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Abstract —We introduce WORM-ORAM, a first mechanism that combines Oblivious RAM (ORAM) access privacy and data confiden-
tiality with Write Once Read Many (WORM) regulatory data retention guarantees. Clients can outsource their database to a server with
full confidentiality and data access privacy, and, for data retention, the server ensures client access WORM semantics. In general simple
confidentiality and WORM assurances are easily achievable e.g., via an encrypted outsourced data repository with server-enforced
read-only access to existing records (albeit encrypted). However, this becomes hard when also access privacy is to be ensured — when
client access patterns are necessarily hidden and the server cannot enforce access control directly. WORM-ORAM overcomes this by
deploying a set of zero-knowledge proofs to convince the server that all stages of the protocol are WORM-compliant.

1 INTRODUCTION

Regulatory frameworks impose a wide range of policies
in finance, life sciences, health-care and the government.
Examples include the Gramm-Leach-Bliley Act [1], the
Health Insurance Portability and Accountability Act [2]
(HIPAA), the Federal Information Security Management
Act [3], the Sarbanes-Oxley Act [4], the Securities and
Exchange Commission rule 17a-4 [5], the DOD Records
Management Program under directive 5015.2 [6], the
Food and Drug Administration 21 CFR Part 11 [7], and
the Family Educational Rights and Privacy Act [8]. Over
10,000 regulations are believed to govern the manage-
ment of information in the US alone [9].

A recurrent theme to be found throughout a large
part of this regulatory body is the need for assured
lifecycle storage of records. A main goal there is to
support WORM semantics: once written, data cannot
be undetectably altered or deleted before the end of its
regulation-mandated life span. This naturally stems from
the perception that the primary adversaries are powerful
insiders with superuser powers coupled with full access
to the storage system. Indeed much recent corporate
malfeasance has been at the behest of CEOs and CFOs,
who also have the power to order the destruction or
alteration of incriminating records [10].

Major storage vendors have responded by offering
compliance storage and WORM products, for on-site
deployment, including IBM [11], HP [12], EMC [13].
Hitachi Data Systems [14], Zantaz [15], StorageTek [16],
Sun Microsystem [17] [18], Network Appliance [19]. and
Quantum Inc. [20].

However, as data management is increasingly out-
sourced to third party “clouds” providers such as
Google, Amazon and Microsoft, existing systems simply
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do not work. When outsourced data lies under the
incidence of both mandatory data retention regulation
and privacy/confidentiality concerns — as it often does
in outsourced contexts — new enforcement mechanisms
are to be designed.

This task is non-trivial and immediately faces an ap-
parent contradiction. On the one hand, data retention
regulation stipulates that, once generated, data records
cannot be erased until their “mandated expiration time”,
even by their rightful creator — history cannot be rewritten.
On the other hand, access privacy and confidentiality
in outsourced scenarios mandate non-disclosure of data
and patterns of access thereto to the providers’ servers,
and can be achieved through “Oblivious RAM” (ORAM)
based client-server mechanisms [21], [22]. Yet, by their
very nature, existing ORAM mechanisms allow clients
unfettered read/write access to the data, including the
ability to alter or remove previously written data records
— thus directly contradicting data retention requirements.

Basic confidentiality and WORM assurances are achiev-
able e.g., via traditional systems that could encrypt
outsourced data and deploy server-enforced read-only
access to data records once written. Yet, when also access
privacy is to be ensured, client access patterns become
necessarily hidden and the server cannot enforce WORM
semantics directly.

In this paper we introduce WORM-ORAM, a first
mechanism that combines the access privacy and data
confidentiality assurances of traditional ORAM with
Write Once Read Many (WORM) regulatory data reten-
tion guarantees. Clients can outsource their database to
a server with full confidentiality and data access privacy,
and, for data retention, the server ensures client access
WORM semantics, i.e., specifically that client access is
append-only: — once a data record has been written it
cannot be removed or altered even by its writer.

WORM-ORAM is built around a set of novel effi-
cient zero knowledge (ZK) proofs. The main insight is
to allow the client unfettered ORAM access with full
privacy to the server-hosted encrypted data set while
simultaneously proving to the server in zero-knowledge
— at all stages of the ORAM access protocol — that no



existing records are overwritten and WORM semantics
are preserved.

We show that our solution does not change the compu-
tational complexity of existing ORAM implementations.
Our implementations show that the end-to-end cost of a
read operation is 10s and the amortized cost of a shuffle
is 47s. These costs compare favorably with the costs
imposed by classic ORAM solutions that do not offer
WORM assurances. Future work focuses on reducing
these overheads toward true practical efficiency.

2 RELATED WORK
2.1 Oblivious RAM

This paper extends the work of [23] with novel con-
structions that provide indistinguishability for the read
and write accesses, detailed descriptions of essential
components such as element expiration and with proofs
for the assurances provided by the solution including
the zero knowledge properties.

Oblivious RAM [21] provides access pattern privacy
to clients (or software processes) accessing a remote
database (or RAM), requiring only logarithmic storage
at the client. The amortized communication and compu-
tational complexities are O(log®n). Due to a large hidden
constant factor, the ORAM authors offer an alternate
solution with computational complexity of O(log*n), that
is more efficient for all currently plausible database sizes.

In ORAM, the database is considered a set of n en-
crypted blocks and supported operations are read(id),
and write(id, newvalue). The data is organized into
logs(n) levels, as a pyramid. Level i consists of up to 4°
blocks; each block is assigned to one of the 4! buckets at
this level as determined by a hash function. Due to hash
collisions each bucket may contain up to logn blocks.
ORAM Reads/Writes. To obtain the value of block id,
the client must perform a read query in a manner that
maintains two invariants: (i) it never reveals which level
the desired block is at, and (ii) it never looks twice in the
same spot for the same block. To maintain (i), the client
always scans a single bucket in every level, starting at
the top (Level 0, 1 bucket) and working down. The hash
function informs the client of the candidate bucket at
each level, which the client then scans. Once the client has
found the desired block, the client still proceeds to each lower
level, scanning random buckets instead of those indicated by
their hash function. For (ii), once all levels have been
queried, the client re-encrypts the query result with a
different nonce and places it in the top level. This ensures
that when it repeats a search for this block, it will locate
the block immediately (in a different location), and the
rest of the search pattern will be randomized. The top
level quickly fills up; how to dump the top level into the
one below is described later.

Writes are performed identically to reads in terms of
the data traversal pattern, with the exception that the
new value is inserted into the top level at the end.

Level Overflow. Once a level is full, it is emptied into
the level below. This second level is then re-encrypted
and re-ordered, according to a new hash function. Thus,
accesses to this new generation of the second level will
hence-forth be completely independent of any previous
accesses. Each level overflows once the level above it
has been emptied 4 times. Any re-ordering must be
performed obliviously: once complete, the adversary
must be unable to make any correlation between the old
block locations and the new locations. A sorting network
is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must
contain the same number of blocks. For example, if the
bucket scanned at a particular level has no blocks in it,
then the adversary would be able to determine that the
desired block was not at that level. Therefore, each re-
order process fills all partially empty buckets to the top
with fake blocks. Since every block is encrypted with a
semantically secure encryption function, the adversary
cannot distinguish between fake and real blocks.

Pinkas and Reinman introduce in [24] a mechanism to
provide O(log” n) oblivious access with only logarithmic
client storage. The collision-free Cuckoo hash from [25]
is employed to remove a logn factor of server storage
(and eliminate the corresponding query overhead). Data
is stored ORAM-like, in a pyramid-shaped set of levels,
with queries proceeding downward interactively.

Unfortunately, the premise of this idea is flawed. The
construction of the Cuckoo hash function at a given level
considers only the data to be stored at a given level, not
the data already stored at lower levels. This property
is necessary to achieve the desired time complexity.
Thus, queries for the lower-level data have a significant
chance of sharing locations with data at the current level.
Because the Cuckoo hash otherwise avoids collision,
any time such an occurrence is observed indicates leaks
access information. That is, when the adversary sees two
queries access the same pair of hash table locations, it
learns that at least one of those queries was, in fact, for
lower-level (less recently accessed) data. This immedi-
ately violates access privacy. The authors acknowledged
this problem.

2.2 Private Information Retrieval

Private Information Retrieval (PIR) [26] protocols aim to
allow (arbitrary, multiple) clients to retrieve information
from public or private databases, without revealing to
the database servers which records are retrieved. In ini-
tial results, Chor et al. [26] proved that in an information
theoretic setting, any single-server solution requires {2(n)
bits of communication. When the information theoretic
guarantee is relaxed single-server solutions with better
complexities exist; an excellent survey of PIR can be
found online [27], [28]. Recently, we have shown [29]
that due to computation costs, use of existing non-trivial
single-server PIR protocols on current hardware is still
orders of magnitude more time-consuming than trivially
transferring the entire database.



3 MODEL AND PRELIMINARIES
3.1 Deployment and Threat Model

In the deployment model for networked compliance
storage, a legitimate client creates and stores records
with a (potentially untrusted) remote WORM storage
service. These records are to be available later to both
the client for read as well as to auditors for audits.
Network layer confidentiality is assured by mechanisms
such as SSL/IPSec. Without sacrificing generality, we
will assume that the data is composed of equal-sized
blocks (e.g., disk blocks, or database rows).

At a later time, a previously stored record’s existence is
regretted and the client will do everything in her power —
e.g., attempt to convince the server to remove the record
— to prevent auditors from discovering the record. The
main purpose of a traditional WORM storage service is
to defend against such an adversary.

Moreover, numerous data regulations feature require-
ments of “secure deletion” of records at the end of
their mandated retention periods. Then, in the WORM
adversarial model the focus is mainly on preventing
clients from “rewriting” history, rather than “remem-
bering” it. Additionally, we prevent the rushed removal
of records before their retention periods. Thus, the tra-
ditional Write-Once Read-Many (WORM) systems have
the following properties:

» Data records may be written by clients to the server
once, read many times and not altered for the
duration of their life-cycle.

e Records have associated mandatory expiration
times. After expiration, they should not be accessible
for either audit or read purposes.

e In the case of audits, stored data should be acces-
sible to auditors even in the presence of a non-
cooperating client refusing to reveal encryption
keys.

We assume however that client participate correctly
in any record expiration protocol. This is reasonable
to assume because the regulatory compliance scenario
allows clients always to by-pass the server-enforced
storage service and store select records elsewhere.

Additionally, when records and their associated access
patterns are sensitive they need to be concealed from
a curious server that has incentives to illicitly gain
information about the stored data and access patterns
thereto. The main purpose of WORM-ORAM is to enable
WORM semantics while preserving data confidentiality
and access pattern privacy. Then, data records have to
be encrypted (confidentiality) and the server should not
distinguish between different read or write operations
targeting the same or different data records (access pri-
vacy). We assume that the server is allowed to distinguish
between record expiration and read/write operations.
As the regulatory storage provider, the server is the main
enforcer of WORM semantics and record expiration. The
server is assumed to not collude with clients illicitly
desiring to alter their data.

We consider a server S with O(N) storage and a
client C with O(v/N log N) local storage. The client stores
O(N) items on the server. We denote the regulatory
compliance auditor by A.

3.2 Cryptography

We require several cryptographic primitives with all the
associated semantic security [30] properties including:
a secure, collision-free hash function which builds a
distribution from its input that is indistinguishable from
a uniform random distribution, a semantically secure
cryptosystem (Gen, Ency, Decy), where the encryption
function Enc generates unique ciphertexts over multiple
encryptions of the same item, such that a computation-
ally bounded adversary has no non-negligible advantage
at determining whether a pair of encrypted items of the
same length represent the same or unique items, and
a pseudo random number generator whose output is
indistinguishable from a uniform random distribution
over the output space.

The Decisional Diffie-Hellman (DDH) assumption
over a cyclic group G of order ¢ and a generator g states
that no efficient algorithm can distinguish between two
distributions (g%, g°, g*) and (9%, ¢, g¢), where a, b and
¢ are randomly chosen from Z,.

An integer v is said to be a quadratic residue modulo
an integer n if there exists an integer x such that 2% =
v mod n. Let QRA be the quadratic residuosity predicate
modulo n. That is, QR(v,n) =1 if v is a residue mod n
and QR(v,n) = 0 if v is a quadratic non-residue. Given
an odd integer n = pg, where p and ¢ are odd primes, the
quadratic residuosity (QR) assumption states that given
n but not its factorization and an integer v whose Jacobi
symbol (vjn) = 1 it is difficult to determine whether
QR(v,n) is 1 or 0.

Notations:: Let n = pg be a large composite, where
p and ¢ are primes. Let ¢(n) denote the Euler totient of
n. We will use z €z A to denote the random uniform
choice of = from the set A. Given a value m, let P(m)
denote the group of permutations over the set {0,1}™.
Let k < |n| be a security parameter. Let N denote the set
of elements stored in the ORAM. Let W,,, be the universe
of all sets of m quadratic residues.

4 SOLUTION OVERVIEW

A WORM-ORAM system, consists of two ORAMs (W-
ORAM,E-ORAM) and a set of operations (Gen, Enc, Dec,
RE, Write, Read, Expire, Shuffle, Audit) that can be used
to access the ORAMs. The client needs to store elements
at the server while preserving the privacy of its accesses
and allowing the server to preserve the data’s WORM
semantics. W-ORAM serves this purpose: it is used by
the client to store (label, element) pairs.

We organize time into epochs: each element stored at
the server expires in an integer number of epochs, as
determined by the client. The client needs to remember



the expiration time of each element stored in the W-
ORAM. The client uses the E-FORAM to achieve this, to
store expiration times of labels used to index elements
stored in W-ORAM. When queried with a time epoch,
E-ORAM provides a list of labels expiring in that epoch.
The labels are then used to retrieve the expiring elements
from the W-ORAM.

The E-ORAM is stored and accessed as a regular
ORAM [22]. It is used as an auxiliary storage structure
by the client and it needs not be WORM compliant.
The W-ORAM on the other hand stores actual elements
and needs to be made WORM compliant. The W-ORAM
stores two types of elements: “reals” and “fakes”. A
real element has a quadratic non-residue component,
whereas a fake has a quadratic residue. Each time the
ORAM is accessed, elements are re-encrypted to ensure
access privacy. The client has then to prove in ZK that (i)
an element is real or fake and (ii) a re-encrypted element
decrypts to the same cleartext as the original element.

In the following we provide a detailed description for
each operation mentioned above. We employ the classic
ORAM operations described in Section 2.1 as the APIs
for building our solution. Specifically, we use Readoranm
to denote the standard ORAM read operation, taking as
input an ORAM and a label and returning an element
stored under that label along with the list of all elements
removed from the ORAM (including the one of interest).
Writeoram is the standard ORAM write operation,
which takes as input a label and an element and stores
the element indexed under the label. Note that in the
standard ORAM implementation, both operations are
performed in the same manner. Their operation is only
different for the client. Finally, let OS be the standard
ORAM re-shuffle operation (see Section 2), which takes
as input a level id and generates a pseudo-random
permutation of the re-encrypted elements at that level.

5 W-ORAM ELEMENT ENCRYPTION

We now define the operations for encrypting the ele-
ments to be stored in the WORM compliant ORAM.

Gen(k): Generate p = 2p' + 1, ¢ = 2¢' + 1 such that
p, D' q,q are primes. Let n = pg. Let G be the cyclic
subgroup of order (p — 1)(¢ — 1). DDH is believed to
be intractable in G [31]. Let g be a generator of G. Let
a be a random value and let d = a~! mod ¢(n). Let
k be a random key in a semantically secure symmetric
cryptosystem. Gen gives k, n, g, h = g* € G, p, ¢, a and
d to the client and n, g, h to the server. Gen also gives
k, p, q, a and d to the auditor.

Enc((x,Tczp) k,gh,G,HDt:  Encrypt an element of
value z with expiration time T, using the client’s view
of Gen's output as input parameters. The output of the
operation is a tuple (A, B) € G x G that can be stored on
the W-ORAM. If f = 0, Enc generates a “real” W-ORAM
element: the first field of such elements is a quadratic
non residue, QR(A,n) = 0. The tuple is computed as
follows. First, generate a random r € {0,1}* and use it

to compute M (x) = {Ex(x), Texp, “real”,r} where Ey(z)
denotes the semantically secure encryption of item z
with symmetric key & and “real” is a pre-defined string.
The random r is chosen (using trial and failure) such that
QR(M(z),n) = 0 (quadratic non residue mod n) whose
Jacobi symbol is 1. Second, generate a random odd value
b €r {0,1}¥ and output the tuple S(z) € G x G as

S(x) = (4, B) = (M(2)g*, h*")).

S(z) is said to be an “W-ORAM element”, whose first
field is the “encrypted element” and second field is
called the “recovery key”. Notice that since M(z) is
a QNR, QR(M(z)g*,n) = 0 with (Jacobi symbol)
(M(z)g|n) = 1.

If f =1, Enc generates a “fake” W-ORAM element:
the first field of fake elements is a quadratic residue,
QR(A,n) = 1. To compute a fake element, Enc gen-
erates random s,k €r {0,1} and outputs the tuple
(s mod n,k). That is, the first field in the pair is a
quadratic residue, however, the “recovery key” is useless
— does not recover a meaningful message.

Dec((A,B),d,k): Decrypt a real W-ORAM element,
given the secret key d = a~!. Compute M = AB~¢. M
has format {E, Teyyp, “real”, r}. The operation outputs the
tuple Decy(E), Texp.

RE(A,B): Re-encrypt element (A,B). Choose
u €r {0,1}¥, called re-encryption factor. Output pair
(A',B") = (Ag*',Bh*). Note that knowledge of
the message M encoded in (A,B) is not required.
Alternatively, if M is known such that A = Mg* and
B = h*, then output (4’,B’) = (Mg, h**). u can be
specified as input parameter: RE((A, B), u).

RE(L): Generalization of RE((A, B)), where L =
{(41,B1),..,(Am, Bm)} is a list of W-ORAM elements.
Choose @4 = {ui,..,un}, such that uw; €r {0,1}
w is called the re-encryption vector. Output L' =
{RE((A;i, B;),u;) }i=1..m- We also use the notation L' =
Lu and call L’ a “correct re-shuffle” of L.

Note that Enc is semantically secure. The proof can
be found in [32]. Similarly RE is IND-CPA: given two
encryptions (A, By) and (A;, B1) of any two messages
and a re-encryption RE(A, By), b €r {0, 1} of one of the
two encryptions, an attacker cannot guess b with non-
negligible probability over 1/2.

6 THE E-ORAM

The E-ORAM is a standard ORAM, storing labels in-
dexed under expiration time epochs. The E-ORAM needs
to provide C' with the means to determine how many
and which labels expire at a given time epoch and also
to insert a new (epoch,label) pair. This is achieved in
the following manner. For each T, value used to index
labels in E-ORAM, a head value is used to store the
number of labels expiring at Tezp: (Tewp, (label, counter)).
label is the first label that was indexed under T¢,,. Each
of the remaining ¢ — 1 labels is stored under a unique
index: The ith label’s index is (T¢yp, %), that is, the label’s



Algorithm 1 E-ORAM: Write new label under expi-
ration time. Enumerate all labels expiring at a given

time. V is the list of elements returned by a Read.

1.Write(E — ORAM : ORAM, T, : int, 1b1 : id)
2. (e,V) := Readgpau(E — ORAM, Teyp);
3. if (e = null) then

4. e’ := Ex(1bl,1);

5. WriteDRAM(Texp, e’);

6. Writegpau(null, null);

7. else

8. (1,¢) :=Dk(e);

9. WriteDRAM(Texp, Ek(l, c+ 1)),

10.  Writeonan((Texp; ¢ + 1), Ex(1b1));
11.i

12.end

expiration time concatenated with the label’s counter at
its insertion time.

We now present the most important operations for
accessing the E-ORAM, Write and Enumerate.

Write(E-ORAM, T, label): Record the fact that
label expires at time T¢,, (see Algorithm 1, lines 1-11).
Read the element currently stored under Te,, (line 2).
If no such element exists (line 3), generate an element
encoding the fact that this label is the first to be stored
under T, (line 4) and store it on the E-ORAM (line
5). Moreover, run a fake E-ORAM access (line 6), whose
purpose will become clear in a few lines. If a label is
already stored under T.,, (line 7), retrieve that label (I)
along with the counter c¢ that specifies how many labels
are already expiring (stored in E-ORAM) at T¢,, (line
8). Note that the read operation performed on line 2
removes this element from the E-ORAM. Since now c+1
labels expire at T.,,, store label ! and the incremented
counter in the E-ORAM under T, (line 9). Finally, store
the input [abel under an index consisting of a unique
value: T,;, concatenated with ¢ + 1. This will allow the
client to later enumerate all labels expiring at T, (see
next). The reason for the fake E-ORAM write performed
in line 6 is to make the two cases indistinguishable
to the server: the E-ORAM is always accessed twice,
independent of how many elements expire at Teyp.

Enumerate(E-ORAM,T,,,): Retrive all the labels in
E-ORAM that expire at T¢y, (see Algorithm 1, lines 12-
26). First, initialize the result label list (line 13). Then,
read the head label stored under T¢,, along with the
counter of labels expiring at T,;, (lines 14,16). If such an
element exists (line 15), record the head label (line 17).
Then, for each of the ¢ — 1 (i = 2, .., ¢) remaining labels,
retrieve their actual value by reading from E-ORAM
the element stored under a unique index consisting of
Texp concatenated with i. Note that Enumerate removes
all labels expiring at 7., from E-ORAM (Readoram
removes accessed elements).

12.Enumerate(E — ORAM : ORAM, Teyp : int)
13.L: id[]; #store result labels

14.L := 0;

15.(e,A) := Readoram(E — ORAM, Teyp);

16.if (e! = null) then

17. (1,c) := Dy(e);

18. L:=LU1L;

19. for (i:=2;i <c;i++) do

20.  (e,A) := Readgrau(E — ORAM, (Texp, 1));
21.  1:=Dg(e);

22. L:=LUI;

23. od

24 fi

25.return L;

26.end

7 W-ORAM AccCESS OPERATIONS

7.1 Generating Labels

Elements in the standard ORAM model are stored as
a pair (label,value), where label may denote a memory
location or the subject of an e-mail. In our case to prevent
the server from launching a dictionary attack, we use the
a Label(label,lkey) operation to generate labels. Besides
the input label, Label also uses a (random) labeling key,
which is used to define a pseudo-random function Fjjey.
The output of Label coincides then with the output
of Fjpey(label). We now describe the main W-ORAM
accessing operations.

7.2 Writing on the Server

Write((W-ORAM,E-ORAM, v, T, params): Store
on the server a value v under a label /, with expiration
time 7., using as input also the client’s view of Gen’s
output, params = k,g,h,G (see Algorithm 2 for the
pseudo-code of this operation). Generate a new label
as described above (line 2) and call Enc to produce
a W-ORAM tuple (A,,B,) (line 3). Generate a non-
interactive zero knowledge proof of QR(A,,n) = 0 (A,’s
quadratic non-residuosity). If the proof verifies (line 5)
the server inserts the tuple (A,,B,) in the top level
of the W-ORAM (line 6) and stores label under the
tuple’s expiration time T.,, in E-ORAM (see Section 6).
Otherwise, the server aborts the protocol (line 10).

7.3 Reading from the Server

Read(W-ORAM,label): Using as input the W-
ORAM and a label, return an element of format
(label, x, Teyp) (see Algorithm 3). Perform on W-ORAM
a standard ORAM read on the desired label (line 2),
returning both the W-ORAM element R of interest and
the list L of elements (containing R) removed from the
W-ORAM. If [abel is stored in the W-ORAM (line 3), the
client computes U = (A, B,), a re-encryption of R (line
3) and calls ZK-POR to prove in zero knowledge that
U is a re-encryption of the only real element in L (line



4). ZK-POR is described in detail in Section 7.3.1. The
server verifies in ZK that QR(A,,n) = 0 and also the
validity of the ZK-POR proof. If the proofs are valid (line
5), the server inserts U in the first level of the W-ORAM
(lines 6-7). The client decrypts the desired element R and
returns the result (line 8). If any proof fails (line 9) the
server restores the W-ORAM to the state before the start
of Read and returns error (lines 10-11).

7.3.1 Zero Knowledge Proof of ORAM Read.

We now present ZK-POR, the zero-knowledge proof of
WORM compliance of the read operation performed on
the W-ORAM. ZK-POR takes as argument the list L of el-
ements removed from W-ORAM in line 2 of Algorithm 3
and U, the re-encryption of the real element from L.
For simplicity of exposition, let us assume that L also
contains the elements (scanned but not removed) from
the first level of W-ORAM. Let m denote the number of
elements in L, m = O(log N).

Let L = {(s%,kl),...,(sf_l,kr,l),S(xr),(sf+l,kTJrl),..,
(s2,,km)} where the elements are listed in the order
in which they were removed from the W-ORAM. The
client is interested in the item from the rth ORAM layer,
R = S(x,). Let S(x,) = (M(x,)g*", h*") = (A, B;.). Its
first field is a quadratic non-residue. All other elements
from L are fakes — their first field is a quadratic residue.
Let U = RE(R) = (M (x,)g?*, h**) = (A, B,) be the re-
encryption of S(z,). The following steps are executed s
times between the client and the server.

Step 1: Proof Generation: The client selects a

random permutation m € P(m). The client generates
w = {wi,.wn}, where each w; €r {0,1}™ is odd
and generates the proof list P = n(Lw). Let P =
7{(s3g%"%1 k1h?v),.,(A,.g*"r, B h?¥r),
(82,97 kph?¥m)}, where, (A,.g?%r, B.h?"") is a re-
encryption of S(z,). The client sends P to the server. The
client locally stores (w;, s;9"%), i = 1..m. As assumed in
the model, The client has O(v/N log N) storage which is
sufficient to store m = O(log N) values.

Step 2: Proof Validation: The server flips a coin b. If
b is 0, the client reveals w1, .., w,,. The server verifies that
all w; are odd and V(4;, B;) € L, (A;g?Vi, B;h*"i) € P.
If b is 1, the client sends to the server the values s;g"",
i = 1..m,i # r along with the value ' = (¢, + w, — u).
Note that given s? mod n and n’s factorization, the
client can easily recover s;. The server verifies first
that (s;g%#)%, i = 1..m,i # r occurs in the first field
of exactly one tuple in P. That is, m — 1 of the ele-
ments from P are fakes. The server then verifies that
(A,g*"r, B,h?"") = RE((Ay, By),T). If any verification
fails, the server outputs “error” and stops.

Analysis: We now present the following results,
whose proofs can be found in [32].

Theorem 1: A correct execution of Read from W-
ORAM has O(log N) complexity.

Theorem 2: ZK-POR is a zero knowledge proof system
of Read € WORM. That is, Read is WORM compliant.

8 ACCESS INDISTINGUISHABILITY

The solution previously described allows the server to
distinguish between read and write operations. In this
section we solve this problem, by creating a single
operation, Access, that can be used to both read and
write on the W-ORAM.
Access((W-ORAM,E-ORAM,v,1, T, params):

If Access=Write, use [ to generate a new label (as
described in Section 7.1) and insert label under T,
in the E-ORAM (using the Write operation described
in Section 6). If Access=Read, perform a fake Write
on the E-ORAM, consisting of three random accesses
to the E-ORAM (one for a read and two for writes,
see Section 6). Then, access all the elements in the
top level of the W-ORAM and access and remove one
element from each subsequent level. If Access=Write,
all removed elements have to be fakes. If Access=Read,
one of them is real (unless the read element was found
in the top level). Let L = {(s%,k1),..,(s2_1, kr—1),S(z,),
(52,1, kr41),-,(s2,, km)} be the list of elements accessed
in the W-ORAM, where S(z,) may be the real element
accessed by a Read or a fake if accessed by a Write.
Then, generate two elements R and N and send
them to the server. If Access=Write, R=RFE(S(x,))
and N=FEnc((v,Tezp), k,9,h,G,0) is the element to
be written. If Access=Read, R = RE(S(z,)) and
N=Enc((null,null),k,g,h,G,1) is a fresh fake (see
Section 5). The zero knowledge proof then proceeds
exactly as ZK-POR.

The following result shows that reads and writes
performed using Access are indistinguishable. The proof
can be found in [32].

Theorem 3: The server cannot decide whether an Ac-
cess operation is a Read or a Write with probability
significantly larger than 1/2.

9 SHUFFLING THE W-ORAM

When the [ — 1th level of W-ORAM stores more than 4!~!
elements, due to element insertions occurring during
Read operation, the level needs to be spilled over into
level I. Let T[l] denote the list of elements stored in the
W-ORAM at the [-th level. The [/-th level then needs
to be filled with fakes. The fakes are needed to ensure
that subsequent Read accesses will not run out of fakes
(see [22] for more details). The [-th level then needs
to be obliviously permuted, using only O(v/N log N)
client space. Let 7"“*[I] denote the re-shuffled I-th level
elements. Due to the WORM semantics, the client also
needs to prove that the reshuffle is correct: (i) 7""[]
is a re-encryption of the old T[] and (i) |T™"[I]| —
|T[1]| — |T[l — 1]| elements from T™*[]] are fakes. Shuffle
performs this operation.

Shuffle(W-ORAM,I): Uses as input the W-ORAM
and the index of a level to reshuffle the corresponding
level (see Algorithm 4). First, spill the content of level
[ — 1 into level ! (lines 3-6) and compute an oblivious
permutation of the new level I. Then, build its ZK proof



Algorithm 2 W-ORAM: Write value v expiring at
Tewp-

1.Write(W — ORAM : ORAM, E — ORAM : ORAM,
v :string,1:id, Texp : int)

2. label := newlLabel(l,lkey);

3. (Ay,By) := Enc(label, v, Teyp, params);

4. ZKP := getQNRProof(A,,n);

5. if (verify(ZKP,A,) = 1) then

6

7

8

To := getLevel(W — ORAM, 1);
insert(To, (Au,Bu));
Write(E — ORAM, Terp, label);
9. else
10. return error;

of correctness, ZK-PRS, detailed in the following (see
Algorithm 4, lines 7-38 for pseudo-code).

9.1 Zero Knowledge Proof of Re-Shuffle.

Similar to ZK-POR (see Section 7.3.1), ZK-PRS consists
of s rounds executed by the client and the server. During
each round, a proof list P; is built by the client (line 14
of Algorithm 4). P; has the same number of elements as
Tme*[l], O(N). The client builds the list 7"¢*[I] and each
of the s proofs P in the following steps. Initially, 77" ]
and each proof list P; is stored as an empty list at the
server. The client generates a symmetric key k for the
(G,E, D) cryptosystem.

Step 1: Element Re-Encryption: First, the client
takes each element from T'[l] and stores a re-encrypted
version in T"°"[l] and in each proof P; (lines 7-13).
That is, for each element S; = (A;, B;) € T[] (stored
at the server), the client generates fresh random odd
values u;,w; € {0,1}* (lines 9 and 12) and produces
one element S; to be inserted in T"*[l] (line 10) S} =
Ep(Aig?“i, B;h**) and one element P to be inserted
in Pj (line 13) P = Ek (Aig%ﬂi, Bithi,77m’U77,F1[Z.],F2[’L'])
where I'1[i] = —w; and I';i] = (u; — w;). The string
"mv” denotes that this proof element corresponds to an
element from T'[l] moved to T™¢*|l].

Step 2: Fake Insertion: The client adds f fake
elements (lines 14-22). For each of the f fakes to be in-
serted in 77" [{], the client generates two random values
si, ki €g {0,1}% (line 16), i = 1..f, where w; is odd. The
client then adds an element Ej(s?,k;) in T™*[l] (lines
17-18). It then generates a random value w; € {0,1}X¥
(line 20) for each proof list P; and appends an element
Ex(s2g2 kb2 " add”  T1[i], To[i]) to P; (lines 21-22).
I1[i] = sig™, Tali] = (ui —w;) mod ¢(N) and the string
”add” denotes that this proof element is a fake added to
level 1.

Note that I'i[¢] and I';[i] are used to keep track of
the correspondence between the ith element of each P;
and its re-encryptions in T'[{] and T"*"[l] after the list
reshuffle step (see next).

Algorithm 3 W-ORAM: Read label.

1.Read(W — ORAM : ORAM, label : id)
(R, L) := Readgnu(W — ORAM, label);
U:= (A,,B,) := RE(R);
Proof := ZK — POR(L, U);
if (verifyQNR(A,,n)
& verify(Proof,L,U)) then
To := getLevel(W — ORAM, 1);
insert(To, U);
return Dec(R, d, k);
else
10.  undo(W — ORAM);
11. return error;

12.fi end

WPN T W

Step 3: List Reshuffle: At the end of the set gen-
eration step, the client and the server have a one-to-one
correspondence between each element in 7"¢*[]], each
element in each P; and each element in T7[]. The client
then calls the oblivious scramble, OS, procedure using
T""[l] and each P; as inputs (lines 23-25). During the
OS call, elements read from T"°"[l] and P are decrypted
(using k) and re-encrypted before being written back.
Due to the semantic security properties of the encryption
scheme employed, at the end of the OS, the server can
no longer map elements from T'[I] to elements in the
reshuffled T7°*[l] and P; sets.

Step 4 - Decryption: The client reads each element
from the reshuffled T""[l] list, decrypts the element and
writes it back in-place (lines 26-28). The client reads each
element from each proof list P;, decrypts it and writes
back (A;g?Vi, B;h*¥i, Ej(str,I'1[i],T2[i])), where str is
either “mv” or “add” (lines 29-32).

Step 5 - Proof Verification: The server verifies each
proof list P; (lines 34-37). If any verification fails, restore
the W-ORAM to the state at the beginning of the opera-
tion and return error (lines 36-37). Each verification, for
a proof list P, works as follows.

The server flips a coin b. If b = 0, the server
asks the client to prove that P is a valid reshuf-
fle of T[l] and all the remaining elements in P are
fakes. For this, the client reads each element of P,
(A;g%vi, B;h?"i| By (str,T1]i],T2[i])), retrieves T'y[i] and
sends to the server, A;¢g*%i, B;h?Vi, str and I'y[i]. If str =
"mv”, the server first verifies that indeed T'; [¢] is an odd
number, then verifies that RE((A;g%Vi, B;h?¥7),T[i]) ap-
pears in T[l] exactly once. If str = ”add”, the server
verifies that I';[i]? is the first field of exactly one tuple
in T [l]. If at the end of this step the client has proved
that |T'[l]| elements from T"<*[{] are re-encryptions of the
elements from T'[l] and that f elements from 7"¢*[l] are
fakes, the server continues. Otherwise it outputs ”error”
and stops.

If b = 1, the client needs to prove that P is a
valid reshuffle of T™**[l]. For this, the client reads each
element from P, recovers I's[i] and sends to the server



Algorithm 4 Shuffle of level /.

1.Shuffle(W — ORAM : ORAM, 1 : int)
2. T"*¥[1] : string[]#new level 1 array

#spill T[1 — 1] into T[1]

3 T[l — 1] := getLevel (W — ORAM, 1 — 1);
T[1] := getLevel(W — ORAM, 1);
T[1] _T[l— 1] U T[1};
Tl 1) =

#re — encrypt 'elements from T[1]

7. for (i :=1;i <|T[1];i++) do

8. e = T[1][i];

9.  u[i] := genRandom();

10.  T¥[1][i] := Ex(RE(e,u[i]));
11. for (j:=1;j<s;j++) do
12. w[i] := genRandom();
13 PJ[] — Ek(RE(ejW[i])a.

" my” ’ u[1]7 u[l] — W[l]);
#add fakes

14.f := fakeCount(T[1]);

15.for (i:=1;i <f;i++) do
16.  (s[i], k[i]) := genRandom();
17.  e:= (s[i]% k[i]);

18.  append(T"®[1], Ex(e));

the values A;g?*%:, B;h"i and T;3[i]. The server verifies
that RE((A;g*", B;h?¥i),T5[i]) occurs in T"¢“[l] once.
Analysis: We now present the following results,

whose proofs can be found in [32].

Theorem 4: A correct execution of ZK-PRS has
O(log N loglog N) amortized complexity.

Theorem 5: ZK-PRS is a zero knowledge proof system
of Shufflee WORM.

10 ELEMENT EXPIRATION

Expire(T): Use as input a time epoch T and remove
all the elements from the W-ORAM that expire in that
epoch (see Algorithm 5). Use the E-ORAM to enumerate
all the labels that expire at T' (line 4). For each such
label (line 5) read (and remove) from the W-ORAM the
corresponding element (line 6). Note that the Readoranm
operation also returns the entire list £ of elements re-
moved from the W-ORAM - containing log N elements.
Then, build a zero knowledge proof of correctness, ZK-
PEE (line 7). ZK-PEE proves that E contains one real
element that expires at 7" and the rest (log N —1 elements)
are fakes. If the proof verifies, the server accepts the
expiration, otherwise restores the W-ORAM to the state
before the Read of line 6 (line 9) and returns error (line
10). We now describe ZK-PEE.

10.0.1 Zero Knowledge Proof of Element Expiration.

ZK-PEE takes as input the element to be expired, R
and the list £ of all elements that were removed from
W-ORAM when R was read (line 6). Note that R €
E. Let m be the number of elements in F and let
E = {(s2,k1),.,R,..,(s2,,km)}. Let r be R’s index in

19. for (j:=1;j<s;j++) do
20. wl[i] == genRandom()
21. re := RE(e, w[i]),

72", a[1)g", uli] — wli]);
22. append(P;[i], Ex(re));
#Shuffle T"*"[1] and proofs
23.T"¥[1] := 0S(T"*"[1]);
24 for (j:=1;j<s;j++) do
#decrypt shuffled elements
26.for (i := 1;1i < |T**V[1]|;i + +) do

27. e:= Tnew[l] [i];

28.  T"*¥[1][i] := Dk(e);

29. for (j:=1;j<s;j++) do
30. e := Py[i];

31. (A,B, str,C,D) := Dy(e);
32. P;[i] := (A,B,Ex(str,C,D));

#proof verification step
3.for (j:=1;i <s;i++) do

35. if (lverify(T[1], T°**[1],P;)) then
36. undo(W — ORAM, 1 — 1, 1);
37. return error;

#commit new level
38.T[1] := T™*¥[1];

E. ZK-PEE consists of s rounds. During each round the
following steps are executed by the client and the server.

Step 1: Proof Generation: The client generates a
random permutation 7 €r P, and a random vector
w = {wy, .., wy, }, where w; €x {0,1}* are odd. The client
computes the list P = 7(Ew) and sends it to the server.

Step 2: Proof Verification: The server flips a bit b.
If b = 0, the client reveals w. The server verifies that all
w; € w are odd and that P = n(Ew). If b = 1, the client
reveals Dec(R,d, k) = M(z) = (Ex(z), Teap, 'Teal” , rnd)
to the server along with the encryption factor uw, and
the square roots of the remaining m-1 (fake) elements
in P, s19™,..,8,9"™. The server verifies the revealed
element: (i) its format, that is, T%,, = 7" and the third field
is “real” and (ii) its correctness, (M (z)g*“*r, h?wr) € P.
The server also verifies that the remaining m-1 elements
in P are fakes, by checking that (s;g%?)? occurs in the
first field of exactly one element in P.

Analysis: Let e be the number of elements that
expire simultaneously. Then, the following result holds
(see proofs in [32]).

Theorem 6: A correct
O(elog N) complexity.

Theorem 7: ZK-PEE is a zero knowledge proof system
of Expire € WORM.

execution of Expire has

11 AuUDIT

Audit(d,k).: Take as input the decryption keys d
and k to search for desired elements in W-ORAM. Call
Dec((A, B),d, k), for all elements (A4, B) in the W-ORAM.
Once all the elements are recovered, they can be searched
for desired keywords.



Algorithm 5 Operation that removes all W-
ORAM elements that expire at time T'.

1.Expire(E — ORAM, W — ORAM : ORAM, T : int
L: id[]; #expiring labels

E: string|]; #removed from W — ORAM
L := Enumerate(E — ORAM, T);

. for each label in L do

(R,E) := Readonu(W — ORAM, label);
Proof := ZK — PEE(R, E);

if (verify(Proof,E) = 0) then

. undo(W — ORAM);

10. return error;

11. fiod

12.end

000 NG U BN

12 KEY MANAGEMENT

For the sake of presentation clarity, we have presented
a simplified element encoding operation (Enc). Specifi-
cally, an element x is stored as the pair (M (z)g%*, h??),
consisting of an encrypted part and a recovery key.
However, during element expiration (see Section 10) the
client needs to prove to the server (in zero knowledge)
the fact that one element in the list of accessed elements
expires. For this, the client needs to provide the server
not only with the decrypted element but also with the
obfuscating exponent (b in the above example). Since an
element may have been accessed and re-encrypted many
times during read and reshuffle operations, the client
keeps track of the changes in the obfuscation exponent.
We address this by storing a third field for any ele-
ment: the encrypted exponent, e.g., E(b) in the above
case, where E is any semantically secure symmetric
key encryption method, whose key is private to the
client. Whenever the element is re-encrypted (during
read and re-shuffle operations), the new exponent is
stored encrypted, replacing the existing one. The use of
a semantically secure encryption method prevents the
server from using this third field to correlate reshuffled
elements. For fake elements the third field is random and
changes whenever a fake is being “re-encrypted”.

13 EXPERIMENTAL EVALUATION

We have implemented our solution using OpenSSL and
we have tested it on the configuration depicted in Ta-
ble 1. We used the same PC configuration (single core
2.4GHz with 256MB of RAM and 120MB/s sustained
read/write rates) for both server and client platforms.
As such, the server and client can perform 250 modular
exponentiations per second, leading to 125 record re-
encryptions per second and 272K AES encryptions on
1024 blocks. The link between client and server was a
duplex 10MB/s. The outsourced dataset consists of 1024
bit records. In the following, we look at the overheads
of read and shuffle as they are the most expensive
operations. The element expiration operation follows the
same steps as a read and thus its cost is similar.

[ Resource | Spec |

Processor 2.4GHz
RAM 256KB

Disk bandwidth | 120MB/s
Link bandwidth | 10MB/s
Block size 1024b

TrE 125 ops/s
Tsym on 1024b 272355 ops/s

TABLE 1
Client and server configurations.
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Fig. 1. ZK-POR client and server overheads. Read over-

head (shown in seconds) as a function of the dataset size,
on the dataset size.

Read Overheads: Figure 1 shows the overhead of
the ZK-POR process as a function of the number of
records, N. The number of proof sets employed is 40, for
a client cheating probability of 274, The x-axis shows
the number of records in logarithmic scale. We have
experimented with datasets ranging from 1Mb to 1Tb.
For a 1Tb dataset (230 records of size 1024), the client cost
is under 7s and the server cost is under 4s. The transfer
cost of the 41 sets of records including also the disk
read/write times is only a fraction of a second. Thus,
the total overhead of a read is around 10s. The server
overhead is roughly half the overhead of the client, since
the server has to verify re-encryptions only on half the
sets generated by the client.
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Fig. 2. Client, server and communication components of
the amortized cost of ZK-PRS. Shuffle overhead (shown
in seconds) as a function of the dataset size, log, N.



Shuffle Overheads: We have measured the amor-
tized impact of shuffles on the operation of the WORM
ORAM structure and Figure 2 shows our results. The
amortized cost includes the cost of re-shuffle incurred at
all the levels in the ORAM, over all the ORAM accesses.
Figure 2 shows the dependence of the cost of ZK-PRS
on the number of records stored at the server, shown on
the x-axis in logarithmic scale. The number of proof sets
is 40. Similar to the read overheads, the client and server
computation components of ZK-PRS show a logarithmic
dependence on the size of the dataset. The client and
server overheads are similar, up to 20 seconds for 240
datasets, due to the fact that the server has to verify set
re-encryptions irrespective of the outcome of the coin flip
process. The communication overhead during the shuffle
operation, including the time to read/write and transfer
proof sets takes around 7 seconds for 1Tb datasets. This
is because the client needs to shuffle not one but 41 proof
sets. Thus, the total, amortized overhead of a shuffle
operation is around 47s.

In ORAM, the network transfer time alone for reshuf-
fling level i consists of about 10 sorts of 4‘logn data, each
sort requiring 4‘log(n)log?(4i‘logn) block transfers, for
a total of 104‘log(n)log®(4'logn)2'°/10M B/se. Summing
over the log, n levels, and amortizing each level over 4!
queries, ORAM has an amortized network traffic cost per
query of 3.680Gb. Over the sample 10MB/s link this is
a 48 sec/query amortized transfer time. Thus, by using
an improved oblivious scramble protocol, we are able
to support regulatory compliance and maintain the cost
imposed by the original ORAM.

14 CONCLUSIONS

In this paper we introduce WORM-ORAM, a solution
that provides WORM compliant Oblivious RAMs. Our
solution is based on a set of zero knowledge proofs that
ensure that all ORAM operations are WORM compliant.
The protocol features the same asymptotic computa-
tional complexity as ORAM.
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