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ABSTRACT

Deep learning has led to many breakthroughs in machine per-
ception and data mining. Although there are many substan-
tial advances of deep learning in the applications of image
recognition and natural language processing, very few work
has been done in video analysis and semantic event detec-
tion. Very deep inception and residual networks have yielded
promising results in the 2014 and 2015 ILSVRC challenges,
respectively. Now the question is whether these architectures
are applicable to and computationally reasonable in a variety
of multimedia datasets. To answer this question, an efficient
and lightweight deep convolutional network is proposed in
this paper. This network is carefully designed to decrease the
depth and width of the state-of-the-art networks while main-
taining the high-performance. The proposed deep network
includes the traditional convolutional architecture in conjunc-
tion with residual connections and very light inception mod-
ules. Experimental results demonstrate that the proposed net-
work not only accelerates the training procedure, but also im-
proves the performance in different multimedia classification
tasks.

Index Terms— Deep learning, Video event detection,
Multimedia classification, Residual-Inception, Convolutional
neural network

1. INTRODUCTION

Multimedia data has become pervasive in the recent decade
with the advent of new technologies, powerful hardware, and
larger datasets [1, 2]. Video analysis is one of the most chal-
lenging and time-consuming processes in multimedia big data
due to its large capacity, multi-modality, and complexity com-
pared to textual or single-modality data. One of the important
and challenging topics in video processing is video event de-
tection which extracts meaningful semantic information from
the video data [3, 4]. These information can be further used
for efficient video searching and retrieval.
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Deep learning is an emerging topic but originated from
traditional neural networks, which is widely used in Artifi-
cial Intelligence (AI) and Machine Learning (ML). The high
capability of deep learning in a wide range of applications,
especially the visual data, motivates us to integrate it with
the application of video and image classification. The recent
advancement in image recognition was obtained with deeper
and wider networks [5, 6]. One example is the residual ar-
chitecture which reaches to 152 layers, almost 8 times deeper
than GooglLeNet and VGG nets [7]. As the network grows in
depth (or sometimes in width [6]), the features can be en-
riched and more high-level features can be extracted com-
pared to those from early layers.

Now the question is whether deeper networks always gen-
erate better performance. In other words, does stacking more
layers lead to better learning? In addition, are extremely deep
networks computationally reasonable for and applicable to
different applications? Based on several experiments reported
in [5, 8], network improvements and better learning are not as
easy as stacking more layers and a careful design is indis-
pensable. The first problem driven by the depth increase is
called “vanishing” gradients [8, 9], in which the network can-
not be trained with regards to the gradient based algorithms
like back propagations and the convergence is prevented from
the early layers. There have been several solutions in the lit-
erature to address this problem by using rectified linear acti-
vation instead of common activation functions (e.g., sigmoid
or tanh) [10] and normalization layers [11]. Another issue is
when the training accuracy is saturated and suddenly starts to
degrade, which is not due to over-fitting. One solution to this
problem is addressed in [5] using Residual Learning.

To address the aforementioned problems, in this paper, we
propose a new deep learning architecture based on the tra-
ditional Convolutional Neural Networks (CNNs) integrated
into two levels of Residual-Inception combination. This ar-
chitecture is successfully tested on two different multimedia
datasets. Specifically, it is applied on a video event detec-
tion task containing natural disaster events. The overall Deep



Residual-Inception network improves the losses compared to
the most recent deep learning architectures and also signifi-
cantly decreases the computational costs.

The rest of the paper is organized as follows. First, the
state-of-the art research in deep learning is presented in sec-
tion 2. Section 3 provides the details of the proposed deep
learning network. In section 4, the experimental results on
two benchmark multimedia datasets are discussed. Lastly, the
paper is concluded in section 5.

2. RELATED WORK

In recent years, deep learning which is originated from con-
ventional artificial neural networks has attracted increasing
academic and industry attention. Currently, it has been uti-
lized in a wide range of areas such as image recognition, natu-
ral language processing, artificial intelligence, to name a few.
To date, several deep architectures are presented in the liter-
ature, including Deep Belief Networks (DBNs), Deep Boltz-
mann Machines (DBMs), Deep auto-encoder, and Convolu-
tional Neural Networks (CNNs) [12]. Among them, CNNs
have been commonly used and have shown promising re-
sults especially in image recognition and computer vision
[6, 13, 14].

AlexNet [13], the first attempt of applying a deep con-
volutional network on image processing, has made CNNs
very popular. The network is initially trained on more than
one million images in the 2012 ImageNet Large Scale Visual
Recognition (ILSVRC) contest to classify them into the 1000
classes and significantly increased the performance compared
to the state-of-the-art approaches.

GoogLeNet [6], a deeper and wider convolutional net-
work is presented in the 2014 ILSVRC by Google. The
original network contains 22 layers and utilizes the comput-
ing resources inside the network in an efficient way. The
GoogLeNet design is also known as “Inception”, which tries
to introduce more sparsity and more optimal locality into the
convolutional layers. By applying GoogleNet on the Ima-
geNet dataset, the accuracy is improved from 22.6% in the
2013 ILSVRC to 43.9% in the 2014 ILSVRC.

Finally, Microsoft introduced a new deep architecture
called “Deep Residual Learning” [S] which beats the human
brain in Image Recognition on the ImageNet dataset. The
residual network won the ILSVRC and COCO 2015 compe-
titions on different tasks including ImageNet detection and
localizations, as well as COCO segmentation and detection.
It is extremely deeper than the state-of-the-art architectures
and introduces residual mapping into the convolutional layers
to decrease the vanishing gradient and degradation problems.

All the aforementioned networks, as well as other well-
known deep learning architectures, have led image process-
ing into a new stage where computers can compete with hu-
man experts in image classification. It is worth mentioning
that ImageNet and other large-scale image datasets have also

played a critical role in this advancement. However, very
few work has addressed the event detection from videos using
deep learning algorithms since working with videos is more
challenging and time-consuming. Therefore, in this paper, a
deep Residual-Inception network is proposed to detect spe-
cific events from videos.

The benefits of combining the Inception and Residual net-
works are presented in [15], in which the authors utilized
residual connection inside the Inception module and designed
a new module as Inception-ResNet. However, in our work,
a two-level Inception and Residual framework is proposed
which improves both accuracy and speed. Therefore, it se-
quentially applies an inception after a residual module and
increases the ratio of convolutions and Residual-Inception
blocks gradually. In addition, it only uses a few numbers of
Residual and Inception stacks (33 layers) rather than a very
deep stack of Inception-ResNet to overcome overfitting in
very deep and wide networks such as the Inception and Resid-
ual networks.

3. DEEP RESIDUAL-INCEPTION NETWORK

The proposed network contains three main modules, includ-
ing traditional convolutional neural networks, residual con-
nections for training deep architectures, along with inception
modules for retaining computational efficiency.

3.1. Convolutional Neural Network

In general, CNNs are very similar to conventional neural
networks with three ideas: 1) local connectivity, 2) shared
weights, and 3) spatial sub-sampling [16]. The main advan-
tage of CNNs is that they include fewer parameters and are
easier to train compared to fully connected layers. The CNNs
architecture basically consists of several convolutional along
with subsampling layers and optionally in conjunction with
fully connected layers. In the proposed network, we extend
the CNNs module to include the following layers:

e The Input layer holds the raw pixels of the image with
m X m X7 (e.g., 255 x 255 x 3), where m is the image
height and width, and r is the channel number (e.g.,
r = 3 for RGB images).

e The Convolutional layer includes a number of feature
maps where the input data is convoluted with linear fil-
ters and then a nonlinear activation function f is ap-
plied. Each convolutional layer has & filters with size
n X n X q which represents the size of the locally con-
nected regions in the image. Here, n is smaller than the
dimension of the image, and ¢ is either the same as or
smaller than r (the number of channels) and it may vary
for each filter. After convolving each filter with the im-
age, k feature maps z* of size m —n + 1 are generated
(given in Equation (1)), where W* and b* are weights



and bias of the filters, respectively, and %=1 is the in-
put from the previous layer.

2 = fF(WF 5 2F1) 4 F). (1)

e Batch normalization is used after each convolutional
layer in order to further accelerate the training set, as
well as to reduce the gradients’ dependencies to avoid
the risk of overfitting and divergence [11].

e Rectified Linear Unit (ReLu) layer is the most common
activation function (f(z) = maxz(0, z)) recently used
for the output of convolutional neurons. It increases the
nonlinearity and avoids network saturation [10].

e Pooling is a nonlinear downsampling which reduces the
size of feature maps and brings more sparseness and
robustness to the network. It also reduces the compu-
tational overhead and avoids overfitting. Each feature
map is subsampled with a p x p (e.g., p = 2 for small
images or p = 5 for high resolution images) down-
sampling operation (e.g., max, mean, etc.) as shown
in Equation (2), where (3 represents multiplicative bias
and down(.) is a subsampling operation.

zF = f(BEdown(z*~1) + b¥). )

3.2. Residual Module

The residuals are essential for very deep network to avoid the
degradation problem. Suppose H(x) is an underlying map-
ping to be fit by few neighbor layers, where « is the first input.
Based on the report in [17], several nonlinear layers are capa-
ble of asymptotically approximating complicated functions.
Therefore, instead of approximating H (z) using the neighbor
layers, a residual function F'(z) := H(x) — x will be approx-
imated by these layers. Hence, a residual block (as shown in
Figure 1) is defined as follows.

y" = F(aF, WF) + 2", (3)

where z* and y* are the input and output vectors and F' rep-
resents the residual mapping and the connection (F' + x) is
performed by an element-wise addition.

In our view, utilizing residual networks helps the network
to learn both weights and depths at the same time. In addi-
tion, we ensure the new layer (/N + 1) is learning something
new by providing the output of the previous layer (/V) without
any modification to the output of the current layer (/V + 1).
This technique handles both vanishing gradient and degrada-
tion problems in very deep networks.

3.3. Inception Module

The inception module significantly improves the computa-
tional efficiency while scaling up the network. This mod-
ule heavily utilizes NIN [18] in its internal architecture for
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two reasons: (1) to reduce the input dimension and eliminate
the computational bottlenecks and (2) to increase not only the
network depth, but also its width to improve the overall per-
formance. In other words, since a bigger size means a larger
number of parameters, which causes overfitting in deep net-
works, leveraging sparsity even inside the convolutions leads
to better results. Therefore, the filter-level sparsity blocks are
introduced in the inception module. The filter sizes are 1 x 1,
3 x 3, and 5 x 5. All layers along with their output filter
banks are combined and concatenated into one output vector.
In addition, pooling is added in each inception since it is es-
sential for convolutional networks. To further compress the
network and reduce the dimension, 1 x 1 convolutional layers
are added before each expensive convolutions. One sample of
this module is used in our network as shown in Figure 2.

3.4. Network Architecture

To handle the issue of overfitting, vanishing gradient, and
network saturation problems, we study the combination of
residual and inception modules. As the first layers generate
low-level abstraction while the higher layers provide more
high-level features from the data, the proposed network starts
with a light version of each module and the ratio of convolu-
tions and Residual-Inception blocks are gradually increased.
The proposed network utilizes a few numbers of Residual-
Inception stacks rather than very deep stacks of each single
module. It starts with the traditional CNNs along with a
lighter version of residual in conjunction with an inception
module. Then, an increased dimension of Residual-Inception
is added on top of the previous layer. At the end of the last
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residual block, an average pooling, a dropout, a fully con-
nected layer, and softmax are added to generate the final clas-
sification results. This block is also added to the end of the
last inception block groups. In this case, we can evaluate
which module generates smaller losses in each training step.
Figure 3 depicts a schematic view of the proposed architec-
ture. Table 1 also shows the detailed architecture. In residual
blocks, downsampling is performed directly by the convolu-
tional layers using the stride of 2. ReLu is used as an activa-
tion function in all convolutions including those inside resid-
ual and inception modules. However, it is removed after each
element-wise addition operation [19]. We use dropout [20]
after average pooling to avoid overfitting. The total number
of layers is 33 including 3 CNNs, 21 residual layers, 8 in-
ception layers, and 1 fully connected layer. This network is
designed efficiently, which can be run even on devices with
limited resources.

4. EXPERIMENTS

4.1. Data Sets

Two datasets are selected to evaluate the proposed network.
As mentioned earlier, limited work has been done to handle
video event detection using deep learning. Thus, we selected
a video dataset containing natural disaster information as de-
scribed in [21]. This dataset contains almost 7000 video shots
from YouTube with skewed distributions and the average P/N
ratio is 0.051. It also contains seven disaster classes including

Table 1. Deep Residual-Inception architecture

# layer | output size # layer | output size
1 C 7T x7,32/2 8 inca | 28 X 28 x 256
2 M 3x3/2 9 incb | 28 x 28 x 480
3 C 7T X 7,64/2 10 | M 3x3/2
1x1,128
4 | M 3x3/2 11 | res 3 x 3,128 %4
1x1,512
5 C 3% 3,120/2 12 | inca | 7 x 7 x 832
6 M 3x3/2 13 | incb | 7 x 7 x 1024
1x1,64
7 res 3x 3,64 | %3
1x 1,256
14 | A 7 x 7, avg pool 16 | F 1x1x10(8)
I5|D 1x1x 1024 17 | S 1x1x10()

flood, damage, fire, mud-rock, tornado, lightening, and snow.
We divided this dataset into 60% training and 40% testing.

In addition, we conducted more experiments on CIFAR-
10, a large public dataset consisting of 60,000 32 x 32 color
images in 10 classes. It is divided into 50k training and 10k
testing images. The main focus is to show the functional-
ity of the proposed network on a large dataset compared to
well-known deep learning algorithms in different training it-
erations and times. However, we do not intend to push the
state-of-the-art results which also utilized other techniques
such as augmentation, ensemble, randomized input order, and
sampling methodologies [6]. Therefore, a simple architecture
of the proposed network, as well as the ones of the compari-
son benchmarks are used in these experiments.

4.2. Experiment Setups and Results

For the disaster dataset, the network input is 224 x 224 im-
ages and channel-wise (pixel) mean is used instead of mean
image [7]. The learning rate is set to 0.0001 to train the net-
work slowly and avoid overfitting. The input of the network
for the CIFAR-10 is 32 x 32 images with subtracting the mean
pixel. We start with a base learning rate of 0.01 and divide it
by 10 every 20k iterations. For both datasets, SGD with a
momentum of 0.9 and weight decay of 0.0001 is selected to
train the model.

Caffe [22] is used as the deep learning framework. Our
proposed network is compared with two successful deep
learning networks: GooglLeNet (Inception) [6] with 22 lay-
ers and Deep Residual with 50 layers (proposed by Mi-
crosoft [5]). We used the CPU-based implementation on 6
servers with 64 processors.

Figure 4 depicts the patterns of the learning in the pro-
posed deep Residual-Inception network compared to two se-
lected benchmarks (Inception and Residual network). Specif-
ically, in Figure 4(a), although the proposed network starts
with higher losses, it starts to converge after less than 10,000
iterations. The inception network has very low losses at first
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but it does not show any improvement from early stages,
which can be due to over-fitting of this wide and deep net-
work. The residual network shows a similar behavior as
our network, but it still has higher losses than the proposed
Residual-Inception network in all iterations, due to its very
deep architecture. Similar patterns have been shown in Fig-
ure 4(b) on CIFAR-10 which includes more data and classes
than the disaster dataset. In this figure, the inception network
has higher training losses in all iterations; while the Residual-
Inception network and the deep residual network have lower
losses, respectively. Therefore, based on this experiment, one
can conclude that a compact combination of these two bench-
marks can converge earlier and produce lower losses. An-
other experiment has been conducted to show the efficiency
of the proposed network, as well as the performance achieved
on the testing data. Table 2 shows the specific times each
network achieved to the highest performance on our servers
with CPU implementation. As can be inferred from this table,
the proposed network achieved 0.694 accuracy on the testing
data in the disaster dataset in less than 45 hours; while it took
more than 150 hours for the residual network and 306 hours
for the inception network to achieve 0.688 and 0.653 testing
accuracy, respectively. Similarly, our network achieves 0.714
on CIFAR-10 in almost 122 hours. The inception network’s
performance reaches to 0.696 accuracy in a similar training
time; while the residual network achieves only 0.616 in more
than 131 hours. As mentioned earlier, all these networks can
achieve much higher accuracy using other optimization tech-
niques such as ensemble, automatic learning reduction, and
scale augmentation, which are out of the scope of this paper.

Finally, since interesting video event detection is the main
purpose of this paper, we have utilized the proposed Deep
Residual-Inception network to analyze its behavior on each
disaster class. For this purpose, a binary classification is con-
ducted based on the 3-fold cross validation. As this dataset
is highly imbalanced, the precision, recall, and F1 values are
used as the evaluation metrics instead of accuracy. Table 3
shows the detailed results for each disaster concept. As can be
seen from the table, the proposed deep network achieves very

Table 2. Training time and corresponding test accuracy for
two datasets

Disaster CIFAR-10
Network 'ljralmng Test Tralnlng Test
time (s) accuracy | time (s) | accuracy
Inception | 1,102,665 | 0.653 442771 | 0.696
Residual | 546,350 0.688 473,842 | 0.616
Residual- 1 161 101 | 0.694 | 440476 | 0.714
Inception

Table 3. Performance evaluation for different concepts on the
disaster dataset

Event Precision | Recall F1
Flood 0.920 0.943 | 0.932
Damage 0.879 0.785 | 0.829
Fire 0.965 0.940 | 0.952
Mud-rock 0.971 0.923 | 0.947
Tornado 0.940 0.897 | 0.918
Lightening 0.979 0.968 | 0.973
Snow 0.914 0.798 | 0.849
Average 0.938 0.893 | 0.914

promising F1 scores in almost all classes. For example, light-
ening has the highest F1 score compared to the other classes,
which can be due to its discriminative features (e.g., lights)
in the corresponding images. Damage and snow classes have
the lowest recall and F1 results respectively, because of their
complex image texture and color. All in all, the average F1
score of binary classification on the disaster dataset is 0.914,
which is higher than the previous work on this dataset.

5. CONCLUSION

This paper presents a new deep learning technique called
Deep Residual-inception network, which not only improves
the performance but also significantly speeds up the training
and convergence processes. In summary, based on the ex-
periments on two different multimedia datasets, the proposed
Deep Residual-inception network has shown its superiority
and effectiveness while maintaining low computational costs.
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