Write Once Read Many Oblivious RAM

Bogdan Carbunar, Radu Sion

Abstract —We introduce WORM-ORAM, a first mechanism that combines Oblivious RAM (ORAM) access privacy and data confiden-
tiality with Write Once Read Many (WORM) regulatory data retention guarantees. Clients can outsource their database to a server with
full confidentiality and data access privacy, and, for data retention, the server ensures client access WORM semantics. In general simple
confidentiality and WORM assurances are easily achievable e.g., via an encrypted outsourced data repository with server-enforced
read-only access to existing records (albeit encrypted). However, this becomes hard when also access privacy is to be ensured — when
client access patterns are necessarily hidden and the server cannot enforce access control directly. WORM-ORAM overcomes this by
deploying a set of zero-knowledge proofs to convince the server that all stages of the protocol are WORM-compliant.

1 INTRODUCTION

Regulatory frameworks impose a wide range of policies
in finance, life sciences, health-care and the government.
Examples include the Gramm-Leach-Bliley Act [1], the
Health Insurance Portability and Accountability Act [2]
(HIPAA), the Federal Information Security Management
Act [3], the Sarbanes-Oxley Act [4], the Securities and
Exchange Commission rule 17a-4 [5], the DOD Records
Management Program under directive 5015.2 [6], the
Food and Drug Administration 21 CFR Part 11 [7], and
the Family Educational Rights and Privacy Act [8]. Over
10,000 regulations are believed to govern the manage-
ment of information in the US alone [9].

A recurrent theme to be found throughout a large
part of this regulatory body is the need for assured
lifecycle storage of records. A main goal there is to
support WORM semantics: once written, data cannot
be undetectably altered or deleted before the end of its
regulation-mandated life span. This naturally stems from
the perception that the primary adversaries are powerful
insiders with superuser powers coupled with full access
to the storage system. Indeed much recent corporate
malfeasance has been at the behest of CEOs and CFOs,
who also have the power to order the destruction or
alteration of incriminating records [10].

Major storage vendors have responded by offering
compliance storage and WORM products, for on-site
deployment, including IBM [11], HP [12], EMC [13].
Hitachi Data Systems [14], Zantaz [15], StorageTek [16],
Sun Microsystem [17] [18], Network Appliance [19]. and
Quantum Inc. [20].

However, as data management is increasingly out-
sourced to third party “clouds” providers such as
Google, Amazon and Microsoft, existing systems simply
do not work. When outsourced data lies under the
incidence of both mandatory data retention regulation
and privacy/confidentiality concerns — as it often does

o Bogdan Carbunar is with the Applied Research Center in Motorola,
Schaumburg, IL 60195.

e Radu Sion is with the Computer Science Department in Stony Brook
University, Stony Brook, NY.

in outsourced contexts — new enforcement mechanisms
are to be designed.

This task is non-trivial and immediately faces an ap-
parent contradiction. On the one hand, data retention
regulation stipulates that, once generated, data records
cannot be erased until their “mandated expiration time”,
even by their rightful creator — history cannot be rewritten.
On the other hand, access privacy and confidentiality
in outsourced scenarios mandate non-disclosure of data
and patterns of access thereto to the providers’ servers,
and can be achieved through “Oblivious RAM” (ORAM)
based client-server mechanisms [21], [22]. Yet, by their
very nature, existing ORAM mechanisms allow clients
unfettered read/write access to the data, including the
full ability to alter or remove previously written data
records — thus directly contradicting data retention re-
quirements.

Basic confidentiality and WORM assurances are achiev-
able e.g., via traditional systems that could encrypt
outsourced data and deploy server-enforced read-only
access to data records once written. Yet, when also access
privacy is to be ensured, client access patterns become
necessarily hidden and the server cannot enforce WORM
semantics directly.

In this paper we introduce WORM-ORAM, a first
mechanism that combines the access privacy and data
confidentiality assurances of traditional ORAM with
Write Once Read Many (WORM) regulatory data reten-
tion guarantees. Clients can outsource their database to
a server with full confidentiality and data access privacy,
and, for data retention, the server ensures client access
WORM semantics, i.e., specifically that client access is
append-only: — once a data record has been written it
cannot be removed or altered even by its writer.

WORM-ORAM is built around a set of novel effi-
cient zero knowledge (ZK) proofs. The main insight is
to allow the client unfettered ORAM access with full
privacy to the server-hosted encrypted data set while
simultaneously proving to the server in zero-knowledge
— at all stages of the ORAM access protocol — that no
existing records are overwritten and WORM semantics
are preserved.

Specifically, clients can add encrypted data records to
the database (“the ORAM”) hosted by a service provider.
Each record will be associated with a regulatory man-
dated expiration time. Once stored, the client can read
all data obliviously, (and add new records) — only leaking
that access took place and nothing else. No access pat-
terns or data records or any other information is leaked.
The server, without having plaintext access to the data or
the client access patterns then ensures —in a client-server
interaction — that any client access is WORM compliant:
it is either a read of an existing record, or an addition
of a new record (with a new index — no overwriting
permitted).

To achieve the above, at an overview level, the solution
outlines as follows. The server hosts two ORAMs, one
storing the actual data items (the W-ORAM) and one
allowing the private retrieval of items expiring at any
given time (the E-ORAM). The E-ORAM is effectively a
helper data structure allowing the client to determine
which items to expire at given time intervals. Client
access to the E-ORAM needs to be private, but does not
need to be proved correct.

The server exports an access API to the W-ORAM to
the client consisting of four types of operations: write,
read, expire and compliance verification. For access pat-
tern privacy purposes as in the traditional ORAM proto-
cols, the data set stored at the server contains both “real”
and “fake” items — this is discussed later. Moreover, for
the same reasons, any data access, is to look identical
to the server and be indistinguishable from any future
access to the same record — this in fact means all ORAM
accesses will need to consist of both a read and write
component — keeping the ORAM database in a constant
transformation process.

Then, during any legitimate access to the W-ORAM
the client will prove in ZK to the server that the item
written is real, “well formed” and can be decrypted later
in the case of an audit. Moreover she also proves that the
access does not in fact overwrite any existing database
item. Just like for the classic ORAM, the server cannot
distinguish between our read and write accesses.

In the expiration operation, the client proves in ZK
that the element to be removed from the W-ORAM has
indeed expired. Finally, at audit time, the data has to be
accessible to an authorized auditor, even in the case of a
non-cooperating client (e.g., that could refuse to reveal
encryption keys).

We show that our solution does not change the compu-
tational complexity of existing ORAM implementations.
However, we warn that the constants involved are non-
negligible and render this result of theoretical interest
only for now. Future work focuses on reducing these
overheads towards true practical efficiency.

2 RELATED WORK
2.1 Oblivious RAM

This paper extends the work of [23] with novel con-
structions that provide indistinguishability for the read

and write accesses, detailed descriptions of essential
components such as element expiration and with proofs
for the assurances provided by the solution including
the zero knowledge properties.

Oblivious RAM [21] provides access pattern privacy
to clients (or software processes) accessing a remote
database (or RAM), requiring only logarithmic storage
at the client. The amortized communication and compu-
tational complexities are O(log®n). Due to a large hidden
constant factor, the ORAM authors offer an alternate
solution with computational complexity of O(log*n), that
is more efficient for all currently plausible database sizes.

In ORAM, the database is considered a set of n en-
crypted blocks and supported operations are read(id),
and write(id, newvalue). The data is organized into
logs(n) levels, as a pyramid. Level i consists of up to
4% blocks; each block is assigned to one of the 4! buckets
at this level as determined by a hash function. Due to
hash collisions each bucket may contain from 0 to logn
blocks.

ORAM Reads. To obtain the value of block id, the client
must perform a read query in a manner that maintains
two invariants: (i) it never reveals which level the desired
block is at, and (ii) it never looks twice in the same spot
for the same block. To maintain (i), the client always
scans a single bucket in every level, starting at the top
(Level 0, 1 bucket) and working down. The hash function
informs the client of the candidate bucket at each level,
which the client then scans. Once the client has found
the desired block, the client still proceeds to each lower level,
scanning random buckets instead of those indicated by their
hash function. For (ii), once all levels have been queried,
the client re-encrypts the query result with a different
nonce and places it in the top level. This ensures that
when it repeats a search for this block, it will locate the
block immediately (in a different location), and the rest
of the search pattern will be randomized. The top level
quickly fills up; how to dump the top level into the one
below is described later.

ORAM Writes. Writes are performed identically to
reads in terms of the data traversal pattern, with the
exception that the new value is inserted into the top
level at the end. Inserts are performed identically to
writes, since no old value will be discovered in the
query phase. Note that semantic security properties of
the re-encryption function ensure the server is unable to
distinguish between reads, writes, and inserts, since the
access patterns are indistinguishable.

Level Overflow. Once a level is full, it is emptied into
the level below. This second level is then re-encrypted
and re-ordered, according to a new hash function. Thus,
accesses to this new generation of the second level will
hence-forth be completely independent of any previous
accesses. Each level overflows once the level above it
has been emptied 4 times. Any re-ordering must be
performed obliviously: once complete, the adversary
must be unable to make any correlation between the old
block locations and the new locations. A sorting network

is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must
contain the same number of blocks. For example, if the
bucket scanned at a particular level has no blocks in
it, then the adversary would be able to determine that
the desired block was not at that level. Therefore, each
re-order process fills all partially empty buckets to the
top with fake blocks. Recall that since every block is en-
crypted with a semantically secure encryption function,
the adversary cannot distinguish between fake and real
blocks.

Pinkas and Reinman introduce in [24] a mechanism to
provide O(log” n) oblivious access with only logarithmic
client storage. The collision-free Cuckoo hash from [25]
is employed to remove a logn factor of server storage
(and eliminate the corresponding query overhead). Data
is stored ORAM-like, in a pyramid-shaped set of levels,
with queries proceeding downward interactively.

Unfortunately, the premise of this idea is flawed. The
construction of the Cuckoo hash function at a given level
considers only the data to be stored at a given level, not
the data already stored at lower levels. This property
is necessary to achieve the desired time complexity.
Thus, queries for the lower-level data have a significant
chance of sharing locations with data at the current level.
Because the Cuckoo hash otherwise avoids collision,
any time such an occurrence is observed indicates leaks
access information. That is, when the adversary sees two
queries access the same pair of hash table locations, it
learns that at least one of those queries was, in fact, for
lower-level (less recently accessed) data. This immedi-
ately violates access privacy. The authors acknowledged
this problem.

2.2 Private Information Retrieval

Another set of existing mechanisms handle access pat-
tern privacy (but not data confidentiality) in the presence
of multiple clients. Private Information Retrieval (PIR)
[26] protocols aim to allow (arbitrary, multiple) clients
to retrieve information from public or private databases,
without revealing to the database servers which records
are retrieved.

In initial results, Chor et al. [26] proved that in an
information theoretic setting, any single-server solution
requires €2(n) bits of communication. PIR schemes with
only sub-linear communication overheads, such as [26],
require multiple non-communicating servers to hold
replicated copies of the data. When the information the-
oretic guarantee is relaxed single-server solutions with
better complexities exist; an excellent survey of PIR can
be found online [27], [28].

Recently, we have shown [29] that due to computa-
tion costs, use of existing non-trivial single-server PIR
protocols on current hardware is still orders of magni-
tude more time-consuming than trivially transferring the
entire database.

2.3 Oblivious Transfer with Access Control

Camenish et al. [30] study the problem of performing %
sequential oblivious transfers (OT) between a client and
a server storing N values. The work makes the case that
previous solutions tolerate selective failures. A selective
failure occurs when the server may force the following
behavior in the ith round (for any i=1.k): the round
should fail if the client requests item j (of the N items)
and succeed otherwise. The paper introduces security
definitions to include the selective failure problem and
then propose two protocols to solve the problem under
the new definitions.

Coull et al. [31] propose an access control oblivious
transfer problem. Specifically, the server wants to enforce
access control policies on oblivious transfers performed
on the data stored: The client should only access fields
for which it has the credentials. However, the server
should not learn which credentials the client has used
and which items it accesses.

Note that the above oblivious transfer flavors do not
consider by definition the problem of obliviously enforc-
ing WORM semantics as well as writing to the data.
Our regulatory compliant problem is complicated by the
fact that we also allow clients to add to the database
while proving that operations performed on the data
do not overwrite old records. One can trivially extend
OT with an add call, by imposing O(N) communication
and computation overheads. However, by building our
solution on ORAM we can perform both read and add
operations with only poly-logarithmic complexity and
traffic overheads.

3 MODEL AND PRELIMINARIES

3.1 Deployment and Threat Model

In the deployment model for networked compliance
storage, a legitimate client creates and stores records
with a (potentially untrusted) remote WORM storage
service. These records are to be available later to both
the client for read as well as to auditors for audits.
Network layer confidentiality is assured by mechanisms
such as SSL/IPSec. Without sacrificing generality, we
will assume that the data is composed of equal-sized
blocks (e.g., disk blocks, or database rows).

At a later time, a previously stored record’s existence is
regretted and the client will do everything in her power —
e.g., attempt to convince the server to remove the record
— to prevent auditors from discovering the record. The
main purpose of a traditional WORM storage service is
to defend against such an adversary.

Moreover, numerous data regulations feature require-
ments of “secure deletion” of records at the end of
their mandated retention periods. Then, in the WORM
adversarial model the focus is mainly on preventing
clients from “rewriting” history, rather than “remem-
bering” it. Additionally, we prevent the rushed removal

of records before their retention periods. Thus, the tra-
ditional Write-Once Read-Many (WORM) systems have
the following properties:

 Data records may be written by clients to the server
once, read many times and not altered for the
duration of their life-cycle.

o Records have associated mandatory expiration
times. After expiration, they should not be accessible
for either audit or read purposes.

¢ In the case of audits, stored data should be acces-
sible to auditors even in the presence of a non-
cooperating client refusing to reveal encryption
keys. Compliant record expiration of inaccessible
records should be easily proved to auditors.

Additionally, when records and their associated access

patterns are sensitive they need to be concealed from
a curious server. The main purpose of WORM-ORAM
is to enable WORM semantics while preserving data
confidentiality and access pattern privacy. This inability
of the server to “see” data and associated access patterns
prevents the deployment of conventional file/storage
system access control mechanisms or data outsourcing
techniques. Thus, we have the following additional re-
quirements:

o Data records are encrypted from the server (confi-
dentiality).

o The server cannot distinguish between different
read operations targeting the same or different data
records (access privacy).

o During a read, in the ORAM protocol, to enforce
WORM semantics, clients will need to prove to the
server that any access did not remove data records.
Specifically, when re-inserting one of the read ele-
ments back into the root of the ORAM pyramid,
the client needs to prove to the server in ZK that
the inserted element is a correct re-encryption of the
previously removed “real” element (see Section 2.1
for details).

o During a re-shuffle, in the ORAM protocol, clients
can prove that no “real” elements were converted
into “fake” ones.

Additionally, in the WORM-ORAM scenario, we as-

sume the following:

o The server is allowed to distinguish between record
expiration, read and write operations.

o Clients participate correctly in any record expiration
protocol. This is reasonable to assume because the
regulatory compliance scenario allows clients al-
ways to by-pass the server-enforced storage service
and store select records elsewhere.

Several participants are of concern. First, clients have
incentives to rewrite history and alter or completely re-
move previously written records. We note that in the
regulatory scenario, there exists an apparent imbalance
— clients are assume to correctly store records at the time
of their creation — only later does regretting the past
becoming a concern. Thus the main focus of WORM

assurances is not to prevent history but rather just its
rewriting. In reality, the “regret” time interval between
the creation/storage and regretting of a record is non-
zero, application-specific, and often quite large. To re-
move any application dependency, here we consider the
strongest WORM guarantees, in which records are not
to be altered as soon as they are written.

Second, the storage provider (server) is curious and
has incentives to illicitly gain information about the
stored data and access patterns thereto. As the regulatory
storage provider, the server is the main enforcer of
WORM semantics and record expiration. Naturally, the
server is assumed to not collude with clients illicitly
desiring to alter their data. In summary, the server is
trusted to run protocols correctly yet it may try to
use information obtained from correct runs to obtain
undesired information. This assumption is natural and
practical as otherwise one can easily imagine a server
simply deleting stored records in a denial of service
attack. Basic denial of service on the client or server side
is not of interest here.

We consider a server S with O(N) storage and a
client C' with O(v/N log N) local storage. The client stores
O(N) items on the server. We denote the regulatory
compliance auditor by A.

3.2 Cryptography

We require several cryptographic primitives with all the
associated semantic security [32] properties including:
a secure, collision-free hash function which builds a
distribution from its input that is indistinguishable from
a uniform random distribution, a semantically secure
cryptosystem (Gen, Ency, Decy), where the encryption
function Enc generates unique ciphertexts over multiple
encryptions of the same item, such that a computation-
ally bounded adversary has no non-negligible advantage
at determining whether a pair of encrypted items of the
same length represent the same or unique items, and
a pseudo random number generator whose output is
indistinguishable from a uniform random distribution
over the output space.

The Decisional Diffie-Hellman (DDH) assumption
over a cyclic group G of order ¢ and a generator g states
that no efficient algorithm can distinguish between two
distributions (g%, g°, g*) and (9%, ¢, g¢), where a, b and
¢ are randomly chosen from Z,.

An integer v is said to be a quadratic residue modulo
an integer n if there exists an integer x such that 2% =
v mod n. Let QRA be the quadratic residuosity predicate
modulo n. That is, QR(v,n) = 1 if v is a residue mod n
and QR(v,n) =0 if v is a quadratic non-residue.

Given an odd integer n = pg, where p and ¢ are odd
primes, the quadratic residuosity (QR) assumption states
that given n but not its factorization and an integer v
whose Jacobi symbol (v|n) = 1 it is difficult to determine
whether QR(v,n) is 1 or 0.

The Goldwasser, Micali and Rackoff [33] zero knowl-
edge proof of quadratic non-residuosity proceeds roughly as

follows. Given two parties A and B, A claims knowl-
edge of QR(v,n) = 0, for (v|n) = 1. A proves this
in zero knowledge to B, that is, without revealing n’s
factorization. To achieve this, B selects m random values
r1,..,7m and flips m coins. For each coin ¢;, if ¢; =0 B
computes z; = r? mod n to A, otherwise it computes
x; = vr? mod n. B sends all computed z; values to A.
A needs to send back the square roots of the quadratic
residues it detects in the list z1,..2,,. If QR(v,n) = 0,
then A correctly detects the residues. If QR(v,n) =1, all
the values received by A will be quadratic residues. A
can then cheat only with probability 1/2™.

Notations:: Let n = pg be a large composite, where
p and ¢ are primes. Let ¢(n) denote the Euler totient of
n. We will use x €r A to denote the random uniform
choice of z from the set A. Given a value m, let P(m)
denote the group of permutations over the set {0,1}™.
Let k < |n| be a security parameter. Let NV denote the set
of elements stored in the ORAM. Let W,,, be the universe
of all sets of m quadratic residues.

4 SOLUTION OVERVIEW

A WORM-ORAM system, consists of two ORAMs (W-
ORAM,E-ORAM) and a set of operations (Gen, Enc, Dec,
RE, Write, Read, Expire, Shuffle, Audit) that can be used
to access the ORAMs. The client needs to store elements
at the server while preserving the privacy of its accesses
and allowing the server to preserve the data’s WORM
semantics. W-ORAM serves this purpose: it is used by
the client to store (label, element) pairs.

We organize time into epochs: each element stored at
the server expires in an integer number of epochs, as
determined by the client. The client needs to remember
the expiration time of each element stored in the W-
ORAM. The client uses the E-ORAM to achieve this, to
store expiration times of labels used to index elements
stored in W-ORAM. When queried with a time epoch,
E-ORAM provides a list of labels expiring in that epoch.
The labels are then used to retrieve the expiring elements
from the W-ORAM.

The E-ORAM is stored and accessed as a regular
ORAM [34]. It is used as an auxiliary storage structure
by the client and it needs not be WORM compliant.
The W-ORAM on the other hand stores actual elements
and needs to be made WORM compliant. The W-ORAM
stores two types of elements: “reals” and “fakes”. A
real element has a quadratic non-residue component,
whereas a fake has a quadratic residue. Each time the
ORAM is accessed, elements are re-encrypted to ensure
access privacy. The client has then to prove in ZK that (i)
an element is real or fake and (ii) a re-encrypted element
decrypts to the same cleartext as the original element.
We now provide a brief overview of each operation
described above and follow with a detailed description
in the next section.

Gen: Operation executed initially, to generate sys-
tem parameters for each participant: client, server, audi-
tor.

Enc, Dec, RE: Enc and Dec provide the basic
encryption and decryption operations for elements to be
stored in the W-ORAM. RE is the W-ORAM element re-
encryption operation. RE is needed to ensure that the
server cannot distinguish the same W-ORAM element
accessed multiple times, while allowing the server to
prove in zero knowledge the element’s correctness.

Write: Operation used by the client to store an
element on the server. The client needs to label the
element and determine its expiration time. The client
stores the element indexed by the label on the W-ORAM
and the label indexed by the element’s expiration time
in the E-ORAM.

Read: Allows the client to retrieve from the W-
ORAM an element indexed by an input label. The op-
eration is based on existing ORAM reading techniques.
In addition, it obliviously ensures that the client cannot
remove or alter any real element from the W-ORAM.

Shuffle: Re-shuffles a level (provided as input) in
the W-ORAM. Based on existing ORAM shuffling tech-
niques, it needs to ensure that the client cannot remove
or alter existing W-ORAM elements.

Expire: This operation makes use of both the E-
ORAM and W-ORAM to remove all elements from the
W-ORAM whose expiration time equals an input expi-
ration time epoch. The operation needs to obliviously
convince the server that only expiring elements are
removed and no other W-ORAM elements are altered.

Audit: Enables an auditor to access the entire W-
ORAM and search for keywords of interest.

In the following, we employ the classic ORAM oper-
ations described in Section 2.1 as the APIs for building
our solution. Specifically, we use Readoran to denote
the standard ORAM read operation, taking as input an
ORAM and a label and returning an element stored
under that label along with the list of all elements
removed from the ORAM (including the one of interest).
Writeoram is the standard ORAM write operation,
which takes as input a label and an element and stores
the element indexed under the label. Note that in the
standard ORAM implementation, both operations are
performed in the same manner. Their operation is only
different for the client. Finally, let OS be the standard
ORAM re-shuffle operation (see Section 2), which takes
as input a level id and generates a pseudo-random
permutation of the re-encrypted elements at that level.

5 W-ORAM ELEMENT ENCRYPTION

We now define the operations for encrypting the ele-
ments to be stored in the WORM compliant ORAM.
Gen(k): Generate p = 2p’ + 1, ¢ = 2¢' + 1 such that
.0’ q,q are primes. Let n = pg. Let G be the cyclic
subgroup of order (p — 1)(¢ — 1). DDH is believed to
be intractable in G [35]. Let g be a generator of G. Let
a be a random value and let d = a=! mod ¢(n). Let
k be a random key in a semantically secure symmetric
cryptosystem. Gen gives k, n, g, h = g* € G, p, ¢, a and

d to the client and n, g, h to the server. Gen also gives
k, p, q, a and d to the auditor.

Enc((x,Tezp),k,8h,G,HDt: Encrypt an element of
value x with expiration time 7¢,,, using the client’s view
of Gen's output as input parameters. The output of the
operation is a tuple (A, B) € G’ x G that can be stored on
the W-ORAM. If f = 0, Enc generates a “real” W-ORAM
element: the first field of such elements is a quadratic
non residue, QR(A,n) = 0. The tuple is computed as
follows. First, generate a random r € {0,1}* and use it
to compute M (z) = {Ex(x), Tezp, “real”,r} where Ej(x)
denotes the semantically secure encryption of item z
with symmetric key & and “real” is a pre-defined string.
The random 7 is chosen (using trial and failure) such that
QR(M(x),n) = 0 (quadratic non residue mod n) whose
Jacobi symbol is 1. Second, generate a random odd value
b €r {0,1}¥ and output the tuple S(x) € G x G as

S(x) = (A, B) = (M(2)g™, h*")).

S(z) is said to be an “W-ORAM element”, whose first
field is the “encrypted element” and second field is
called the “recovery key”. Notice that since M(z) is
a QNR, QR(M(z)g*,n) = 0 with (Jacobi symbol)
(M()g|n) = 1.

If f =1, Enc generates a “fake” W-ORAM element:
the first field of fake elements is a quadratic residue,
QR(A,n) = 1. To compute a fake element, Enc gen-
erates random s,k €r {0,1}¥ and outputs the tuple
(s mod n,k). That is, the first field in the pair is a
quadratic residue, however, the “recovery key” is useless
— does not recover a meaningfull message.

Dec((A,B),d,k): Decrypt a real W-ORAM element,
given the secret key d = a~!. Compute M = AB~4. M
has format {E, Teyyp, “real”, r}. The operation outputs the
tuple Decy(E), Teqp.

Note that the reason for not using the standard El-
Gamal encryption S(z) = (M (x)g, ¢) is that the client
cannot be forced to publish b or b= mod ¢(n), since
b is a per W-ORAM element random value. Without
this information the verifier cannot recover M (z). In the
encryption used above, a single piece of information, a,
can be used to decrypt the entire ORAM. For El-Gamal,
each element needs another key for decryption.

RE(A,B): Re-encrypt element (A,B). Choose
u €r {0,1}¥, called re-encryption factor. Output pair
(A',B") = (Ag*,Bh®"). Note that knowledge of
the message M encoded in (4, B) is not required.
Alternatively, if M is known such that A = Mg* and
B = h?, then output (A',B') = (Mg, h*"). Note
that v may also be used as an input parameter by
RE((A, B), u).

RE(L): Generalization of RE((A, B)), where L =
{(41,B1),..,(Am, Bm)} is a list of W-ORAM elements.
Choose % = {ui,..,un}, such that uw; €r {0,1}%
@ is called the re-encryption vector. Output L' =
{RE((Ai, B;),u;) }i=1..m- We also use the notation L' =
Lu and call L’ a “correct re-shuffle” of L.

We now prove the semantic security of Enc.

Theorem 1: Enc is IND-CPA secure.

Proof: Let () be an adversary that can break the se-
mantic security of Enc with advantage . We then build
an adversary Q* that can break the DDH assumption in
G without knowing n’s factors, with probability e. Let
CH be a challenger. CH interacts with Q* by sending
the triple (A = g%, B = ¢°,C = ¢°). Q* needs to decide
whether ¢ = ab or is randomly distributed.

Q* sends A to Q as the public key (h in our protocol).
A then sends to Q* two messages M, and M;. Q* picks a
bit a € {0,1} randomly and sends back to @ the tuple
(M,B?,C?). Q sends back its guess for a. If Q) guesses
correctly, Q* sends to CH the value 1 (¢ = ab) or 0 (c is
random).

When ¢ = ab, the tuple (M, B?,C?) is a correct cipher-
text of M,. Then, the interaction between @Q* and Q is
correct and the probability of @* to output 1 is 1/2 +e.
When c is distributed randomly, the tuple (M, B?,C?) is
independent of a. The probability of Q* outputting 1 is
then 1/2. Thus, Q* has advantage ¢ in the DDH game.

U

Note that we can similarly prove that RE is IND-CPA.
That is, given two encryptions (Ao, By) and (A1, B1) of
any two messages and a re-encryption RE(Ay, By), b €r
{0,1} of one of the two encryptions, an attacker cannot
guess b with non-negligible probability over 1/2.

6 THE E-ORAM

The E-ORAM is a standard ORAM, storing labels in-
dexed under expiration time epochs. The E-ORAM needs
to provide C' with the means to determine how many
and which labels expire at a given time epoch and also
to insert a new (epoch,label) pair. This is achieved in
the following manner. For each T,, value used to index
labels in E-ORAM, a head value is used to store the
number of labels expiring at Tezp: (Tewp, (label, counter)).
label is the first label that was indexed under T¢,,. Each
of the remaining ¢ — 1 labels is stored under a unique
index: The ith label’s index is (T¢yp, %), that is, the label’s
expiration time concatenated with the label’s counter at
its insertion time.
We now present the most important operations for
accessing the E-ORAM, Write and Enumerate.
Write(E-ORAM, T, label): Record the fact that
label expires at time T¢,, (see Algorithm 1, lines 1-11).
Read the element currently stored under T¢,, (line 2).
If no such element exists (line 3), generate an element
encoding the fact that this label is the first to be stored
under T.,, (line 4) and store it on the E-ORAM (line
5). Moreover, run a fake E-ORAM access (line 6), whose
purpose will become clear in a few lines. If a label is
already stored under T.,, (line 7), retrieve that label (I)
along with the counter c¢ that specifies how many labels
are already expiring (stored in E-ORAM) at T¢,;, (line
8). Note that the read operation performed on line 2
removes this element from the E-ORAM. Since now c+1
labels expire at T.,,, store label | and the incremented

Algorithm 1 E-ORAM: Write new label under expi-
ration time. Enumerate all labels expiring at a given

time. V is the list of elements returned by a Read.

1.Write(E — ORAM : ORAM, T, : int, 1bl : id)
2. (e,V) := Readopau(E — ORAM, Teyp);
3. if (e = null) then

4. & :=Ex(1bl,1);

5. WriteDRAM(Texp, e’);

6. Writegrau(null, null);

7. else

8. (1,¢) :=Dk(e);

9. WritegRAM(Texp, Ek(l, c+ 1)),

10. WritegRAM((Texp, c+ 1), Ek(lbl));
11.fi

12.end

counter in the E-ORAM under T, (line 9). Finally, store
the input label under an index consisting of a unique
value: T,;, concatenated with ¢ + 1. This will allow the
client to later enumerate all labels expiring at T, (see
next). The reason for the fake E-ORAM write performed
in line 6 is to make the two cases indistinguishable
to the server: the E-ORAM is always accessed twice,
independent of how many elements expire at Teyp.

Enumerate(E-ORAM,T,,,): Retrive all the labels in
E-ORAM that expire at T¢y, (see Algorithm 1, lines 12-
26). First, initialize the result label list (line 13). Then,
read the head label stored under T.,, along with the
counter of labels expiring at T, (lines 14,16). If such an
element exists (line 15), record the head label (line 17).
Then, for each of the ¢ — 1 (i = 2, .., ¢) remaining labels,
retrieve their actual value by reading from E-ORAM
the element stored under a unique index consisting of
Texp concatenated with i. Note that Enumerate removes
all labels expiring at T,;, from E-ORAM (Readoram
removes accessed elements).

7 W-ORAM AccEess OPERATIONS
7.1 Generating Labels

Elements in the standard ORAM model are stored as
a pair (label,value), where label may denote a memory
location or the subject of an e-mail. In our case to prevent
the server from launching a dictionary attack, we use the
a Label(label,lkey) operation to generate labels. Besides
the input label, Label also uses a (random) labeling key,
which is used to define a pseudo-random function Fjye,.
The output of Label coincides then with the output
of Fipey(label). We now describe the main W-ORAM
accessing operations.

7.2 Writing on the Server

Write((W-ORAM,E-ORAM,v,1, T, params): Store
on the server a value v under a label /, with expiration
time T,;,, using as input also the client’s view of Gen’s
output, params = k,g,h,G (see Algorithm 2 for the
pseudo-code of this operation). Generate a new label
as described above (line 2) and call Enc to produce

12.Enumerate(E — ORAM : ORAM, Teyp : int)
13.L : id[]; #store result labels

14.L := 0;

15.(e,A) := Readoram(E — ORAM, Teyp);

16.if (e! = null) then

17. (1,c) := Dy(e);

18. L:=LU1L;

19. for (i:=2;i <c;i++) do

20. (e, A) := Readon(E — ORAM, (Texp, 1));
21. 1:=Dg(e);

22. L:=LUI;

23. od

24 fi

25.return L;

26.end

a W-ORAM tuple (A,,B,) (line 3). Generate a non-
interactive zero knowledge proof of QR(A,,n) = 0 (A,’s
quadratic non-residuosity). If the proof verifies (line 5)
the server inserts the tuple (A,,B,) in the top level
of the W-ORAM (line 6) and stores label under the
tuple’s expiration time T.,, in E-ORAM (see Section 6).
Otherwise, the server aborts the protocol (line 10).

7.3 Reading from the Server

Read(W-ORAM,label): Using as input the W-
ORAM and a label, return an element of format
(label, x, Teyp) (see Algorithm 3). Perform on W-ORAM
a standard ORAM read on the desired label (line 2),
returning both the W-ORAM element R of interest and
the list L of elements (containing R) removed from the
W-ORAM. If label is stored in the W-ORAM (line 3), the
client computes U = (A, By), a re-encryption of R (line
3) and calls ZK-POR to prove in zero knowledge that
U is a re-encryption of the only real element in L (line
4). ZK-POR is described in detail in Section 7.3.1. The
server verifies in ZK that QR(A,,n) = 0 and also the
validity of the ZK-POR proof. If the proofs are valid (line
5), the server inserts U in the first level of the W-ORAM
(lines 6-7). The client decrypts the desired element R and
returns the result (line 8). If any proof fails (line 9) the
server restores the W-ORAM to the state before the start
of Read and returns error (lines 10-11).

7.3.1 Zero Knowledge Proof of ORAM Read.

We now present ZK-POR, the zero-knowledge proof of
WORM compliance of the read operation performed on
the W-ORAM. ZK-POR takes as argument the list L of el-
ements removed from W-ORAM in line 2 of Algorithm 3
and U, the re-encryption of the real element from L.
For simplicity of exposition, let us assume that L also
contains the elements (scanned but not removed) from
the first level of W-ORAM. Let m denote the number of
elements in L, m = O(log N).

Let L = {(s%,kl),...,(s%_l,kr,l),S(:cT),(s$+l,kr+1),..,
(s2,,km)} where the elements are listed in the order
in which they were removed from the W-ORAM. The

Algorithm 2 W-ORAM: Write value v expiring at
Tewp-

1.Write(W — ORAM : ORAM, E — ORAM : ORAMN,
v :string,1l:id, Texp : int)

2. label := newlLabel(l,lkey);

3. (Ay,By) := Enc(label, v, Teyp, params);

4. ZKP := getQNRProof(A,,n);

5. if (verify(ZKP,A,) = 1) then

6

7

8

To := getLevel(W — ORAM, 1);
insert(To, (Au,Bu));
Write(E — ORAM, Terp, label);
9. else
10. return error;

client is interested in the item from the rth ORAM layer,
R = S(x,). Let S(x,) = (M(x,)g*", h*") = (A, B,.). Its
first field is a quadratic non-residue. All other elements
from L are fakes — their first field is a quadratic residue.
Let U = RE(R) = (M (x,)g*", h*") = (A,, By,) be the re-
encryption of S(z,). The following steps are executed s
times between the client and the server.

Step 1: Proof Generation: The client selects a

random permutation m € P(m). The client generates
w = {wi,.wn}, where each w; €r {0,1}™ is odd
and generates the proof list P = n(Lw). Let P =
7{(s3g%"%1 k1h?W),.,(A,.g*"r, B.h?¥r),
(82,67 kymh?¥m)}, where, (A.g?“r, B.h?"") is a re-
encryption of S(z,). The client sends P to the server. The
client locally stores (w;, s;9"%), i = 1..m. As assumed in
the model, The client has O(v/N log N) storage which is
sufficient to store m = O(log N) values.

Step 2: Proof Validation: The server flips a coin b. If
b is 0, the client reveals w1, .., w,,. The server verifies that
all w; are odd and V(4;, B;) € L, (A;g*¥i, B;h*¥i) € P.
If b is 1, the client sends to the server the values s;g"",
i = 1..m,i # r along with the value " = (¢, + w, — u).
Note that given s? mod n and n’s factorization, the
client can easily recover s;. The server verifies first
that (s;g“1)%, i = 1.m,i # r occurs in the first field
of exactly one tuple in P. That is, m — 1 of the ele-
ments from P are fakes. The server then verifies that
(A,g**r, B,h?¥r) = RE((Ay, By),T). If any verification
fails, the server outputs “error” and stops.

7.3.2 Analysis

We now prove the following results.
Theorem 2: A correct execution of Read from W-
ORAM has O(log N) complexity.
Proof: The overall client overhead for a single Read
operation is

Tlc?ead ~ Tysk 10gN +Tre + STrE 10g N,

where Ty, is the time to access the disk, Tgrg is the
re-encryption time (two modular exponentiations) and
T. is the modular exponentiation time. The first factor
corresponds to the Readoran in line 2 of Algorithm 3,

Algorithm 3 W-ORAM: Read label.

1.Read(W — ORAM : ORAM, 1abel : id)
(R, L) := Readgn(W — ORAM, label);
U:= (A,,B,) := RE(R);
Proof := ZK — POR(L, U);
if (verifyQNR(A,,n)
& verify(Proof,L,U)) then
To := getLevel(W — ORAM, 1);
insert(To, U);
return Dec(R, d, k);
else
10. undo(W — ORAM);
11. return error;

12.fi end

OXON Gwh

consisting of log N disk accesses. The second factor is
due to the re-encryption in line 3. The third factor is from
the proof generation step of ZK-POR. Note that log N
denotes the number of ORAM levels and the number
of elements for which the proof sets are built. Thus, the
client overhead is O(log N). The server only participates
during the proof validation steps and its cost is

Theaa = (5/2)TrElog N + (5/2)(Tmuilog N + TrE)

where s/2 is the number of bits b that come up 0 (and
1). Thus, the server’s overhead is also O(log V). O

Theorem 3: ZK-POR is a zero knowledge proof system
of Read € WORM. That is, Read is WORM compliant.

Proof: We first need to prove that ZK-POR is a proof
system (correct and sound) then prove that ZK-POR is
zero knowledge. O

Theorem 4: ZK-POR is complete.

Proof: First, note that it is straightforward to see that
if the client is honest, it is able to build the answer to
the server’s challenges. We now prove that if L contains
m — 1 fake elements and one real element and U is a re-
encryption of the real element from L, an honest server
(one following the protocol properly) will be convinced
of this fact by an honest client.

If b = 0, the client reveals all values wy, .., w,, used
to transform L into P. Let < A;, B; > be a tuple in L
and the corresponding factor w;. If (A;¢g*¥i, B;h*¥i) € P
exactly once for all i = 1..m, the server is convinced
that P is a re-encryption of L. Also, since QR(A;,n) =
QR(A;g*",n), the server is convinced that the quadratic
residuosity of the elements in L has been preserved
in P. If b = 1, the client first proves that m — 1 of
the values in P are fakes. That is, the client proves
that the first field of m — 1 elements is a quadratic
residue. For the remaining value in P, (4, ¢**", B,h?"r),
the client reveals I' = ¢, + w, — u. The server verifies
that A,¢°" = M(z,)g* g>trtwr—v) = A,g*"r and that
B,h?T = p2up2trtwr—u) — B p2r This proves that U =
(Au, By) is a re-encryption of an element of P. Moreover,
the fact that QR(A,,n) = 0 and QR(¢*",n) = 1 implies
that QR(A.g%",n) = QR(A,.g**",n) = 0. Thus, U is a
re-encryption of the real element from P.

The conjunction of the two cases (b = 0, 1) convinces
the server that the list L contains m — 1 fakes and
the element to be inserted back in the ORAM is an
obfuscation of the real element from L. O

Theorem 5: ZK-POR is sound.

Proof: We need to prove that if the statement is
false, no cheating client can convince the honest server
that it is true, except with some small probability. The
statement is false if the client (i) removes more than one
real element from the ORAM, (ii) makes A,, the first
field of U a quadratic residue or (iii) makes the recovery
key B, of U reveal a different value from the M (x.),
that is revealed by the recovery key B, of S(z,).

We start with the observation that the server generates
the coin b independently and the client has negligible
advantage over 1/2 in guessing the coin’s outcome.

The first cheating attempt (i) would allow the client to
surreptitiously remove one or more real elements from
the ORAM, since it only has to write back a single
element. Let us assume that the client wants to remove
two real elements, that is L contains m — 2 fakes and
2 real elements. In order for this attack to succeed, the
client can generate the proof list P such that it either (i.a)
contains m — 1 fake elements OR (i.b) is a re-encryption
of L. In case (i.a) where P contains m—1 fakes (quadratic
residues) if the coin b comes up 0, the client needs
to reveal the obfuscating factor for one QNR element
in L that is now a QR in P. The only way this can
occur is if the obfuscating factor is a QNR. However,
each obfuscating factor is squared by the server before
verification. In case (i.b), where P is built to be a re-
encryption of L, if the coin b comes up 1, the client will
fail to prove that one element in P (corresponding to one
of the real elements in L) is a quadratic residue. Thus,
the client can only cheat with probability 1/2 per each
independent proof list P.

In case (ii), the client attempts to change U into a fake
element, allowing it later to remove it by proving it is
a quadratic residue. Notice however that in Step 0, the
client proves in ZK the fact that QR(U,n) = 0. In case
(iii) the client attempts to destroy the real element before
inserting it back in the ORAM - it will not be recoverable
later. Let us assume that the element the client wants to
write back is U’ = (M’(x!.)g2*, h2*") = (A, B.,), where
M'(x)) # M(z,) and «' # u. Then, the client can build
P either to (iii.a) contain an element that maps to U’ or
such that (iii.b) it is a re-encryption of L.

Let us first consider case (iii.a), where P contains an
element R = (M’(x.)g?"», h?¥"), such that the element
R is a re-encryption of U’. That is, there exists I' such
that A/ ¢g*" = M'(2.)g** and B.,h?" = h2w’. With
straightforward math this leads to w, —u = w) — u/'.
Now, if the coin b comes up 0, the client needs to
produce a single value w, proving that S(z,) from L
maps into element R from P. If the client can produce
such a w,, we have that M(z,)g2trg2*r = M'(xl)g**r
and h2rh2vr = p2v From these equations we obtain
M (z,)g*" = M'(z].)g?¥r. Since w.. — u = w!! —u/, we

have that M’(z) = M(z,)g*"" 2% = M(x,)g?" ~2v.
Then, U’ = (M(z,)g*",h*"), which is a correct re-
encryption of S(z,).

Let us now consider case (iii.b), where the client
builds the proof list P to be a re-encryption of L. This
implies that the proof P contains an element R =
(A,g?vr, B.h?*r) = (M(z,)g?trtwr) p2tr+we)y which
is a re-encryption of S(z,). In this case, if b comes
up 1, the client needs to provide a value I' to prove
that the element R maps into the element to be writ-
ten back, U’. That is, I' needs to satisfy the follow-
ing two equations, M’(2.)g*"g*" = M(z,)g**+r) and
h2w' p2T = p2(t-twr) Using straightforward math, this
leads to M’(z.) = M(z,)g?>™ ~*), which implies that
U = (M(x,)g%" , h?*). Thus, if the client is able to solve
the b = 1 challenge, U’ is a correct re-encryption of S(z;).

U

Theorem 6: ZK-POR is zero-knowledge.

Proof: 1t is straightforward to see that ZK-POR con-
veys no knowledge to an honest verifier. Even if the
server has access to the plaintext message read (and
written back) from the ORAM, due to the semantic
security of the encryption method Enc of WOES, the
server can associate the element U with the correspond-
ing element from L or any proof list P with probability
only negligibly larger than 1/m.

We need to show that ZK-POR conveys no knowledge
to any verifier, even one that deviates arbitrarily from
the protocol. We prove this by following the approach
from [33], [36]. Specifically, let S* be an arbitrary, fixed,
expected polynomial time ITM. We generate an expected
polynomial time machine M* that, without being given
access to the client, produces an output whose probabil-
ity distribution is identical to the probability distribution
of the output of < C,5* >.

We now build M* that uses S* as a black box many
times. Whenever M* invokes S*, it places input z =
(Lo, L) on its input tape ITs and a fixed sequence
of random bits on its random tape, RTs. The input
x consists of Lo = L = {(s%,k1),..,S(xr), ., (82,,km)}
which is the list of elements read and removed from
the ORAM and L; = {(v?,k}),..,(v3_1, k1), U}. U
is the element to be written back on the ORAM and
V1, .oy Um—1, K, .., k,_; are random numbers chosen by
M*. Since S* is only expected polynomial time, the
random bits for RTs are selected as specified in [36]. The
content of the input communication tape for S*, CTs will
consist of pairs (P,), where P is a set and m € P(m).

The output of M* consists of two tapes: the random-
record tape RT3 and the communication-record tape
CTy. RT)y contains the prefix of the random bit string
r read by S*. The machine M* works as follows (round
1):

Step 1: M* chooses a random bit a € {0,1} and m
random values wy, .., w,,. Let w = {w1, .., wy, }. M* also
chooses a random permutation 7 € P(m). If a =0, M*
computes P = w(Low). Notice that M* can compute P
without knowing s1, .., s, or 2, and ¢,.. If a = 1, M* com-

putes P = m{(wi, k), .., (w2,_1,kl_1), RE(U,wy,)}, for
randomly chosen kY, .., k] _;. Similarly, M* can compute
P without knowing the x and t values of U = S(z,t),
but only U’s Y,, and ©,, fields.

Step 2: M* sets b= S*(.I',T;Pl,ﬂ'l, --,Pi—lﬂri—lap}
That is, b is the output of S* on input z and random
string r after receiving i — 1 pairs P;,7;), j = 1..i— 1 and
proof P on its communication tape CTs. We have the
following three cases.

(Case 1). a = b = 0. M* can produce wy, .., w,, and 7
to prove that P = 7(Low). M* sets P, to P, m; to w and b;
to b, appends the triple (P;, m;, b;) to CTy and proceeds
to the next round (i+1).

(Case 2). a = b= 1. M* can produce wi, .., wpn, and 7;
that prove that m — 1 elements of P are fakes (w?,..w2,_;
occur in the first field of m — 1 elements of P) and that
the mth element of P is a re-encryption of U. M* sets
P, to P, m; to 7 and b; to b, appends the triple (P;, m;, b;)
to CTy and proceeds to the next round (i+1).

(Case 3). a # b. M* discards all the values of the
current iteration and repeats the current round (Step 1
and 2).

If all rounds are completed, M* halts and outputs
(x,7",CTxn), where 7' is the prefix of the random bits
r scanned by S* on input z. We first prove that M*
terminates in expected polynomial time and then that
the output distribution of M* is the same as the output
distribution of S* when interacting with the client, on
input (Lo, L1).

Lemma 1: M* terminates in expected polynomial time.

Proof: Given L and U, during the ith round P is
either built from L or from U. During each run of round
i, the bit a is chosen independently. Then P is also chosen
independently (built from L or from U). This implies that
the probability that a = bis 1/2 and the expected number
of repetitions of round i is 2. S* is expected polynomial
time, which implies that M* is also polynomial time. [

Lemma 2: The probability distribution of < C,5* >
(Lo, L — 1) > and of M*(Lg, L1) are identical.

Proof: The output of < C,5* > (Lo,L1) > and
of M*(Lg,L;) consists of a sequence of t triples of
format (P, 7, b). Let II I;I) and TI Czsil be the probability
distributions of the first i triples output by M* and
< C, 8" >. We need to show that for any fixed random
input r, I = Hgsit) We prove this by induction.
The base case, where ¢ = 0, holds immediately. In the
induction step we assume that TI{%9 = 100 — 70,
We need to prove that the i + Ist triples in 1% ”1)
denoted by TtV and in 11572, denoted by MYE! j
have the same dlstribution.

For an ORAM element U, we define
L,,(U) to be the wuniverse of sets of format
w{(w} k1), .., (v2,_ 1, km-1), RE(U)}, for all 7 € P(m),
all vi,ki1,..,9m—1,km—1 €r Z} and all re-encryptions of
element U. Then, we show that Hgf;il) and H(ng,}) are
uniform over the set

V ={(P,m,b)|b=S*(z,r, TD||P) A (P = 7(Low),

10

@ ER Won,if b=0)V (P €g Lin(U),if b=1)}
H(H—l)

For Il .7, this is the case, since when (i) b = 0, P is built
as a re-encryption of Lo and when (ii) b = 1, P contains
a re-encryption of U and m — 1 fakes (elements whose
first field is a quadratic residue). Hg\}tl) is also uniformly
distributed in V' since M* chooses a random permutation
m, a random vector w and a random b, builds P according
to b and outputs (P,w,b) only if b = S*(z,r, 7", P). In
case there is output, it is uniformly distributed in V. [

Given the above two lemmas, we have that M* ter-
minates in expected polynomial time and its output has
the same distribution as the output of the interaction
between S* and a client. Thus, the result of the theorem
follows. O

Note that the soundness property of ZK-POR ensures
that a cheating client can remove an element from the
ORAM during the Read operation without being de-
tected with probability at most 1/2%.

8 ACCESS INDISTINGUISHABILITY

During the W-ORAM Read operation described in
the previous section, the client accesses and removes
O(logn) elements from the W-ORAM and writes back
one element. During a Write the client only adds one
element. This, in effect, breaks the access indistinguisha-
bility property of the classic ORAM solution: the server
can distinguish between a read and a write.

In this section we provide a solution that combines
the observable pattern of the previous Read and Write
operations to create a single access operation that can
be used to both read and write on the W-ORAM. As
an overview, the Access operation first accesses the E-
ORAM (as done in Write). Then, it accesses all the
elements in the W-ORAM’s first level and accesses and
removes one element from all its subsequent levels (as
done by a Read). Note that for a Write, all accessed ele-
ments need to be fakes. Access then writes two elements
back on the W-ORAM, R and N. For a Read access, R
is the re-encryption of the real element accessed in the
W-ORAM and N is a new fake element. For a Write
access, R is a re-encryption of one of the fakes accessed
and removed previously and N is Write’s input, the new
element to be appended on the W-ORAM. Finally, Access
proves (in zero knowledge) that R is a re-encryption of
one of the elements removed from the W-ORAM and
that all the other elements (removed from the W-ORAM)
are fakes.

Note that we do not need to prove to the server
anything about N. If N is real, the ZK proof will convince
the server that the client cannot remove it later surrep-
titiously. If it is a fake, it stores no useful information.
Moreover, the client does not need to prove that R is the
re-encryption of a real element. As long as all the other
elements removed from the W-ORAM are fakes, R can
be the re-encryption of a fake (as will certainly be the
case for a Write) and no useful information is removed
from the W-ORAM.

Access((W-ORAM,E-ORAM,v,1,T.,,params):

If Access=Write, use | to generate a new label (as
described in Section 7.1) and insert label under T,
in the E-ORAM (using the Write operation described
in Section 6). If Access=Read, perform a fake Write
on the E-ORAM, consisting of three random accesses
to the E-ORAM (one for a read and two for writes,
see Section 6). Then, access all the elements in the
top level of the W-ORAM and access and remove one
element from each subsequent level. If Access=Write,
all removed elements have to be fakes. If Access=Read,
one of them is real (unless the read element was found
in the top level). Let L = {(s%,k1),..,(s2_1, kr—1),S(zr),
(82,1, krs1),-,(s2,, km)} be the list of elements accessed
in the W-ORAM, where S(z,) may be the real element
accessed by a Read or a fake if accessed by a Write.
Then, generate two elements R and N and send
them to the server. If Access=Write, R=RE(S(x,))
and N=FEnc((v,Texp), k,9,h,G,0) is the element to
be written. If Access=Read, R = RE(S(z,)) and
N=Enc((null,null),k,g,h,G,1) is a fresh fake (see
Section 5). The zero knowledge proof then proceeds
exactly as ZK-POR.

8.1 Analysis

It is straightforward to see that Access correctly imple-
ments both W-ORAM Read and Write operations. We
need to prove now that reads and writes performed
using Access are indistinguishable.

Theorem 7: The server cannot decide whether an Ac-
cess operation is a Read or a Write with probability
significantly larger than 1/2.

Proof: Let Lrq and Ly, be the lists of elements
accessed by a read and a write respectively. Let Rrqs and
Nrq be the elements written back by a Read and Ry,
and Ny, the elements written back by a Write access.
We enumerate the ways for the server to distinguish a
Read from a Write: (i) distinguish Lgrq from Ly, (i)
distinguish Rrq and Ngq from Ry, and Ny, and (iii)
determine which element in Lgq/w, is a re-encryption
of Rrq/wr-

For the case (i), note that Ly, is a random access
sequence. If the server can distinguish Lrq from Ly,
with probability significantly larger than 1/2, then it can
distinguish Lgq from a random sequence. This would
allow us to build an attacker that has a significant
advantage in guessing which element is of interest in
L 4, thus contradicting the Oblivious RAM property of
ORAMs [21]. For the case (ii), consider the fact that Rry
is a real element and Ngg is a fake, whereas Ry, is
a fake and Ny, is a real element. If the server has
an advantage in distinguishing between a real and a
fake element, we can immediately build an attacker
that breaks the Quadratic Residuosity Assumption with
the same advantage. Finally, note that the use of ZK-
POR prevents the server from learning which element
in Lrq/w, is a re-encryption of Rpq/w,. O

11

9 SHUFFLING THE W-ORAM

When the [— 1th level of W-ORAM stores more than 4!~!
elements, due to element insertions occurring during
Read operation, the level needs to be spilled over into
level I. Let T[] denote the list of elements stored in the
W-ORAM at the [-th level. The [-th level then needs
to be filled with fakes. The fakes are needed to ensure
that subsequent Read accesses will not run out of fakes
(see [34] for more details). The [-th level then needs
to be obliviously permuted, using only O(v/N log N)
client space. Let T"“"[I] denote the re-shuffled I-th level
elements. Due to the WORM semantics, the client also
needs to prove that the reshuffle is correct: (i) 77*(]
is a re-encryption of the old T[] and (i) |T"*[I]| —
|T[1]| — |T[l — 1]| elements from T[] are fakes. Shuffle
performs this operation.

Shuffle(W-ORAM,]): Uses as input the W-ORAM
and the index of a level to reshuffle the corresponding
level (see Algorithm 4). First, spill the content of level
[— 1 into level ! (lines 3-6) and compute an oblivious
permutation of the new level I. Then, build its ZK proof
of correctness, ZK-PRS, detailed in the following (see
Algorithm 4, lines 7-38 for pseudo-code).

9.1 Zero Knowledge Proof of Re-Shuffle.

Similar to ZK-POR (see Section 7.3.1), ZK-PRS consists
of s rounds executed by the client and the server. During
each round, a proof list P; is built by the client (line 14
of Algorithm 4). P; has the same number of elements as
Tm*[l], O(N). The client builds the list 7"¢*[{] and each
of the s proofs P in the following steps. Initially, 7 [l]
and each proof list P; is stored as an empty list at the
server. The client generates a symmetric key k for the
(G, E, D) cryptosystem.

Step 1: Element Re-Encryption: First, the client
takes each element from T'[l] and stores a re-encrypted
version in 7"°"[l] and in each proof P; (lines 7-13).
That is, for each element S; = (A;, B;) € T[] (stored
at the server), the client generates fresh random odd
values u;,w; € {0,1}* (lines 9 and 12) and produces
one element S; to be inserted in T"*[l] (line 10) S} =
Ex(Aig*“i, B;h**) and one element P to be inserted
in Pj (line 13) P = Ek (Aig%ﬂi, Bihz““,”mv”,Fl[i],FQ[i])
where I'1[i]] = —w; and I';i] = (u; — w;). The string
“"mv” denotes that this proof element corresponds to an
element from T'[/] moved to T™*[l].

Step 2: Fake Insertion: The client adds f fake
elements (lines 14-22). For each of the f fakes to be in-
serted in 77" [l], the client generates two random values
si, ki €g {0,1}% (line 16), i = 1..f, where w; is odd. The
client then adds an element Ej(s?,k;) in T™*[l] (lines
17-18). It then generates a random value w; € {0,1}X
(line 20) for each proof list P; and appends an element
Ey(s2g*i, kih®"i,” add” , T'1[i], T2[i]) to P; (lines 21-22).
1]t = sig™, Tali] = (us — w;) mod ¢(N) and the string
”add” denotes that this proof element is a fake added to
level 1.

Algorithm 4 Shuffle of level /.

1.Shuffle(W — ORAM : ORAM, 1 : int)
2. T*¥[1] : string[|#new level 1 array

#spill T[1 — 1] into T[1]

3 T[l — 1] := getLevel(W — ORAM, 1 — 1);
T[1] := getLevel(W — ORAM, 1);
{] —T[l— 1] UT[1};

1] =

#re — encrypt elements from T[1]
7. for (i:=1;i <|T[1];i++) do
8. e := T[1][i];

. u[i] := genRandom();
10. T"¥[1][i] := Ex(RE(e,u[i]));
11. for (j:=1;j<s;j++) do

12. w[i] = genRandom();

13. P; [i] := Ex(RE(e, w[i]),
v ’ u[i], u[j_] — w[i]);

#add fakes

14.f := fakeCount(T[1));

15.for (i :=1;i <f;i++) do
16. (s[i], k[l])2 = .genRandom();
17. e:= (s[i]? k[i]);

18. append(T"*"[1],Ex(e));

Note that I'i[¢] and I';[i] are used to keep track of
the correspondence between the ith element of each P;
and its re-encryptions in T'[{] and T"°"[l] after the list
reshuffle step (see next).

Step 3: List Reshuffle: At the end of the set gen-
eration step, the client and the server have a one-to-one
correspondence between each element in 77¢*[]], each
element in each P; and each element in T[/]. The client
then calls the oblivious scramble, OS, procedure using
T"[l] and each P; as inputs (lines 23-25). During the
OS call, elements read from T"¢*[l] and P are decrypted
(using k) and re-encrypted before being written back.
Due to the semantic security properties of the encryption
scheme employed, at the end of the OS, the server can
no longer map elements from T'[I] to elements in the
reshuffled T7°*[l] and P; sets.

Step 4 - Decryption: The client reads each element
from the reshuffled 77°"[{] list, decrypts the element and
writes it back in-place (lines 26-28). The client reads each
element from each proof list P;, decrypts it and writes
back (A;g?Vi, B;h*¥i, Ej(str,I'1[i],T2[i])), where str is
either "mv” or “add” — moved or added fake (lines 29-
32).

Step 5 - Proof Verification: The server verifies each
proof list P; (lines 34-37). If any verification fails, restore
the W-ORAM to the state at the beginning of the opera-
tion and return error (lines 36-37). Each verification, for
a proof list P, works as follows.

The server flips a coin b. If b = 0, the server
asks the client to prove that P is a valid reshuf-
fle of T[l] and all the remaining elements in P are
fakes. For this, the client reads each element of P,
(A;g%vi, B;h?vi| By (str,T1]i], T2i])), retrieves T'y[i] and

12

19. for (j:=1;j<s;j++) do

20. w[i] := genRandom();
21. re := RE(e, w[i]),

”add”, s[i]gw[i], uli] — w[i]);
22. append(P;[i], Ex(re));

#Shuffle T**"[1] and proofs
23.T5¢¥[1] := 0S(T™¥[1));

24 for (j:=1;j<s;j++) do
#decrypt shuffled elements
26.for (i :=1;i < |T®*V[1]|;i + +) do
27, e:=T[i];

28, T1][1] := Dy(e):
29. for (j:=1;j<s;j++) do
30. e := Py[i];

31. (A,B, str,C,D) := Dy(e);
32. P;[i] := (A,B,Ex(str,C,D));

#proof verification step
3.for (j:=1;i <s;i++) do

35. if (lverify(T[1],T"*"[1],P;)) then
36. undo(W — ORAM, 1 — 1,1);
37. return error;

#commit new level
38.T[1] := T™*¥[1];

sends to the server, A;g*%i, B;h*¥i, str and T'1[i]. If str =

muv”, the server first verifies that indeed T';[i] is an odd
number, then verifies that RE((A;g*", B;h?¥%),T1[i]) ap-
pears in T[l] exactly once. If str = ”add”, the server
verifies that T'1[i]? is the first field of exactly one tuple
in Tme*[]. If at the end of this step the client has proved
that |T'[{]| elements from T"“"[{] are re-encryptions of the
elements from T'[/] and that f elements from T"¢*[I] are
fakes, the server continues. Otherwise it outputs “error”
and stops.

If b = 1, the client needs to prove that P is a
valid reshuffle of T™¢*[l]. For this, the client reads each
element from P, recovers I's[i] and sends to the server
the values A;g?*%:, B;h"¢ and T;[i]. The server verifies
that RE((A;g%“%, B;h®V#),T'5[i]) occurs in T"““[I] exactly
once.

9.2 Analysis

The following results hold.
Theorem 8: A correct execution of ZK-PRS has
O(log N loglog N) amortized complexity.

Proof: The amortized cost of the Shuf fle operation
has four components, one for each main step: Tg, =
S(TRE +Trr + Tpec + Tpv). The list reshuffle step has
an amortized cost Tr,rg = O(log Nloglog N) (see [34]
for details). Each of the other three steps performs
a constant number of operations per element of the
level to be reshuffled. For instance, the re-encryption
step (including the fake insertion step) performs one
re-encryption and one symmetric key encryption per
moved element and one re-encryption, one modular
multiplication and one symmetric key encryptions per

Algorithm 5 Operation that removes all W-
ORAM elements that expire at time 7.

1.Expire(E — ORAM, W — ORAM : ORAM, T : int
L: id[]; #expiring labels

E: string[|; #removed from W — ORAM
L := Enumerate(E — ORAM, T);

. for each label in L do

(R,E) := Readgpan(W — ORAM, label);
Proof := ZK — PEE(R,E);

if (verify(Proof,E) = 0) then

. undo (W — ORAM);

10. return error;

11. fiod

12.end

00NN W N

added fake element. The decryption step performs two
symmetric key encryptions per level element. The proof
validation step performs at most one symmetric key
encryption and one re-encryption per element. Thus,
for level I, containing O(4') elements, the sum of the
Tsi, Tpec and Tpy components is O(4!). However, the
Shuf fle operation for the [th level is called once every
4'=1 ORAM operations. Thus, the amortized cost for
these three steps is

log N

>

=1

o(4h
41

= O(log N)

Since s is a constant, we conclude that the amortized
cost of the reshuffle is O(log N loglog N). O
Theorem 9: ZK-PRS is complete.

Proof: 1t is straightforward to see that if 77°"[l] is a
permutation of T'[1], the client can build proof sets P such
that later it is able to build the answer to the server’s
challenges. If b = 0 the client proves that T'[l] = 7(PI';)
and the remaining elements of P are fakes. If b = 1, the
client proves that T"*[l] = w(PT2). I'; and I’y are the
vectors containing all I'1[;] and I's[i] values. Thus, the
server is convinced that 7"¢*[I] is a permutation of T'[(]
and has [T[l]| — |T'[!]| new fakes. O

Theorem 10: ZK-PRS is sound.

Proof: If T™*"[l] is not a permutation of T[], a
cheating client cannot convince the server of the op-
posite, except with a small probability. The client can
cheat by building P to be either (i) a permutation of
T[l] or (ii) a permutation of T"“[l]. We only study
case (i), since case (ii) is similar. Let an element from
P, P, = (A;g*"i, B;h*"?) be a re-encryption of the ith
element of T[] and let 7" (Alg?wi, BIh?*") be
the corresponding element (not a re-encryption) from
T7w[l]. If b = 1, the client has to provide a value I's
such that T/** = RE(P;,T'3). If the client is able to
provide such a value, it is straightforward to see that
Trew = RE((As, Bi), (Ta + w;)). 0

Theorem 11: ZK-PRS is zero knowledge.

Proof: The proof follows the same pattern as the
proof of Theorem 6 and [36] and we omit it due to its
redundancy. O

13

10 ELEMENT EXPIRATION

Expire(T): Use as input a time epoch T and remove
all the elements from the W-ORAM that expire in that
epoch (see Algorithm 5). Use the E-ORAM to enumerate
all the labels that expire at T' (line 4). For each such
label (line 5) read (and remove) from the W-ORAM the
corresponding element (line 6). Note that the Readoranm
operation also returns the entire list £ of elements re-
moved from the W-ORAM - containing log N elements.
Then, build a zero knowledge proof of correctness, ZK-
PEE (line 7). ZK-PEE proves that E contains one real
element that expires at T’ and the rest (log N —1 elements)
are fakes. If the proof verifies, the server accepts the
expiration, otherwise restores the W-ORAM to the state
before the Read of line 6 (line 9) and returns error (line
10). We now describe ZK-PEE.

10.0.1 Zero Knowledge Proof of Element Expiration.

ZK-PEE takes as input the element to be expired, R
and the list £ of all elements that were removed from
W-ORAM when R was read (line 6). Note that R €
E. Let m be the number of elements in £ and let
E = {(s3,k1), ., R,..,(s%,,km)}. Let r be R’s index in
E. ZK-PEE consists of s rounds. During each round the
following steps are executed by the client and the server.

Step 1: Proof Generation: The client generates a
random permutation ©# €r P, and a random vector
w = {wy, .., wm, }, where w; €x {0, 1}* are odd. The client
computes the proof list P = nm(Ew) and sends it to the
server.

Step 2: Proof Verification: The server flips a bit b.
If b = 0, the client reveals w. The server verifies that all
w; € w are odd and that P = n(Ew). If b = 1, the client
reveals Dec(R,d, k) = M(z) = (Ex(z), Tewp, "Teal” , rnd)
to the server along with the encryption factor ww, and
the square roots of the remaining m-1 (fake) elements
in P, s19™,..,8mg"”™. The server verifies the revealed
element: (i) its format, that is, T,,, = T and the third field
is “real” and (ii) its correctness, (M (z)g?*¥r, h?%wr) € P.
The server also verifies that the remaining m-1 elements
in P are fakes, by checking that (s;g“?)? occurs in the
first field of exactly one element in P.

10.0.2 Analysis

Let e be the number of elements that expire at the same
time. Then, the following result holds.

Theorem 12: A correct execution of Expire has
O(elog N) complexity.

Proof: The overall client overhead for a single Read

operation is Tf,,, ~
2eTysilog N + eTrpslog N + es/2T,log N, where Ty, is
the time to access the disk, Trg is the re-encryption time
(two modular exponentiations) and 7. is the modular
exponentiation time. The first factor corresponds to the
time to discover the expiring labels (in the E-ORAM)
and to read them from the W-ORAM. The second factor
is from the proof generation step of ZK-PEE and the

last factor is from the proof verification step. The server
only participates during the proof verification steps and
its cost is ngp ~ 68/2TRE 10gN—|—€S/2(Tmul 10gN—|—TRE)
where s/2 denotes the number of bits b that come
up 0 and 1. Thus, the total (client+server) overhead is
O(elog N). O

We now prove the following result.

Theorem 13: ZK-PEE is a zero knowledge proof system
of Expire € WORM. That is, Expire is WORM compliant.

Proof: First, note that ZK-PEE is complete: if the
client is honest, it is able to build the answer to the
server’s challenges. If b = 0, the client reveals all values
w1, .., Wy, used to transform E into P. If b = 1, the client
proves that m—1 of the values in P are fakes, that is, their
first field is a quadratic residue. then, for the remaining
value, the client provides the encryption factor and the
decrypted, expiring element from E.

To see that ZK-PEE is sound, note that the client can
only cheat by (i) removing more than 1 real element from
the W-ORAM or by (ii) removing an element that does
not expire. Then the client can cheat by building P to
either be a permutation of E to contain m-1 fakes and
the encryption of a real, expiring element. However, we
follow the same reasoning used for ZK-POR and ZK-
PRS. If the client can then convince the server of the
validity of P for either challenge, we can show that the
list £ must contain m-1 fakes and one real, expiring
element, which contradicts the hypothesis.

Finally, to see that ZK-PEE is zero knowledge, we
follow the same approach used for ZK-POR. Due to the
length and redundancy of the proof, we omit it. O

11 AuDIT

Audit(d,k).: Take as input the decryption keys d
and k to search for desired elements in W-ORAM. Call
Dec((A, B),d, k), for all elements (A4, B) in the W-ORAM.
Once all the elements are recovered, they can be searched
for desired keywords.

12 KEY MANAGEMENT

For the sake of presentation clarity, we have presented
a simplified element encoding operation (Enc). Specifi-
cally, an element x is stored as the pair (M (z)g?, h??),
consisting of an encrypted part and a recovery key.
However, during element expiration (see Section 10) the
client needs to prove to the server (in zero knowledge)
the fact that one element in the list of accessed elements
expires. For this, the client needs to provide the server
not only with the decrypted element but also with the
obfuscating exponent (b in the above example). Since an
element may have been accessed and re-encrypted many
times during read and reshuffle operations, the client
needs to keep track of the changes in the obfuscation
exponent.

We address this by storing a third field for any ele-
ment: the encrypted exponent, e.g., E(b) in the above
case, where E is any semantically secure symmetric

14

[Resource | Spec |
Processor 2.4GHz
RAM 256KB
Disk bandwidth | 120MB/s
Link bandwidth | 10MB/s
Block size 1024b
TrE 125 ops/s
Tsym on 1024b 272355 ops/s

TABLE 1
Client and server configurations.

key encryption method, whose key is private to the
client. Whenever the element is re-encrypted (during
read and re-shuffle operations), the new exponent is
stored encrypted, replacing the existing one. The use of
a semantically secure encryption method prevents the
server from using this third field to correlate reshuffled
elements. For fake elements the third field is random and
changes whenever a fake is being “re-encrypted”.

13 EXPERIMENTAL EVALUATION

We have implemented our solution using OpenSSL and
we have tested it on the configuration depicted in Ta-
ble 1. We used the same PC configuration (single core
2.4GHz with 256MB of RAM and 120MB/s sustained
read/write rates) for both server and client platforms.
As such, the server and client can perform 250 modular
exponentiations per second, leading to 125 record re-
encryptions per second and 272K AES encryptions on
1024 blocks. The link between client and server was a
duplex 10MB/s. The outsourced dataset consists of 1024
bit records.

In the following, we look at the overheads of read and
shuffle as they are the most expensive operations. The
element expiration operation follows the same steps as
a read and thus its cost is similar: the client needs to
compute proof sets of size log N and the server either
verifies their re-encryption or the quadratic residuosity
of log N — 1 of their elements

13.1 Read Overheads

We now focus on the overheads of the zero knowledge
proofs used during a read operation. Figure 1 shows
the overhead of the ZK-POR process as a function of
the number of records, N. The number of proof sets
employed is 40, for a client cheating probability of 274.
The x-axis shows the number of records in logarithmic
scale. We have experimented with datasets ranging from
1Mb to 1Tb. Figure 1 shows the cost of a read operation,
in terms of client and server computation costs and total
transfer costs. For a 1Tb dataset (23° records of size 1024),
the client cost is under 7s and the server cost is under 4s.
The transfer cost of the 41 sets of records including also
the disk read/write times is only a fraction of a second.
Thus, the total overhead of a read is around 10s.

10 ‘ ‘ ‘ ‘
client cost E=z==3
8 Server cost -
transfer cost :
— |
@ 6
q’ XX
& [
— 4 L &4
+ Pe%o
k%
B o2
reee g
Fo%e %%
L Fo%ed] ool
2 r300% o
Foe% Po%%
[X X 15X
i00%% £
K s
KX KXXS
0 KX k%

20 25 30 35 40 45
number of records (log, N)

15
Fig. 1. ZK-POR client and server overheads. Read over-

head (shown in seconds) as a function of the dataset size,
on the dataset size.

70 — ‘ ‘
client cost Ezz=zzR
60 r Server cost m—
transfer cost ¢
50 +
T a0t
(]
£ 30
20 + o
]
0 . W ‘ SR s

15 20 25 30 35 40 45
dataset size (log, N)

Fig. 2. Client, server and communication components of
the amortized cost of ZK-PRS. Shuffle overhead (shown
in seconds) as a function of the dataset size, log, N.

The server overhead is roughly half the overhead of
the client. This is because the server has to verify re-
encryptions only on half the sets generated by the client.
The other half is dominated by modular multiplications,
which are three orders of magnitude faster than re-
encryptions.

13.2 Shuffle Overheads

A level [re-shuffle needs to be performed every time
level [becomes full (every 4! accesses). We have mea-
sured the amortized impact of shuffles on the operation
of the WORM ORAM structure and Figure 2 shows our
results. The amortized cost includes the cost of re-shuffle
incurred at all the levels in the ORAM, over all the
ORAM accesses. Figure 2 shows the dependence of the
cost of ZK-PRS on the number of records stored at the
server, shown on the x-axis in logarithmic scale. The cost
is again divided into client, server and communication
components. The number of proof sets is set to 40, for a
client cheating probability of 274

Similar to the read overheads, the client and server
computation components of ZK-PRS show a logarith-
mic dependence on the size of the dataset. While our

15

theoretical result of Section 9.2 shows this dependence
to be O(log N loglog V), the costs are dominated by the
generation and verification of re-encrypted permuted
sets. The overheads of the actual oblivious set re-shuffles,
including symmetric key operations, are quite small:
more than 272K symmetric key operations can be per-
formed per second, but only around 125 re-encryptions
per second are possible.

The client and server overheads are similar, up to 20
seconds for 240 datasets. The reason for this similarity
is that the server has to verify set re-encryptions irre-
spective of the outcome of the coin flip process, leading
to similar numbers of server verifications and client
generations.

The communication overhead during the shuffle op-
eration, including the time to read/write and transfer
proof sets takes around 7 seconds for 1Tb datasets. This
is because the client needs to shuffle not one but 41 proof
sets. Thus, the total, amortized overhead of a shuffle
operation is around 47s.

In ORAM, the network transfer time alone for reshuf-
fling level i consists of about 10 sorts of 4°logn data, each
sort requiring 4'log(n)log?(4i‘logn) block transfers, for
a total of 104'log(n)log®(4'logn)2'°/10M B/se. Summing
over the log, n levels, and amortizing each level over 4°!
queries, ORAM has an amortized network traffic cost per
query of 3.680Gb. Over the sample 10MB/s link this is
a 48 sec/query amortized transfer time. Thus, by using
an improved oblivious scramble protocol, we are able
to support regulatory compliance and maintain the cost
imposed by the original ORAM.

Amortizing the Shuffle Cost: In order to avoid
incurring shuffle costs at once and to amortize them
over client operations, we use the following techniques.
The bulk of the client cost for a shuffle is generating
re-encryptions, consisting of 2 expensive modular ex-
ponentiations. During each client access to the ORAM
(write, read, expiration), the client generates 4(s+1) log N
random factors w, generates g* and h" and stores the
encrypted tuple (w,g",h") at the server. The number
of such tuples, 4(s + 1) log N, where s is the number of
proof sets and N is the dataset size, is the amortized
number of re-encryptions. During an actual re-shuffle,
the client reads such tuples from the server, decrypts
them and uses them for re-encryptions. The remaining
overhead, of modular multiplications, symmetric key
cryptographic operations and oblivious set-reshuffles, is
small, as shown also in the results of Figure 2.

The bulk of the server ZK-PRS cost consists in ver-
ifying set re-encryptions. The server batches shuffle
operations. For each batched shuffle, the server stores
partial ORAM state (for rollback). Following each client
operation (read,write expiration), the server performs an
additional 4slog N element re-encryption verifications
from the batch queue. If any verification fails, the server
rolls back to the previous state of the ORAM, associated
to the currently verified shuffle. This approach intro-
duces a computation to storage tradeoff: the server needs

to store O(N') more data, including partial re-encryptions
and rollback state.

14 CONCLUSIONS

In this paper we introduce WORM-ORAM, a solution
that provides WORM compliant Oblivious RAMs. Our
solution is based on a set of zero knowledge proofs that
ensure that all ORAM operations are WORM compliant.
The protocol features the same asymptotic computa-
tional complexity as ORAM.

15 ACKNOWLEDGMENTS

We would like to thank Dan Boneh and Peter Williams
for early comments and suggestions. We thank the re-
viewers for their excellent feedback. Sion is supported by
the U.S. National Science Foundation as well as by grants
from CA Technologies, Xerox/Parc, IBM and Microsoft
Research.

REFERENCES

[1] National Association of Insurance Commissioners.
Leach-Bliley Act, 1999. www.naic.org/GLBA.

[2] U.S. Dept. of Health & Human Services. The Health Insurance
Portability and Accountability Act (HIPAA), 1996. www.cms.gov/
hipaa.

[3] U.S. Public Law 107-347. The E-Government Act, 2002.

[4] US. Public Law No. 107-204, 116 Stat. 745. Public Company
Accounting Reform and Investor Protection Act, 2002.

[5] The U.S. Securities and Exchange Commission. Rule 17a-3&4, 17
CER Part 240: Electronic Storage of Broker-Dealer Records. Online
at http://edocket.access.gpo.gov/, 2003.

[6] The U.S. Department of Defense. Directive 5015.2: DOD Records
Management Program. Online at http://www.dtic.mil/whs/
directives/corres/pdf/50152std_061902/p50152s.pdf, 2002.

[7]1 The U.S. Department of Health and Human Services Food
and Drug Administration. 21 CFR Part 11: Electronic Records
and Signature Regulations. Online at http://www.fda.gov/ora/
compliance_ref/partl1/FRs/background /ptl1finr.pdf, 1997.

[8] The U.S. Department of Education. 20 U.S.C. 1232g; 34 CFR Part
99:Family Educational Rights and Privacy Act (FERPA). Online
at http://www.ed.gov/policy/gen/guid/fpco/ferpa, 1974.

[9] The Enterprise Storage Group. Compliance: The effect on in-

formation management and the storage industry. Online at

http:/ /www.enterprisestoragegroup.com/, 2003.

Enron email dataset. http://www.cs.cmu.edu/enron/.

IBM Corp. IBM TotalStorage Enterprise. Online at http://

www-03.ibm.com/servers/storage/, 2007.

HP. WORM Data Protection Solutions. Online at http://h18006.

wwwl.hp.com/products/storageworks/wormdps/index.html,

2007.

EMC. Centera Compliance Edition Plus. Online at http://www.

emc.com/centera/ and http://www.mosaictech.com/pdf_docs/

emc/centera.pdf, 2007.

Hitachi Data Systems. The Message Archive for Compliance

Solution, Data Retention Software Utility. Online at

http:/ /www.hds.com/solutions/data_life_cycle_archiving/

achievingregcompliance. html, 2007.

Zantaz Inc. The ZANTAZ Digital Safe Product Family. Online at

http:/ /www.zantaz.com/, 2007.

StorageTek Inc. VolSafe secure tape-based write once read many

(WORM) storage solution. Online at http://www.storagetek.

com/, 2007.

Sun Microsystems. Sun StorageTek Compliance Archiving

system and the Vignette Enterprise Content Management Suite

(White Paper). Online at http://www.sun.com/storagetek/

white-papers/Healthcare_Sun_NAS_Vignette_EHR_080806_

Final.pdf, 2007.

Sun Microsystems. Sun StorageTek Compliance Archiving Soft-

ware. Online at http://www.sun.com/storagetek/management_

software/data_protection/compliance_archiving/, 2007.

Graham-

[10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

16

Network Appliance Inc. SnapLock Compliance and SnapLock En-
terprise Software. Online at http:/ /www.netapp.com/products/
software /snaplock.html, 2007.

Quantum Inc. DLTSage Write Once Read Many Solution. On-
line at http://www.quantum.com/Products/TapeDrives/DLT/
SDLT600/DLTIce/Index.aspx and http://www.quantum.com/
pdf/DS00232.pdf, 2007.

Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious ram. Journal of the ACM, 45:431-473, May
1996.

Peter Williams, Radu Sion, and Bogdan Carbunar. Building
Castles out of Mud: Practical Access Pattern Privacy and Cor-
rectness on Untrusted Storage. In ACM Conference on Computer
and Communication Security CCS, 2008.

Bogdan Carbunar and Radu Sion. Regulatory compliant oblivious
ram. In ACNS, pages 456-474, 2010.

Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In
Aduvances in Cryptology - CRYPTO 2010, pages 502-519, 2010.
Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.
Algorithms, 51:122-144, May 2004.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private in-
formation retrieval. In IEEE Symposium on Foundations of Computer
Science, pages 41-50, 1995.

W. Gasarch. A WebPage on Private Information Retrieval. Online
at http://www.cs.umd.edu/~gasarch/pir/pirhtml.

W. Gasarch. A survey on private information retrieval. Online at
http:/ /citeseer.ifi.unizh.ch /gasarchO4survey.html.

Radu Sion and Bogdan Carbunar. On the Computational Prac-
ticality of Private Information Retrieval. In Proceedings of the
Network and Distributed Systems Security Symposium, 2007. Stony
Brook Network Security and Applied Cryptography Lab Tech
Report 2006-06.

Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable
adaptive oblivious transfer. In EUROCRYPT ‘07: Proceedings of
the 26th annual international conference on Advances in Cryptology,
2007.

S. Coull, M. Green, and S. Hohenberger. Controlling access
to an oblivious database using stateful anonymous credentials.
In International Conference on Practice and Theory in Public Key
Cryptography (PKC), 2009.

O. Goldreich. Foundations of Cryptography I. Cambridge University
Press, 2001.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM]. Comput., 18(1), 1989.
Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles
out of mud: practical access pattern privacy and correctness
on untrusted storage. In CCS '08: Proceedings of the 15th ACM
conference on Computer and communications security, 2008.

Dan Boneh. The decision diffie-hellman problem. In ANTS-
III: Proceedings of the Third International Symposium on Algorithmic
Number Theory, 1998.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in np have zero-
knowledge proof systems. J. ACM, 38(3), 1991.

