
1

PixSO: A System for Video Shot Detection

Chengcui Zhang1, Shu-Ching Chen1, Mei-Ling Shyu2

1School of Computer Science, Florida International University, Miami, FL 33199, USA
2Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33124, USA

Abstract

In this paper, a system called PixSO (Pixel-level
comparison, Segmentation and Object Tracking) is
presented for effective shot change detection using an
unsupervised object segmentation algorithm and the
technique of object tracking based on the segmentation
mask maps. The detection method was tested on TV news,
commercial, sports and documentary video sequences
which contain different types of shots having different
object and camera motions. The Our results have shown
that the PixSO system can not only produce accurate shot
change detection, but also obtain object level information
of the video frames, which is very useful for video content
indexing and analysis in multimedia databases.

1. Introduction

In order to efficiently manage and retrieve the growing
amount of digital video information, a video shot change
detection method is pre-required to ease the content-based
access to video library. A video shot is a video sequence
that consists of continuous video frames for one camera
action. Besides the natural shot cuts, there are also shot
boundaries caused by special edit effects (fade in/out, etc.)
and camera motions (panning, tilting, etc.) as well as object
motions.

There are a large number of methods for video shot change
detection in the literature. The matching process between
two consecutive frames is the essential part of it. Many of
them use the low-level global features such as the
luminance pixel-wise difference [5], luminance or color
histogram difference [7] and edge difference [6] to
compare two consecutive frames. However, since
luminance or color is sensitive to small changes, these low-
level features cannot give a satisfactory answer to the
problem of shot change detection. For example, in the
method of using DC image [4], it uses the luminance
histogram difference of DC images, which is very sensitive
to luminance changes. Other recently proposed methods
focused on long transition detection and temporal slice
analysis can be found in [14] and [15], respectively.
Recently, there also have been many research work done
on the compressed video data domain such as the fast shot
change detection [3] and the directional information
retrieving [2] by using the discrete cosine transform (DCT)
coefficients in MPEG video data.

While parsing the video data for analysis is time
consuming, it is expected to produce as much information
as it can in one pass for efficiency purpose. For example,
the object extraction and key frame selection can be done
together with the video shot segmentation. However, to our
best knowledge, there is little work done in the literature
trying to automate the process of obtaining the object level
information in video scenes while doing video shot
segmentation. The work proposed in [1] tries to employ
object tracking into the scene cut detection, but the
detection and tracking of the semantic objects of interest
need to be specified manually, and a bunch of template
frames containing the semantic objects were used for
training purpose, which is not feasible for automatic and
unsupervised processing. Moreover, the method proposed
in [1] is domain-specific (news videos) instead of a more
general framework. Generalized block matching methods
allowing affine transformations in intensity have been used
in [1] for object tracking purpose. However, affine
transformation is still sensitive to luminance changes. In
this paper, we try to apply an efficient unsupervised
segmentation method to extract the semantic objects from
video data without user intervention, which is totally
independent of specific application domain.

The extraction of regions/objects of interest is regarded as
the basis for extracting high level semantic meaning. In
this paper, focusing on the uncompressed video data
domain, we propose and implement an innovative shot
change detection system called PixSO (Pixel-level
comparison, Segmentation and Object Tracking) using an
unsupervised image segmentation algorithm and the object
tracking technique. By using the unsupervised image
segmentation algorithm, the significant objects or regions
of interests as well as the segmentation mask map of each
video frame can be automatically extracted. The
segmentation mask map, in other word, can be deemed as
the clustering feature map of each frame. In such a way,
the pixels in each frame have been grouped into different
classes (for example, 2 classes). Then two frames can be
compared by checking the difference between their
segmentation mask maps. In addition, in order to better
handle the situation of camera panning and tilting, the
object tracking technique based on the segmentation results
is used as an enhancement to the basic matching process.
Since the segmentation results are already available, the
computation cost for object tracking is almost trivial
compared to those manual template-based object tracking
methods. For efficiency purpose, we also apply the pixel-
level comparison for pre-screening in addition to

3A1.5

VDEX
ICICS-PCM 2003
15-18 December 2003
Singapore

0-7803-8185-8/03/$17.00 © 2003 IEEE

2

segmentation and object tracking, which is what ‘PixSO’
(Pixel level comparison, Segmentation and Object
Tracking) stands for. The advantages of using
unsupervised segmentation and object tracking are
summarized below:

1. Extraction of regions/objects is fully unsupervised and
efficient, without any user interventions or domain-
dependent knowledge.

2. The algorithm for comparing two frames is simple and
fast based on the segmentation results.

3. This method is not sensitive to small changes in
luminance or contrast.

4. The unsupervised object level segmentation results can
be further used for video indexing and content
analysis.

This paper is organized as follows. In Section 2, we
explain the details of the proposed PixSO system for video
shot detection as well as the unsupervised segmentation
algorithm and the object tracking technique. In Section 3,
experimental results are analyzed and compared with other
method such as standard histogram to show the
effectiveness of the proposed method. Finally, conclusions
are given in Section 4.

2. PixSO: System Description

2.1 Segment Information Extraction

Unsupervised segmentation: In this paper, we use an
unsupervised segmentation algorithm called SPCPE
(Simultaneous Partition and Class Parameter Estimation)
[9] to partition the video frames. A class is characterized
by a statistical description and consists of all the regions in
a video frame that follows this description, while a
segment is an instance of a class. This is illustrated in
Figure 1. The gray areas and dark areas in the segmentation
mask map (shown on the right side of Figure 1) represent
two different classes respectively. Considering the gray
class, there are in total two segments (namely the fish and
the rod) within this class. Notice that each segment is
bounded by a bounding box and has a centroid, which are
the results of segment extraction.

Suppose there are two classes -- class1 and class2. Let the
partition variable be c = {c1, c2}, and the classes be
parameterized by θθθθ = {θθθθ1, θθθθ2}. Also, suppose all the pixel
values yij (in the image Y) belonging to class k (k=1,2) are
put into a vector Yk. Each row of the matrix Φ is given by
(1, i, j, ij) and ak is the vector of parameters (ak0 , …, ak3)

T.

yij = ak0 + ak1i + ak2 j + ak3ij, ∀(i, j) yij∈ ck
Yk = Φ ak; TT

ka ΦΦΦ= −1)(ˆ Yk

The best partition is estimated as that which maximizes the
a posteriori probability (MAP) of the partition variable
given the image data Y.

Figure 2 illustrate the basic workflow of SPCPE. The
algorithm starts with an arbitrary partition of the data in the
first video frame and computes the corresponding class
parameters. Using these class parameters and the data, a
new partition is estimated. Both the partition and the class
parameters are iteratively refined until there is no further
change in them.

50 100 150 200 250

20

40

60

80

100

120

140

160

180

50 100 150 200 250

20

40

60

80

100

120

140

160

180

Figure 1: Examples of classes and segments.

Preliminary Class

Assignment

Parameter
Estimation

Partition

Estimation
STOP if

NO change

Figure 2: The flowchart of SPCPE algorithm.

Although SPCPE algorithm can handle multiple classes
(more than two), we just use two classes in segmentation
since two classes are efficient and good enough for our
purpose in this application domain.

Efficiency improvements: In order to apply the object
extraction into shot detection, the segmentation step has to
be efficient. In this study, we adopt the following strategies
to achieve computation efficiency for extracting objects
from a video sequence:
♦ In order to achieve computation efficiency, we use the

incremental computation together with parallel
computation to speed up the clustering process. The
basic idea of incremental computation is to compute the
class parameters at the (k+1)th iteration using the
intermediate results at the kth iteration rather than
calculate it from scratch, thus to reduce the computation
significantly. To further improve the speed, the parallel
computation is also applied on sub-images by using MPI
(Message Passing Interface) and SPMD (Single
Processor/Multiple Data) on Cluster Computing.

♦ Another strategy is that, it is not necessary to wait until
there is no further change in the class partition. Instead,
when the percent of pixels that change their class labels
is less than a threshold (say 5%), the class partition can
be deemed stable so that the iteration stops.

♦ Further, since the consecutive frames in video sequences
are closely related in contents, incorporating the
partition of the previous frame as the initial condition
while partitioning the current frame can greatly reduce
the computation cost up to 90%.

As a result, the combined speed-up factor can achieve
100~200. The time for segmenting one video frame ranges
from 0.03~0.12 sec. Since a pre-screening step based on
pixel comparison is used to filter out most of the video
frames, the number of frames that need to do segmentation
is small.

3

2.2 Object Tracking

The first step for object tracking is to identify the segments
in each class in each frame. Then the bounding box and the
centroid point for that segment are obtained. The next step
for object tracking is to connect the related segments in
successive frames. The idea is to connect two segments that
are spatially the closest in the adjacent frames. In another
word, the Euclidean distances between the centroids of the
segments in adjacent frames are used as the criteria to track
the related segments. Besides, size restriction should be
employed in determining the related segments in the
successive frames. In fact, the proposed object tracking
method can be called a “block motion tracking” method
since it is an extension of the macroblock matching
technique used in motion estimation [10] between
successive frames. The proposed object tracking method is
based on the segmentation results and goes much further
than the macroblock matching technique because it can
choose the appropriate macroblocks (segments) within a
specific frame by segmentation and track their motions
instead of fixed-size and pre-determinate macroblocks.

Figure 3: The workflow of the proposed method.

2.3 Shot Change Detection Mechanism

As shown in Figure 3, our proposed PixSO system
combines three main techniques together, namely
segmentation, object tracking, and the traditional pixel-
level comparison method. In the traditional pixel-level
comparison approach, the gray-scale values of the pixels at
the corresponding locations in two successive frames are
subtracted and the absolute value is used as a measure of
dissimilarity between the pixel values. If this value exceeds
a certain threshold, then the pixel gray scale is said to have
changed. The percentage of the pixels that have changed is
the measure of dissimilarity between the frames. This
approach is computationally simple but sensitive to
digitalization noise, illumination changes and object
moving. On the other hand, the proposed segmentation and
object tracking techniques are much less sensitive to the
above factors. In PixSO, we use the pixel-level comparison
for pre-screening. By applying a strict threshold for the
percentage of changed pixels, we want to make sure that it
will not introduce any incorrect shot cuts that are falsely
identified by pixel-level comparison. The advantage to
combining the pixel-level comparison is that it can further
alleviate the cost of computation because of its simplicity.

In other word, we apply the segmentation and object
tracking techniques only when it is necessary.

The steps are given in the following:
1. Do pixel-level comparison between the currently

video frame and the immediate preceding frame.

 Let the percentage of change be change_per and
the variance of the pixel-level differences be
change_var. Check these two variables.

 If the current frame is not identified as a
shot cut, which means that change_per<δph or
change_var<δv, then go on to process the next
video frame. Otherwise go to step 2.

(The purpose of checking change_var is to pre-
screen the fade in and fade out situations
because they usually result in high change_per
and low change_var. Although object tracking
can deal well with both of the situations as
you will see in Section 3, by conducting this
will reduce the number of frames that need
segmentation.)

2. If change_per>δpl, the current frame is
identified as a shot cut. Go to step 1 and
process the next frame.

 If change_per<=δpl, go to step 3.

3. Do the segmentation on the previous frame only
if the previous frame has never been segmented.

 If the previous frame has been segmented
before, obtain its segmentation mask map
directly and use it as the initial partition
for segmenting the current frame. Get the
current and the previous segmentation mask maps
for these two frames. Let the variable cur_map
represent the current segmentation mask map’s
value and variable pre_map represent the value
of the previous segmentation mask map. Note
that the variables cur_map and pre_map can be
deemed as two matrices. Go to step 4.

4. diff = |cur_map-pre_map|, where the variable
diff is the point-to-point subtraction between
two successive segmentation mask maps.

diff_num = the number of nonzero elements in
diff;

 diff_percent = diff_num / (total number of
elements in diff); where the variable
diff_percent is the percentage of changes
between the two successive segmentation mask
maps.

 Go to step 5.

5. Check the variable diff_percent.

If diff_percent < Low_Th1

 Not shot change. Go to step 1 and process
the next frame.

 Else

 If Low_Th1<diff_percent<Low_Th2 and
change_percent<δpm

 Not shot change. Go to step 1 and process
the next frame.

 Else

 Tracking object between the current frame
and the previous frame. Let variable A be
the total area of those segments in the
previous frame that cannot find out their
corresponding segments in the current
frame.

 If (A/the area of the frame)<Area_thresh

 Not shot change. Go to step 1 and
process the next frame.

 Else

 The current frame is identified as shot
cut.

 Go to step 1 and process the next frame.

Shot
Boundary

Pixel-level
Comparison

Segmentation Maps
Comparison

Object Tracking

4

 End if;

 End if;

 End if.

(Here, δph, δpl, δv, δpm, Low_Th1 and Low_Th2 are threshold
values for variables change_percent and diff_percent and
they are derived from the experiential values.)

3. Experimental Results

We have performed a series of experiments on various
video types such as the TV news videos (in MPEG-1
format), music MTV video, commercial video,
documentary video, and sports video such as the soccer
game [11]-[12]. The average size of each frame in the
sample video clips is 170 rows and 240 columns. Table I
gives the statistics of five example video clips from five
different video types. When choosing the method for the
comparative study, we select the color-histogram based
method proposed in [7] because it is recognized as a well-
balanced method and has good overall performance [13]. In
this study, we present a comparison of our algorithm with
this method, with the view to understand the limits faced by
the two different methods.

Table I: Video data used for experiments

Name Type Number of
Frames

Number of
Shots

V1 News 1262 5
V2 MTV 886 25
V3 Commercial 1294 29
V4 Sports 750 5
V5 Sports 1715 16
V6 Sports 1405 14
V7 Documentary 15326 113
V8 Documentary 1798 18

The performance is given in terms of precision and recall
parameters. NC means the number of correct shot change
detections, NE means the number of incorrect shot change
detections, and NM means the number of missed shot
detections.

The summary of the PixSO system compared with the
method proposed in [7] is shown in Table II via the
precision and recall parameters. In our experiments, the
overall values of recall and the precision are both above
ninety percent. As seen in Table II, the recall results for the
PixSO system seem more stable and promising because
most of the recall values are 100 percent, while the
histogram-based method tends to miss more shot cuts.
Another observation is that, by using the proposed method,
the precision values for MTV and commercial videos are a
little lower than other types of videos because there are lots
of fast movements and fancy transformation between
successive frames. We also realize that the histogram-based
method has the advantages in handling sports videos
because a histogram is less sensitive to the object motions.
However, both of them suffer from the fast object

movements together with the camera panning and tilting.
Also, the long gradual transitions (more than 2 seconds) are
difficult to identify.

Table II: The Precision and Recall Parameters

PixSO Color Histogram
Type Name

Precision Recall Precision Recall

N V1 100% 100% 100% 80%
M V2 92% 95% 69% 56%
C V3 82% 100% 71% 53%
S V4 100% 100% 60% 60%
S V5 80% 100% 85% 88%
S V6 79% 92% 86% 85%
D V7 99% 98% 86% 90%
D V8 82% 85% 70% 80%

Overall 92.2% 96.7% 80.6% 79.3%

As mentioned before, the method of using low-level
features is very sensitive to luminance and color change,
but our segmentation-based mechanism is not. Figure 4
gives an example video sequence for shots fading in. Figure
4(a) is the original video sequence and Figure 4(b) shows
the corresponding segmentation mask maps for (a). As seen
from Figure 4(b), the segmentation results are very stable
while changing the luminance and contrast. This is a good
example to show that the proposed segmentation together
with object tracking technique is not sensitive to luminance
changes. According to our test, the proposed method is very
effective in detecting fade in/out and abrupt shot cuts.

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110
20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110
20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

100

110
Figure 4: An example video sequence for fading in as well as
its corresponding segmentation mask maps.

Figure 5: An example video sequence for camera panning and
tilting as well as its corresponding segmentation mask maps.

Figure 5 gives an example of the camera panning while
tilting. In this case, the pixel-level comparison will identify
too many incorrect shot cuts since the ‘objects’ in the shot
move and turn from one frame to another. But as can be
seen from Figure 5, the segmentation mask maps can still
represent the contents of the video frames very well. Since
the segmentation mask maps are binary data, it is very
simple and fast to compare the two mask maps of the
successive frames. Moreover, by combining the object
tracking method, most of the segment movements can be

5

tracked. Hence, we know that there is no major shot change
if the segments in two successive frames can be tracked and
matched well according to the object tracking method
mentioned in Section 2.2.

It should be pointed out that even though it is efficient to
simply compare the segmentation mask maps, the
employment of the object tracking technique is very useful
in case of camera panning and tilting. It helps to reduce the
number of incorrectly identified shot cuts. Another
observation is that by combining the pixel-level
comparison, the number of the video frames that need to do
segmentation and object tracking is greatly reduced so that
the computation brought by segmentation has been
significantly alleviated. Our current system can achieve
near real-time processing for video sequences with small-
size video frames. However, it is highly possible to directly
apply the segmentation method on the down sampled video
frames, which will be investigated in our future work.
Moreover, the process produces not only the shot cuts, but
also the object level segmentation results. Each detected
shot cut frame is selected as a key frame and has been
modeled by the features of its segments such as the
bounding boxes and centroids. Although it is not practical
to automatically identify all the objects-of-interest,
tremendous manual efforts can be alleviated with aid of
unsupervised segmentation and object tracking. Based on
the extracted object information, we can further structure
the video content using some existing multimedia semantic
model such as the multimedia augmented transition
network (MATN) model [8].

4. Conclusions and Future Work

In this paper, we presented an innovative shot change
detection system called PixSO using the unsupervised
segmentation algorithm and object tracking technique, and
showed the precision and recall performance using the
different types of sample MPEG-1 video clips. By using the
pixel-level comparison in pre-screening, the key idea of the
matching process in shot change detection is to compare the
segmentation mask maps between two successive video
frames when necessary, which is simple and fast. In
addition, the object tracking technique is employed as a
complement to handle the situations of camera panning and
tilting with little overhead. Unlike many methods using the
low-level features of the video frames, the PixSO system is
not sensitive to the small changes in luminance or color.
Moreover, it has high precision and recall values as shown
in our experiment results. Although this paper is focusing
on the video segmentation in uncompressed data domain, it
can be easily applied to the compressed data domain. For
example, the proposed algorithm can operate directly on the
DC image, which is a small fraction of the compressed data
and can be easily extracted without full frame
decompression [4].

Acknowledgement

For Shu-Ching Chen, this research was support in part by
NSF EIA-0220562 and NSF HRD-0317692. For Mei-Ling
Shyu, this research was support in part by NSF ITR
(Medium) IIS-0325260.

References

[1] B. Gunsel, A. M. Ferman, and A. M. Tekalp,
“Temporal Video Segmentation Using Unsupervised
Clustering and Semantic Object Tracking,” Journal of
Electronic Imaging, 7(3), pp. 592-604, 1998.
[2] T.-H. Hwang and D.-S. Jeong, “Detection of Video
Scene Breaks Using Directional Information in DCT
Domain,” Proc. the International Conference on Image
Analysis and Processing, pp. 882-886, 1999.
[3] S.-W. Lee, Y.-M. Kim, and S.-W. Choi, “Fast Scene
Change Detection Using Direct Feature Extraction from
MPEG compressed Videos,” IEEE Trans. on Multimedia,
vol. 2, No. 4, pp. 240-254, Dec. 2000.
[4] D. Swanberg, C. F. Shu, and R. Jain, “Knowledge
Guided Parsing in Video Database,” Proc. SPIE’93, Storage
and Retrieval for Image and video Databases, vol. 1908, pp.
13-24, San Jose, CA, 1993.
[5] B. Yeo and B. Liu, “Rapid Scene Analysis on
Compressed Video,” IEEE Trans. Circuits Systems Video
Technol., vol. 5, no. 6, pp. 533-544, 1995.
[6] R. Zabih, J. Miller, and K. Mai, “A Feature-Based
Algorithm for Detecting and Classifying Scene Breaks,”
Proc. ACM Multimedia ’95, pp. 189-200, 1995.
[7] H. Zhang, A. Kankanhalli, and S. W. Smoliar,
“Automatic Partitioning of Full-Motion Video,”
Multimedia System, vol. 1, no. 1, pp. 10-28, 1993.
[8] S.-C. Chen, M.-L. Shyu, and R. L. Kashyap,
“Augmented Transition Network as a Semantic Model for
Video Data,” International Journal of Networking and
Information Systems, Special Issue on Video Data, vol. 3,
no. 1, pp. 9-25, 2000.
[9] S.-C. Chen, S. Sista, M.-L. Shyu, and R. L. Kashyap,
“An Indexing and Searching Structure for Multimedia
Database Systems,” IS&T/SPIE conference on Storage and
Retrieval for Media Databases 2000, pp. 262-270, January
23-28, 2000.
[10] D. Le Gall, “MPEG: A Video Compression Standard
for Multimedia Applications,” Communications of the
ACM, 34(1), pp. 46-58, April 1991.
[11] http://www.ibroxfc.co.uk
[12] http://hsb.baylor.edu/courses/Kayworth/fun_stuff/
[13] R. Lienhart, “Comparison of Automatic Shot Boundary
Detection Algorithms,” in Image and Video Processing VII
1999, Proc. SPIE 3656-29, pp. 290-301, Jan. 1999.
[14] W. J. Heng, “Shot Boundary Refinement for Long
Transition in Digital Video Sequence,” IEEE Trans. On
Multimedia, Vol. 4, No. 4, pp. 434-445, December 2002.
[15] C.-W. Ngo, T.-C. Pong, and H. Zhang, “On Clustering
and Retrieval of Video Shots through Temporal Slices
Analysis,” IEEE Trans. On Multimedia, vol. 4, no. 4, pp.
446-458, December 2002.

	Previous Menu
	Main Menu
	Getting Started
	Introduction
	Sessions
	Authors
	Search CD-ROM
	Search Results
	Print

