of two independent campaigns as discussed
in §6. Non–white-listed donation wallets display a characterizing
pattern: the same wallet (the donation wallet) appears together
with different wallets (from the miscreants) in multiple samples
across our dataset. However, we do not observe this pattern after
white-listing all donation wallets we account for. This suggest that
we have effectively white-listed all donation wallets.
Ancestors: In many cases, the same sample is used to download
additional malware. This is the case of droppers, which adapt based
on information gathered from the infected host, e.g.: operating
system or processor capabilities. Accordingly, if a sample is parent
of two samples with different wallets, these are grouped together.
Ancestors and other dropped files that are not directly intended for
mining are considered auxiliary binaries and we refer to them as
ancillaries. This includes samples that do not have a wallet.
Hosting servers: We use metadata from the samples to extract the
URL from where the malware was downloaded. A common ap-
proach is to host the malware (or even stock mining software) in
public cloud storage sites such as Amazon Web Services (AWS),
Dropbox or Google Drive (see §4.2). Thus, we aggregate two sam-
ples if either they are downloaded from the same IP address which
does not resolve to a domain from a public repository, or if they are

downloaded from exactly the same URL, e.g: hxxp://suicide.mouzze.-
had.su/gpu/amd1.exe. We also include the parameters to avoid those
cases where a parameter is used to uniquely identify the resource
being hosted, e.g.hxxp://file8desktop.com/download/get56?p=19363.
This approach has as limitation that we are not aggregating re-
sources where a URL contains ephemeral information (e.g., times-
tamps or click-IDs), even when they point to the same resource in
the server. However, this limitation is partially overcome due to
other sources for aggregation.
Known mining campaigns: As mentioned, we collect IoCs (e.g., do-
mains or wallets) from mining operations reported publicly. We
look at IoCs that are known to belong to a given mining oper-
ation, and look for matches against samples in our dataset. We
group two samples if they belong to the same operation. In our
analysis, we have collected IoC for the following mining operations:
Photominer [6], Adylkuzz [10], Smominru [11], Xbooster [43], Jenk-
ins [3] and Rocke [23]. However, our methodology is designed to
easily include data collected from new operations.
Domain aliases (CNAMEs): During our investigation, we observed
many samples using domain aliases (i.e., CNAMEs) that resolve
to known mining pools. In these cases, miscreants create one or
various subdomains for a domain under their control, and set these
subdomains to be aliases of known mining pools. Since the res-
olution is done for the CNAME rather than for the mining pool,
they thwart defenses blacklisting mining pools (see §6 for a discus-
sion on anti-analysis techniques). To address this evasion method,
we perform DNS requests for all the domains extracted from our
samples, and look for responses pointing to known mining pools
from a CNAME. Since CNAMEs might have changed, we also
query a DNS history-resolution service provided by AlienVault
(https://www.threatcrowd.org) Accordingly, we aggregate samples
using the same domain alias.
Mining proxies: Mining using a large number of machines (i.e., more
than 100) with the same wallet raises suspicion of botnet usage, and
mining pool operators might opt to ban the miner. To prevent this
situation, offenders use mining proxies that gather all the shares
from the different bots and forward the aggregated to the pool.
Thus, pool operators only receive responses from a single machine,
the proxy. As described in §3.3, we identify various samples using
proxies. We aggregate together samples that use the same proxy.
Aggregation. To measure the number of related campaigns and
how they are structured, we build a graph where nodes are elements
of a given resource (e.g., malware samples, proxies, or wallets) and
the edges are determined by the relationships mentioned above.
We consider each connected component of the graph as a single
campaign, where the internal nodes of the graph represent the
crypto-mining malware together with the infrastructure used by
the campaign.
Enrichment. After the aggregation, we enrich each campaign with
samples related to known Pay Per Install (PPI) services, and mining
tools. We emphasize that these features are only informative and
they are not used to aggregate campaigns. We next explain the
rationale behind this.
Botnets and PPI: A common approach to spread malware is through
PPI services, where customers pay a fee to botnet operators in order
to spread their malware [2]. Due to commodization of cybercrime
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services, purchasing a botnet to spread malware is simple and open
to anyone with few technical skills, e.g.: by leveraging underground
markets [44]. During our analysis, we have observed samples be-
longing to various botnets that are commonly used as PPI services,
such as Virut or Nitol. Since these are known third-party infrastruc-
tures, two samples using these services are not necessarily related
to each other and thus are not aggregated together.
Stock Mining Software: During our exploratory analysis, we have
observed that many campaigns use stock mining software. This
is, the hash of a file dropped by the malware matches with one
of the hashes in our collection of mining tools. Actually, we have
observed that some crypto-mining malware fetch this executable
directly from the official GitHub repository. However, we have
also observed that some miscreants fork these projects and make
minor modifications to the mining tool, e.g. to remove donation
capabilities.

We use Fuzzy Hashing (FH) to pick up on the aforementioned
modifications and to relate these samples with known mining tools.
FH is a similarity preserving hash function that allows to compare
binary files. Specifically, FH computes a fingerprint of each binary
in such a way that any two binaries that are almost identical map
to a “similar” hash value. Fuzzy hashing has been shown to be an
effective way of comparing malware [22]. In our pipeline, we use
context triggered piecewise hashing [18] and compute the distance
between the FH of all samples in a campaign and the FH of all
known mining tools. We choose a conservative distance threshold
of 0.1 as it performs well when comparing malware [22]. Thus,
samples with a distance lower than 0.1 are considered as stock
mining tools.

4 THE BINARY-BASED MINING THREAT
In this section, we present the analysis of our measurement. We
first present our dataset (§4.1), which contains malware seen for
over a decade. Next, we perform a longitudinal analysis through the
lens of our dataset (§4.2). Then, we characterize the type of mining
pools and currencies we have seen (§4.3) and study the earnings of
the campaigns in the most prevalent cypto-currency, i.e.: Monero
(§4.4).

4.1 Dataset
Our study results from the collection of 4.5 million malware sam-
ples from the range of sources described in §3.1. We then apply
sanity checks to tailor our analysis to crypto-mining malware only,
resulting in a total of: (i) 1,017,110 miner binaries, and (ii) 212,923
ancillary binaries.

The samples in (i) are samples where we have observed mining
capabilities together with an associated wallet and a pool address.
The samples in (ii) are samples used by the miners to run the mining
operation (e.g., bot clients or loaders). In total, our study leverages
over 1.2 million crypto-mining malware samples. Table 1 shows
a summary of our dataset, together with the breakdown of data
sources and the type of resources we resort from.10 Our largest
source of miners is Virus Total and the smallest is Virus Share.
As for the resources, we collect the largest number of wallets and
pools through dynamic analysis (sandbox and network analysis).
10See [32] for details about other sources crawled.

Category Type #Samples

Summary
ALL EXECUTABLES 1,230,033
Miner Binaries 1,017,110
Ancillary Binaries 212,923

Sources

Virus Total 956,252
Palo Alto Networks 628,915
Hybrid Analysis 857
Virus Share 519

Resources
Sandbox Analysis 1,143,384
Network Analysis 258,564
Binary Analysis 10,204

Table 1: Our dataset of miners and ancillaries, with the col-
lection sources and the number of resources.

The data collection dates to March 2007 to capture the structure
of the third party infrastructure from their early stages. However,
malicious mining activity starts getting traction in 2011.

4.2 Longitudinal Analysis
We extract 16,050 different crypto-mining identifiers from a total of
103,894 samples. As mentioned, these mostly include addresses of
wallets from various cryptocurrencies, but we also find emails and
other identifiers used to authenticate the miner in the pool to later
pay them the corresponding reward. In the case of wallets, we use
regular expressions to detect the associated currency. Regarding the
emails, we observe that the majority (97%) are used as identifiers
of one of the most popular mining pools, i.e.: minergate.

Overall, we aggregate samples into 11,387 different campaigns.
Leftmost side of Table 2 shows the breakdown of the number of
campaigns per type of identifier (i.e., wallets and other identifiers).
Recall that wallet addresses represent the public key of an electronic
wallet in a given cryptocurrency. Thus, we show the breakdown
for the different cryptocurrencies for which we have wallets. Note
that two or more identifiers can be used in the same campaign, for
example due to a change of a previous wallet address after being
banned [11]. Monero is the cryptocurrency most frequently used,
followed by Bitcoin. There are at least 18 campaigns using two or
more currencies. While most of the campaigns are composed by one
or few wallets, we observe campaigns having up to 304 different
identifiers.

Out of all the samples with wallets, we rely on the first seen value
(obtained from the metadata of the samples provided by Virus Total)
to analyse the evolution of number of samples mining Bitcoin and
Monero. Rightmost side of Table 2 shows the number of samples
with wallets by year for the most prevalent cryptocurrencies, i.e.:
Monero (XMR) and Bitcoin (BTC). Overall, the dataset contains
7.6K BTC and 62K XMRmalware samples.11 Judging by the number
of samples and the distribution across time, we can confirm the
decreasing interest in Bitcoin in favour of Monero. Moreover, we
have queried available Bitcoin pools with the BTC addresses, and
observed negligible earnings (i.e., less than 5K USD). Note that the
data collection ended in early 2019 and thus data from this year
is partial. Also, due to constraints in the Virus Total rate limit we

11These are samples with embedded wallets and does not include ancillaries.
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# campaigns with wallet addresses for: # samples seen in:
Monero 2,449
Bitcoin 1,535
zCash 178
Electroneum 150
Ethereum 132

Aeon 57
Sumokoin 18
Intensecoin 8
Turtlecoin 3
Bytecoin 1

Year BTC XMR
2012 9 1
2013 23 3
2014 223 281
2015 115 1.6K

Mixed 17
Sub-total 4,548

2016 461 8.7K
2017 3.8K 31K

With other identifiers: 2018 1.3K 6.2K
Email 5,008
Unknown 2,195

2019 1* 49*
∼19? 1.7K 14K

TOTAL 11,751 ALL 7.6K 62K
Table 2: Leftmost side of the table: Number of campaigns per
currency, amount of e-mails and unknown identifiers (i.e.,
not associated with a known currency). Rightmost: Number
of samples (*partial data) seen in a given year for Bitcoin
(BTC) and Monero (XMR).

could not retrieve the first seen entry for some of the most recently
discovered samples. However, we attribute this samples to 2019
(denoted as ∼19? in Table 2). As it can be observed, there are 4
samples that were seen in 2012 and in 2013 and that have later been
mining Monero, which was released in 2014. This is due to malware
reuse, i.e., malware samples that dynamically update their code and
execute components downloaded at a later stage (after installation
time), namely droppers. See [32] for further details on this.

We provide more details about the number of samples, wallets,
and earnings per campaign in the extended version [32].

We further look at themost popular URL domains hosting crypto-
miners. We observe that GitHub is the chosen site used to host
the crypto-mining malware. This is because GitHub hosts most
of the mining tools, which are directly downloaded — for mali-
cious purposes — by droppers as discussed before. Additionally,
GitHub is also used to host modified versions of the miners (e.g.,
by removing the donation capabilities or adding further capabili-
ties). It is also used to host ancillary malicious tools [40]. We also
observe that there are other public repositories and file sharing
sites such as Bitbucket or 4sync, and web hosting sites such as
Amazon (AWS), Google, or Dropbox. One can also find mining
malware hosted through torrent sites (b-tor.ru), entertainment sites
(telekomtv-internet.ro), or hosted as attachments in the Discord app,
a voice and text chat (cdn.discordapp.com). There are also URL-
shortener sites (goo.gl). This altogether shows that crypto-miners
largely rely on publicly available third-party servers. The use of
these services provides an economical incentive when compared to
other approaches that use dedicated infrastructure such as bullet-
proof servers — that are more resilient against take-downs.

Our longitudinal analysis confirms previous reports positioning
Monero as the preferred currency used by miscreants for crypto-
mining malware [7]. Thus, in the rest of the paper we focus our
attention on campaigns using Monero.

Pool XMR Mined #Wallets USD
crypto-pool 429,393 487 47,261,821
dwarfpool 168,796 461 1,088,516
minexmr 74,396 608 5,320,397
poolto 29,044 38 35,815
prohash 12,833 54 275,471
nanopool 5,205 375 858,949
monerohash 4,046 217 477,557
ppxxmr 3,860 185 518,487
supportxmr 3,217 241 443,087
Others (8) 2,797 314 325,034

Table 3: Popularity of the different mining pools ranked by
the amount of XMR mined by malware.

4.3 Mining Pools
There are two possible strategies for mining: joining a pool or min-
ing alone (which we call solo-mining). Using mining pools instead
of “solo-mining strategies” has several advantages: it increases the
chances of receiving payments for mining and reduces the need
for specialized mining equipment. Selecting a mining pool is not
straightforward because it depends on many dynamic factors such
as the current hashrate of the pool, or the complexity required for
mining. Pools with a high number of workers are more likely to
mine a block faster, but the reward received is lower. To understand
the popularity of the different mining pools among criminals, we
look at the number of wallets and the amount of XMR mined over
the most consolidated pools (according to various benchmarks such
as http://moneropools.com, or https://minexmr.com/pools.html)
that provide public information about the wallets. Table 3 provides
a list of these pools ranked by popularity among criminals (in terms
of earnings). We show that the most popular pools are crypto-pool
and dwarfpool, with more than 429K and 168K XMR mined respec-
tively. When looking at the number of wallets observed, the most
common pool used is minexmr, with (at least) 608 wallets. An in-
teresting pool not included in our analysis is minergate. We have
found 4,980 emails mining at this pool in our dataset. Since miner-
gate does not provide public information about the rewards paid to
the miners, we are unable to estimate profits from this pool.

Our analysis show that 49.3% of the campaigns use or have used
more than one pool. Indeed, 97% of the campaigns with largest earn-
ings (i.e., over 1K XMR) have used more than one pool. However,
seven campaigns with earnings over 10K are using just one pool.
Out of these, six use dwarfpool and one uses crypto-pool. This sug-
gests that mining in different pools depends on different strategies,
probably driven by the revenues from each pool and their banning
policies.

4.4 Monero-based Campaigns
As shown in Table 2, we find 2,360 campaigns mining Monero. Out
of those, we are able to get payments to 2,145 campaigns through
querying the various mining pools.

We summarize the results of our aggregation in Table 4 and show
some demographics for the top 10 campaigns. Note the difference
between USD and XMR in some campaigns. As explained before,
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Campaign #S #W Period XMR $
C#627 66 7 06/16 to active* 163,756 20 M
C#3027 20 2 10/16 to 04/18 59,620 8 M
C#268 134 4 01/15 to 02/19 42,069 323 K
C#102 59 1 09/14 to 04/18 32,886 53 K
C#693 106 2 08/14 to 02/19 27,985 95 K
C#1290 91 14 06/16 to active* 27,086 1 M
C#10465 6 1 09/16 to 04/18 23,300 2 M
C#3311 9 1 06/16 to 05/18 22,520 5 M
C#2642 46 1 09/14 to 04/18 21,389 42 K
C#2202 25 1 09/14 to 04/18 20,694 38 K
TOP-10 562 34 2014/08/30 - * 441,305 38 M
ALL-2235 64 K 2532 2014/07/18 - * 740,927 58 M

Table 4: Top 10 campaigns ranked by amount of XMR min-
ed. C=Campaign #S=Num. of samples, #W=Num. of wallets,
and active* on April 2019. Recall that the exchange rate to
USD is computed dynamically based on when the payments
were made.

this is due to fluctuations of the XMR value and depends on when
payments were made. A note of precaution when looking at the
USD figures as we are unaware of when criminals cash-out their
moneros. Thus, we prefer to report our findings in primarily in
XMR. Overall, we estimate that there are at least 2,235 campaigns
that have accumulated about 741K XMR (58M USD). Some of them
are still active. Interestingly, just a single campaign (C#627) has
mined more than 163K XMR (20M USD), which accounts for about
22% of the total estimated. This campaign is still active at the time
of writing and it is later studied in §5. We observe that only the top
10 campaigns mine more than the remaining 2,225 ones. Overall,
we observe that 99% of the campaigns earn less than 100 XMR. We
also observe that while majority of the campaigns earn very little,
there are a few campaigns overly profitable. This indicates that the
core of this illicit business is monopolized by a small number of
wealthy actors.

There are campaigns with a large number of samples, with up to
12K in the case of C#4 (see further details in our repository12). How-
ever, some of the most profitable campaigns have few samples (e.g.,
C#10465 or C#3311). This means that either the samples in those
campaigns have infected a large number of victims, or that other
samples from the campaign are not detected by any AV. In either
case, it suggests that there are some miscreants that are proficient
in remaining undetected. In the next section we analyze the infras-
tructure and stealth techniques used by the different campaigns,
and how this affects their efficiency.

While most of profitable campaigns started in 2016 or earlier,
we observe recent campaigns with large earnings. In particular, 21
campaigns that started in 2018 have mined more than 100 XMR, 12
of which are active at the time of writing (April 2019).

4.5 Infrastructure
We next analyze the third-party infrastructure used in the different
Monero campaigns.

12https://github.com/gsuareztangil/cryptomining-malware

Mining software. We show that xmrig, claymore and niceHash
are the most popular tools we account for. With the current distance
threshold in our Fuzzy Hashing algorithm, we found no evidence
pointing to the use of other less popular tools such as: cast-xmr,
jceMiner, srbMiner, or yam. When using a higher threshold, we
found one campaign using xmr-stak. Overall, the top most pop-
ular frameworks account for approximately 18% of the Monero
campaigns.

Domain aliases for mining pools. A common mitigation strat-
egy often suggested in commercial reports [24] is to block known
mining pools, using blacklists. Criminals create CNAME domain
aliases to evade this mitigation. In our analysis, we observe 215
different CNAMEs. Most of these are aliases of minexmr (176),
crypto-pool (21) and dwarfpool (14). Interestingly, there are two
aliases (x.alibuf.com and xmrf.fjhan.club) which have been even-
tually used to hide two different pools each. This suggests again
dynamic changes in the mining strategy used by criminals to maxi-
mize their revenue. We note that the former alias is actually part of
the most profitable campaign (C#627), which is detailed in §5.

Pay-Per-Install services. In order to spread malware, criminals
use commodity botnets offered as PPI services in underground
markets [2, 44]. We find samples from 3 different botnets offering
PPI services. In particular, we observe 511 samples associated with
the Virut botnet (in 44 different campaigns), 46 from Ramnit (in 10
campaigns) and 27 from Nitol (in 3 campaigns). Also, in one of the
biggest campaigns (C#8), known as Photominer [6], we find 346
samples (3.01%) of the samples belonging to this campaign) using
Virut to deploy the mining operation. Recall that campaigns are
automatically extracted. Observing campaigns from botnets that
are know to the community shows that our heuristics provide a
reliable aggregation. Yet, our framework steps up finding novel
campaigns as shown in §5.

Obfuscation. A common practice when spreading malware is to
obfuscate the binary to avoid detection. Criminals typically use
existing tools, such as well-known packers (e.g., UPX) or crypters.
Packers can be fingerprinted more easily than crypters, but crypters
— which are usually purchased in underground markets — increase
the cost of the operation. By leveraging the F-Prot unpacker [4],
we extract packer information associated with each sample (when
applicable). This tool also identifies compression algorithms, which
are not considered obfuscation. Then, we look at the entropy to
detect whether some other unknown obfuscation is applied in sam-
ples where no packer or compression algorithm is detected. In
our implementation, we choose a conservative threshold of 7.5
(where 8 means total randomness) to decide when a sample is ob-
fuscated, which is more restrictive than values tested in previous
works [27, 42]. We found that around 30% of the samples are ob-
fuscated. We consider that a campaign uses obfuscation if a large
proportion of their samples (i.e., 80%) are obfuscated. While this
is the ratio in the overall dataset, we found that only 4.16% of Mo-
nero campaigns use obfuscation. Table 5 summarizes the number of
samples using obfuscation together with the tool used to obfuscate
it. UPX is by far the most common tool used. Interestingly, we
have seen many binaries created using AutoIt (a Windows-based
scripting language) which by default packs the script into an PE file
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UPX 328,493
NSIS 17,464
maxorder 5,988
SFX 3,928
INNO 2,423

eval 2,032
docwrite 1,490
ARJ 858
CAB 721
Enigma 710

Others 4,019
Not packed 862,712

Table 5: Packers used for binary obfuscation.

using UPX. In §6 we discuss the limitations of analyzing obfuscated
binaries.
Analysis. Table 6 shows the third-party infrastructure, stealth tech-
niques and period of activities for the different Monero campaigns
(both divided according to their profits, and overall). While only
1.1% of the campaigns use domain aliases, a higher proportion is
found in most profitable campaigns (9.4% of those mining between
1K and 10K XMR, and 26.7% of those miningmore than 10K XMR). A
similar situation happens with proxies and PPI services, which are
more common in successful campaigns (i.e., with larger earnings).

Most profitable campaigns have longer period of activity (46.7%
have been active since 2014). However, we also observe a high
portion of campaigns (26.7%) operating only for 1 or 2 years and
still having large profits. We also note the percentage of campaigns
active before and after changes in the PoW (Proofs-of-Work): on
06/04/2018, 18/10/2018 and 09/03/2019. These changes require the
update of mining software. This means that either botnet operators
have to update their bots, or customers of PPI services must buy
new installs. We show that most of the campaigns stopped due to
PoW updates: around 72.4% in April 2018, 89.3% in October 2018
and 96.5% in March 2019.13 This means that changes in the PoW
algorithmmight be an effective (though unwitting) countermeasure,
as discussed in §6.

4.6 Take-Aways
In summary, the main take-aways of our analysis include:

(1) We observe that it is no longer profitable to mine Bitcoin,
and current criminal efforts focus on mining ASIC-resistant cur-
rencies. We also show that there are a small number of actors that
monopolize the crypto-mining malware ecosystem.

(2) We note that some successful mining campaigns are very
complex in terms of the size and infrastructure supporting the cam-
paign. Our data shows that about 11% of these are supported by
other underground economies such as third-party Pay-Per-Install
botnets. On the contrary, we also observe very profitable mining
campaigns that do not appear to use a large supporting infras-
tructure. Instead, they are effective campaigns (due to their long
lifetime) with obfuscation and novel evasion techniques, e.g.: using
CNAMEs to bypass blacklist-based detection.

(3) We estimate that the malicious ecosystem has currently
mined at least 4.37% of the total Monero in circulation (approx-
imately 58M USD). These numbers must be added to estimations
made using web-browser cryptojacking in paralell work.
13Given that our data is from April 2019, some of these campaigns might not be defunct,
since it might take some time to update the miners.

XMR Mined < 100 [100-1k) [1k-10k) >10k ALL
#Campaigns 2,013 154 53 15 2,235

THIRD PARTY INFRASTRUCTURE
PPI 1.3% 3.2% 9.4% 13.3% 1.7%
Mining SW 8.6% 14.9% 30.2% 13.3% 9.6%
Both 0.4% 1.3% 7.5% 0.0% 0.7%

STEALTH TECHNIQUES
Obfuscation 4.0% 5.2% 3.8% 0.0% 4.0%
CNAMEs 0.3% 5.2% 9.4% 26.7% 1.1%
Proxies 2.6% 6.5% 3.8% 20.0% 3.0%

PERIOD OF ACTIVITY
+ Apr-18 24.6% 57.8% 49.1% 33.3% 27.6%
+ Oct-18 9.1% 27.3% 18.9% 33.3% 10.7%
+ Mar-19 2.7% 13.0% 5.7% 13.3% 3.5%
Start: 2014 0.2% 4.5% 11.3% 46.7% 0.2%
Start: 2015 0.2% 1.9% 3.8% 13.3% 0.2%
Start: 2016 5.5% 26.0% 41.5% 40.0% 5.0%
Start: 2017 37.3% 51.3% 41.5% 0.0% 33.6%
Start: 2018 51.7% 13.0% 1.9% 0.0% 46.6%
Start: 2019 0.5% 2.6% 0.0% 0.0% 0.4%
Years: 0 69.6% 11.0% 1.9% 0.0% 62.7%
Years: 1 28.0% 57.8% 41.5% 6.7% 25.2%
Years: 2 2.2% 24.7% 39.6% 20.0% 2.0%
Years: 3 0.2% 3.2% 7.5% 20.0% 0.2%
Years: 4 0.0% 3.2% 9.4% 53.3% 0.0%

Table 6: Summary of infrastructure, techniques and period
of activity for the different campaigns targeting Moneros
grouped by profit.

(4) It is common to see campaigns mining in various pools. We
observe that the most popular mining pools are crypto-pool, dwarf-
pool and minexmr. We show that a large number of samples mine
to minergate, an opaque mining pool for which there is no publicly-
available information about the rewards received.

(5) When looking at the activity period, we find long-lasting
campaigns — some of which are active at the time of writing. In
particular, we can see multi-million campaigns operating for a
continuous period of more than four years (see Top-10 in Table 4).
This shows that AVs have not addressed this threat appropriately.
We argue that crypto-mining malware has not been given enough
attention by the industry and the research community and novel
countermeasures are required as discussed in §6.

5 CASE STUDY
We next present a case study related to a high-profit campaign
that has not been previously reported. We refer the readers to
the extended version of the paper [32] for additional case studies.
Fig. 2 presents an overview of how the campaign is structured.
In the graph, nodes in blue represent wallets and nodes in light-
green represent malware miners. Thus, various light-green nodes
connected to a blue node represent a group of samples using the
same wallet. Nodes in gray and pink represent the infrastructure
of the campaign, with gray nodes portraying contacted domain
servers and the pink ones the malware hosts. Finally, ancillary
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Figure 2: Overview of the analysis of our case study. The
Freebuf campaign (C#627).

malware are depicted in red and orange. The edges represent the
connections described in §3.5.

The most profitable Monero campaign (C#627 in Table 4) has
mined more than 163K XMR in 3 years using 7 wallets. We have
named it ‘Freebuf’ because the main grouping feature is the domain
xt.freebuf.info, which is an alias (CNAME) of the minexmr pool.
Structure. Figure 2 shows how the campaign is structured. We ob-
serve that the aggregation is dominated by three grouping features:
(i) same identifier, (ii) ancestors, and (iii) domain aliases (CNAMEs).
Interestingly, the graph of this campaign reveals groups of samples
with wallets that reach out to one another through paths traversing
these three grouping features. In other words, the three grouping
features are the key to map the structure of the campaign. In par-
ticular, there are two domains linked through a common wallet:
x.alibuf.com and xmr.honker.info, which in turn are connected to
xt.freebuf.info. Note that both have been aliases of minexmr, and
x.alibuf.com has also been an alias of crypto-pool. We can observe
that the backbone of the graph is established through connections
of samples linked to CNAMEs. From there, there are other clusters
that are linked via same identifier, and to those, there are some
samples which are connected by common ancestors.
Payments. By analyzing the different payments received through
time, we observe that before the update of the PoW in April 2018,
this campaign was mining in various pools simultaneously. How-
ever, after the update all mining efforts were put into minexmr. In
September 2018 we reported the wallets to the largest pools, result-
ing in two wallets being banned in October 2018. Upon request,
one pool operator kindly provided us with statistics regarding the
number of different IPs behind the wallets. The two banned wallets
connected from 5,352 and 8,099 different IPs and had mined 362.6
and 1,283.7 XMR respectively. As a consequence of banning, we
observe that the campaign operator decided to move their mining

efforts to another pool (ppxmr) — which indeed was used before the
update on April 2018. We visualize these payments in [32]. We have
seen that as a result of this intervention, together with the change
in the PoW algorithm in October 2018, the payments received by the
wallets associated to this campaign have been considerably reduced.

6 DISCUSSION
In this section, we analyze existing countermeasures, presenting
their main challenges and weaknesses and looking at potential
directions to address this challenge. We also discuss the limitations
of our work.
Reporting illicit wallets. Reporting illicit wallets to the pools,
while being a common practice [7], is not an effective countermea-
sure. First, it is costly and requires cooperation and coordination
from all (or at least the main) pool operators. Second, criminals
have developed mechanisms to bypass detection (e.g., using min-
ing proxies). During our study, we have reported the illicit wallets
we found to the largest pools, together with evidence of criminal
behavior. There are non-cooperative pools that chose not to ban
wallets; and those that are cooperative pools tend to err on the safe
side. For example, the pool minexmr only blocks wallets with a
large number of associated connections. Since criminals can use
proxies to hide botnet-related mining activity, just relying on the
number of connections proves ineffective.

Additionally, we found that successful campaigns mine in several
pools. This makes them more resilient to take-down operations.
Criminals respond to take-downs by changing the mining pool
being used (as we have observed in our study) or by creating new
wallets and setting proxies up [11].
Changes in the Proof-of-Work algorithm. ASIC-based min-
ing uses customized hardware to compute faster the PoW algo-
rithms [19]. Changes in these algorithms are intended to hinder
ASIC-based mining, due to the cost of creating new hardware. This
also requires updating the software, which is straightforward for
benign miners. However, in the case of crypto-mining malware,
each change in the algorithm requires botnet operators to update
their bots. In turn PPI users have to purchase further installs to
push the updated version of their miners.

We have monitored three changes in the PoW of Monero: April
6th, 2018, October 18th, 2018 and inMarch 9th, 2019. In each change,
around 72%, 89% and 96% of the campaigns ceased their operations
respectively. Although changes in the algorithms do not dismantle
consolidated campaigns, they can dissuade new ones. Thus, a poten-
tial countermeasure against crypto-mining malware is to increment
the frequency of such changes, and design these changes to not
only be anti-ASIC, but also anti-botnet.
Third-party Infrastructure.We observe that most mining cam-
paigns use third-party infrastructure such as PPI services or mal-
ware packers. To associate samples to such infrastructure we rely
on IoCs gathered from public OSINT repositories, i.e. which have
been reported previously. Thus, a limitation of our approach is that
campaigns that use such unknown third-party infrastructure (e.g.
custom packers being offered in underground markets) might be
grouped together. Detecting such new third-party infrastructure
would require applying other type of intelligence, which is out of
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the scope of this paper. While this hinders our ability to account
for the number of individual actors, our methodology still allows
to understand the magnitude of the problem and devising novel
mitigation strategies.
Quality of the ground-truth. As with other malware types, a
countermeasure to this threat is to use updated AVs. Given the
magnitude of the threat, AVs are required to have a large dataset
of signatures. However, judging by the activity period of some of
the campaigns we have seen that AV vendors have not been up
to this task. This is a known limitation of the Threat Intelligence
industry [21].

Likewise, our work relies on AV vendors to set our ground-
truth. This might introduce both false positives (when legitimate
samples are considered malware) and false negatives (when missing
actual malware samples). The boundaries between ‘malicious’ and
‘legitimate’ samples are unclear, since a legitimate mining software
turns malicious when used in infected computers (i.e., without user
consent). Indeed, most AV classify mining tools as malware. We
note that establishing an optimal trade-off between benign and
malicious mining is not straightforward [8, 17]. We deal with FP
by setting up a relatively high number of positive detections (i.e.,
10 AVs). By doing this we are also introducing FN. In this paper,
we err on minimizing the number of FP knowing that our findings
have to be seen as an under-approximation of the current threat.

Finally, it is worth noting that we assume that a wallet is illicit
when it seen together with a malware. However, not all the mining
might be illicit. For example, the criminal could start mining from
his own PC before/while she is mining illicitly. This is unlikely, but
we would not have technical means to make this distinction should
it were to happen. While some of the mining could be done licitly,
we however argue that the revenues obtained from this activity
revert on a criminal anyway. Thus, it can be used to fuel other illicit
activities and the figures associated to this wallets are therefore
relevant to our study.
Quality of the aggregation. Our methodology is used to group
samples and wallets into campaigns. We leverage the data collected
mostly for this purpose, but we also collect additional data to mea-
sure the magnitude of the problem. We use manual verification to
evaluate that our heuristics are coherent. When campaigns relate to
knowmining botnets (e.g., Photominer, or Adylkuzz), we verify that
the structure of the campaign matches with what has been reported
about that botnet. When looking at novel campaigns, we verify
that the resulting aggregation matches with the one provided by
our heuristics. This can be seen from the case studies shown in §5.
However, we acknowledge that our heuristics are not complete and
can be subject to errors in the aggregation. This can lead to both
campaigns that are under- or over-aggregated. In general, we have
design our heuristics to be conservative to avoid over-aggregation.
For example, we aggregate based on the full in-the-wild URL (rather
than by domain name) to avoid aggregating campaigns that use
common third-party infrastructure like Amazon WS or GitHub.
Anti-analysis techniques. Our study inherits the limitations of
malware analysis. On the one hand, malware uses obfuscation to
thwart static analysis, e.g. by using packers and crypters. We have
partially addressed this by looking both at the usage of known
packers and also at the entropy of the binaries. On the other hand,

malware uses evasion techniques to thwart dynamic analysis, (e.g.,
sandbox detection [28]). To partially prevent this, we leverage the
use of various sanboxes (e.g. Virus Total and Hybrid Analysis). Also
we have attempted to de-anonymize domain aliases that masked
connections to mining pools (c.f., §3.5).

Mining-tailored solutions. Miners have a distinctive CPU us-
age, which allow for anomaly detection based on either modeling
the CPU usage [17] or on instrumenting web browsers to detect
suspicious activity [13, 45]. However, since the malware controls
the infected computer, it might evade local defenses (e.g., by tam-
pering with the CPU monitoring module). Other works propose
to monitor the CPU usage of a computer from a hypervisor [39].
However, this approach focuses on protecting cloud providers, and
it is not applicable to end-users. An alternative is to look at the
energy consumption fingerprint. While power-aware anomaly de-
tection systems have been proposed in other domains [14, 38], we
are not aware of a solution tailored to crypto-mining malware for
general-purpose computers. We position that these solutions could
be deployed by electric-companies to end-users with smart-meters.

7 RELATEDWORK
Illicit mining has been a threat since the emergence of Bitcoin in
2009. However, it has not been properly addressed in academia
until recently. The first analysis of crypto-mining malware was
published in 2014 by Huang et al. [9]. Authors analyzed botnets and
campaigns mining bitcoins. However, mining non-ASIC resistant
currencies (such as Bitcoin) is no longer profitable without dedi-
cated hardware. Thus, most of the illicit mining focuses on Monero
nowadays [7, 8, 17]. Recent works analyzed web-based mining, both
as an alternative to advertisements to monetize web content [31, 35]
and as cryptojacking [8, 17, 36]. To distinguish cryptojacking from
benign mining, it is important to properly identify user consent.
One approach is to search for keywords indicating mining activ-
ity [8]. This approach misses informed consent acquired by other
means, such as images or additional documents. Thus, some works
also look for AuthedMine scripts, which require explicit action from
users to start mining [13, 17]. In our work, we rely on AV reports
and other heuristics to classify binaries into malware or goodware.

Previous works are characterized by the simplicity in which
they aggregate campaigns. In particular, related works mostly look
at mining pool identifiers (e.g., wallets) alone [8, 13]. However,
criminals use concurrent miners with different identifiers to retake
operations when wallets are banned [11]. Konoth et al. includes in-
formation about the servers when performing the aggregation [17].
Unfortunately, this does not scale as it requires manual efforts vet-
ting the code of the scripts (i.e., to get the verification code). In their
analysis of Bitcoin, Huang et al. use information gathered from the
Blockchain to aggregate campaigns [9]. However, this approach
is not valid for cryptocurrencies that obfuscate transactions (e.g.,
Monero or Zcash).

The overall earnings obtained from malicious mining have in-
creased in the last years. For example, Konoth et al. discovered
1,735 domains, estimating overall revenues of $188,878 per month.
In parallel work, Hong et al. detected 2,770 domains, estimating
overall revenues of $1.7M. However, estimations obtained from
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Currency Size ProfitsAnalyzed Detected
[9](2014) BTC Unknown 2,000 14,979 BTC
[35](2018) XMR 10M � 2,287 � 1,271 XMR/m
[8](2018) XMR 548,624 � 2.2k � 7,692.30 XMR
[17](2018) XMR 991,513 � 1.7k � 746.55 XMR/m
[31](2018) XMR 3M � 108K � N/A
[29](2018) XMR 1M � 2,500 � N/A

Our work Various 4.4M 1M
741K XMR
1̃3.7K XMR/m

Table 7: Summary of related work, where the last row
shows our measurement. Legend: � stands for Web-based

mining, � for Web-based cryptojacking, for binary-based
crypto-mining malware. XMR/m means monthly moneros

web-browser cryptojacking are not reliable. This is because analyz-
ing profits from web activity relies on estimates of i) the number of
monthly visitors, ii) the time spent by each visitor on average, and
iii) the type of device they use. Instead, we are able to get wallets
used by the malware and the payments given by the pools as a
reward. This allows us to analyze not only the earnings of each
wallet, but also the pools used for mining and the exact dates of the
payments. Our findings increase the understanding of this threat.
In particular, we estimate that earnings are — at least — 58 million
USD obtained in 4.5 years of operation (more than 1M/month).
Table 7 summarizes the related works and compares each of the
measurements.

Unlike other type of malware threats, crypto-mining malware
is well bounded by a unique characterizing behavior, i.e.: the use
of mining activity. Thus, simple pattern matching (like the one
done by YARA) has proven to be effective. As malware increases
in sophistication (see discussion in §6), related works leverage
machine learning approaches to systematically identify specific
threats [37]. However, this is out of the scope of our work.

8 CONCLUSION
In this paper, we have presented a longitudinal large-scale measure-
ment study of crypto-mining malware — analyzing the underlying
infrastructure relied upon for over a decade. We show that Mo-
nero is currently the preferred currency used by criminals, who
have obtained massive earnings. Our profit analysis on Monero
reveals that a small number of actors hold sway the mining illicit
business. We also show that campaigns that use third-party infras-
tructure (typically rented in underground marketplaces) are more
successful. However, this is not always the case. Some of the most
profitable campaigns rely on complex infrastructure that also uses
general-purpose botnets to run mining operations without using
third-party infrastructure. Here, we have discovered novel malware
campaigns that were previously unknown to the community and
we have present technical details about the way this ecosystem
operates. We have leveraged the insights obtained to discuss coun-
termeasures. Due to the need of updating mining software, our
findings suggest that regular changes in the PoW algorithm dis-
courage criminals. As future work, we plan to extend our study to

emerging campaigns as oppose to looking at the most consolidated
ones, and with an extend array of heuristics.
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APPENDIX
Ethical issues
Most of the data collected is publicly available. However, both Palo
Alto and Virus Total shared some non-public information with us
and we requested their permission to use it for this paper. Another
ethical concern relates to the implications of reporting any misuse
activity to the pools. In particular, we have reported evidence of wal-
lets seen in crypto-mining malware. Our actions might produce an
intervention over the reported users due to criminal activity. This
entails potential ethical implications when non-criminal wallets
are mistakenly banned. We have taken due precautions to guar-
antee that we only report wallets of samples used by malware as
discussed in the paper. Thus, our study has been approved by the
designated ethics officer at the Reseach Ethics Board (REB) of our
institution.

In addition to our precautions, we have provided the pools with
accompanying evidences proving illicit activity, including a pointer
to the Virus Total report. However, despite our involvement, the
final decision of banning the wallets relies on the pool operators.
These operators have additional insights about the modus operandi
of their users (e.g., the number of IP addresses that are currently
mining with a wallet) that can be used to further corroborate any
type of misuse. In fact, it is our understanding that the pools that
took actions against some of the reported users based their decision
solely on the number of connections per wallet. Multiple connec-
tions from the same wallet evidences the use of a botnet, which it
is against the terms and conditions of some of the pools. However,
we note that a botnet can always hide behind a single IP addressed
using proxies. Also, we have observed that the pools do not proac-
tively ban wallets that display botnet-like activity. We discuss the
ethical implications of the banning policies of the pools in §6.
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