DavMovie

Final Document

Prepared For
Professor Peter Clarke

CEN5011-01

Group Name:

Team 3

Project Members:
David Crowther

David Peraza

Date:

04/12/2004

Abstract

In this document we present the DavMovie, an online movie store, which will allow access to rent or purchase, and subsequently download and watch movies in a timely manner from anywhere with internet access. We first cover the software requirements including the project plan, and functional/nonfunctional requirements. We then delve into the design aspects of the system showing the system design and object design. Finally we reveal the test plan for the system, documenting how the system measured up and what corrections needed to be made.
Table of Contents
1. Introduction

 4
1.1. Purpose of System

 4
1.2. Scope of System

 4
1.3. Development Methodology

 4
1.4. Definitions, Acronyms, and Abbreviations

 7

1.5. Overview of Document

 9

2. Current System

 10
3. Project Plan

 12

4. Requirements of System

 16
4.1. Functional and Nonfunctional Requirements

 16
4.2. Overall Use Case Diagram

 17
4.3. Requirements Analysis

 18
5. System Design

 19
5.1. Overview

 19
5.2. Subsystem Decomposition

 22
5.3. Hardware and Software Mapping

 24
5.4. Persistent Data Management

 25
6. Object Design

 26
6.1. Overview

 26
6.2. Object Interaction

 27
6.3. Detailed Class Design

 32
7. Testing Process

 35
7.1. System Tests

 35

7.2. Subsystem Tests

 57
7.3. Evaluation of Tests

 62
8. Glossary

 76
9. Appendix

 81
Appendix A - Project Schedule

 82

Appendix B – Use Cases

 83
Appendix C – User Interface Designs

 94
Appendix D – Deployment Diagram

102
Appendix E – Detailed Class Diagrams

103
Appendix F – Class Interfaces

108
Appendix G – Test Driver

124
Appendix H – Diary of Meeting and Tasks

136

 1. Introduction

The chapters to come will present the Software Requirements, Design Documentation, as well as Testing Documentation for the DavMovie system. The sections in this chapter will outline the purpose, scope, some of the common definitions and abbreviations used in the paper, as well as an overview of what will be discussed in the remainder of the paper.
1.1 Purpose

DavMovie will provide an online source for the rental or purchase of movies, which will be downloaded to a user’s computer, all from the comfort of the user’s home. For rented movies a special viewer would be downloaded and installed that would allow viewing of a movie for the specified rental period. A movie that was purchased could be downloaded in a common format with no restrictions. A user could then potentially burn the movie to a DVD.
In the chapters to follow DavMovie will be compared with other movie systems currently available, both physical and virtual. A project plan will be presented for the development of the system. And finally all the use cases will be documented, with additional UML models listed in the appendices.

1.2 Scope

The scope of DavMovie will be a totally online system, where all orders will be taken over the web and all media will be delivered over the web. DavMovie will be available to anyone with a connection to the internet, although it will only be practical to those with a high speed connection.
In its production environment DavMovie will consist of several to many replicated servers geographically dispersed offering proximity, redundancy, and load balancing to ensure the site is available and running efficiently at all times. As the number of users grows, a content delivery network can also be employed to make sure movies are streamed in the most productive manner. As a global application, DavMovie will be designed such that it can scale to hundreds of millions of users.
1.3 Development Methodology

The Unified Software Development Process was the methodology chosen to drive the software development of DavMovie. This methodology breaks software development into a number of cycles from birth to retirement, and defines four phases (inception, elaboration, construction, and transition), each of which can be iterated through several time for a given cycle.

The inception phase was documented in the Software Requirements Document, SRD, which was generated from the Unified Process. This document captured the user requirements, and presented examples and diagrams for clarity. The SRD was then used as a guide for the elaboration phase, which generated the Design Document, DD. The use cases defined in the SRD helped guide the creation of packages and subsystem decomposition. Additionally, documentation of hardware and software mapping, persistent data storage, and object design were presented in the DD. Finally this Final Document, FD, records the events of the construction phase readying the system for transition. Still driven by the use cases this document inherits from the SRD and DD and adds a chapter on test cases and their evaluation.

In addition to description of the various aspects of system and object design, the following are modeled: package, deployment, data structure, minimal class, and detailed class diagrams, as well as the actual interfaces of the classes to be developed. The package model (Section 2.1) shows the tiers of the system and how they interact. The deployment model (Appendix C) illustrates how the hardware components of the system will communicate. The data schema (Section 2.4) shows the table structure where the persistent data will be stored. The minimal class diagram (Section 3.1) presents a view of the classes and their inter-relationships, while the detailed class diagram (Appendix D) describes the attributes and methods of each class, where the methods include the whole method signature. Finally, the class interfaces (Section E) contain the syntactical code for the classes to be implemented.

1.4 Definitions
.NET: A Microsoft operating system platform that incorporates applications, a suite of tools and services and a change in the infrastructure of the company's Web strategy.

API: Application program interface, a set of routines, protocols, and tools for building software applications.
C++: A high-level programming language developed by Bjarne Stroustrup at Bell Labs. C++ adds object-oriented features to its predecessor, C.
Class: An Abstraction of a set of objects with the same attributes, operations, relationships, and semantics.

Cohesion: The strength of dependencies within subsystem or class.

Coupling: The strength of dependencies between subsystems or classes.
DSL: Digital subscriber lines, technologies that use sophisticated modulation schemes to pack data onto copper wires.
DVD: Short for digital versatile disc or digital video disc, a type of optical disk technology similar to the CD-ROM.
Giga: Prefix indicating a multiplication by 1 million. For example 20 Gigabytes is equivalent to 20 million bytes.

GUI: Acronym for graphical user interface. A program interface that takes advantage of the computer's graphics capabilities to make the program easier to use.
HTML: Short for Hypertext Markup Language, the authoring language used to create documents on the World Wide Web.
IBM: Short for International Business Machines, the largest computer company in the world. IBM started in 1911 as a producer of punch card tabulating machines.
IIS: Short for Internet Information Server, Microsoft's Web server that runs on Windows NT platforms.
ISP: Short for Internet Service Provider, a company that provides access to the Internet.

LAN: Short for Local Area Network, a computer network that spans a relatively small area.
Linux: A freely-distributable open source operating system that runs on a number of hardware platforms. The Linux kernel was developed mainly by Linus Torvalds.
Mega: Prefix indicating a multiplication by 1000. For example 20 Megabytes is equivalent to 20000 bytes.

SQL: Abbreviation of structured query language, and pronounced either see-kwell or as separate letters. SQL is a standardized query language for requesting information from a database.
T1: A dedicated phone connection supporting data rates of 1.544Mbits per second. A T-1 line actually consists of 24 individual channels, each of which supports 64Kbits per second.
URL: Abbreviation of Uniform Resource Locator, the global address of documents and other resources on the World Wide Web.
VHS: The most common format for coding and playing a video tape for a video cassette recorder.
WAN: Short for wide-area network, a computer network that spans a relatively large geographical area.
1.5 Overview

In this document we will present the software requirements of the DavMovie system for the client’s approval. In chapter 2 we discuss problems and shortcomings of current systems, and show how DavMovie will circumvent them. In chapter 3 we present the project management plan to illustrate how we plan to construct the system, as well as provide estimates for time and cost to implement the project. Finally, in chapter 4 we present our proposed system focusing on the user requirements, so the client can confirm that we are indeed building the system they envisioned. . In Chapter 5, the system design will be presented including: subsystem decomposition, hardware and software mapping, and persistent data management. In Chapter 6, the object design is revealed, which will cover the following: object relationships, object interaction, and object specification. Finally, in chapter 7 the testing process will be illustrated including system tests, subsystem tests, and the evaluation of these tests. Additionally there is a glossary and several appendices with additional notes, graphs and diagrams to provide supplemental information for the reader.
2. Current Systems

Most movie rental systems found today can be categorized into two main groups, desktop applications and web applications. Desktop applications, like those used by Blockbuster and Hollywood, maintain an inventory of the store’s supply of movies (VHS and DVD), and a list of customers. This kind of system is meant to provide the store clerk with a user interface so that he/she can keep track of which movies are out and which customer has it.
Today’s web applications also keep track of an inventory of movies and a list of customers. However, they provide a more convenient way for the customer to rent/purchase the movie. An authorized user can from the comfort of his/her home log on to the website, search for the desired movie and rent/purchase the movie. The system in turns sends the order to a processing department, which then ships the movie (VHS or DVD) through the mail. Once the user watches the movie he/she must send back the movie through the mail if it was rented.

2.1 Desktop System (Limitations and Problems)

A desktop system for the most part is limited to inventory and tracking functionality. Listed below are some of the problems encountered with these systems
· User interface is not as user-friendly since it is intended that users will be trained.
· User needs to walk or drive to the store to rent/purchase movie.

· Stores with these systems will be limited to serve customers that live near by.

· Stores with these systems will have to deal with delinquent accounts.

· The system may not provide automatic billing.
· Stores will have to maintain a staff of clerks.

2.2 Web System (Limitations and Problems)

Most web systems are more advanced than the typical desktop system. They usually provide automatic billing functionality and have a larger potential customer base. However there still are limitations with the average web system, the most important of which are listed below.

· There is a time delay between the rental of the movie and the arrival of the movie. (Mailing delays).

· System has to deal with delinquent accounts. That is the system must include extra logic to deal with customers that don’t return movies.

· There is still some manual processing since movies needs to be packaged and sent to the customers.

As can be seen, the above systems have significant shortcomings that can inhibit the amount of profit for the store. With high speed internet connections quickly becoming a household standard, we can now attack the problem from a different perspective.
4. Proposed System

In the next couple of sections we will be reviewing the proposed system. We will first take a look at the requirements, by defining each use case in terms of functional requirements as well as constraints. The second section will discuss the use case and sequence diagrams that are present in Appendix C.
4.1 Functional and Nonfunctional Requirements

The functional and nonfunctional requirements were captured in the use cases during system requirements. The use cases can be divided by the two types of users in the system, Administrator and User. As can be seen in the global view (Section 4.2) all use cases apply to either an Administrator, User or both. The detail of the use cases including pre and post conditions, exceptions, alternatives, and constraints can be found in Appendix B.
4.2 Use Cases – Global View
[image: image1.emf]Register New Member

(from Use Cases)

Add Movie

(from Use Cases)

Remove Movie

(from Use Cases)

Add New Admin

(from Use Cases)

Administrator

(from Actors)

<<Initiates>>

<<Initiates>>

<<Initiates>>

Download Movie

(from Use Cases)

Purchase Movie

(from Use Cases)

Rent Movie

(from Use Cases)

Movie Renter/Buyer

(from Actors)

<<Initiates>>

<<Initiates>>

<<Initiates>>

Adquire Movie

(from Use Cases)

<<Inherits >>

<<Inherits >>

Edit Personal Info

(from Use Cases)

Search Movies

(from Use Cases)

Logout

(from Use Cases)

Login

(from Use Cases)

<<extend>>

DavMovie User

(from Actors)

Use Case Model – Global View

4.3 Requirements Analysis

Sections 4.1and 4.2 above give an overview view of the requirements analysis and subsequent documentation that was performed for this project. Appendix B provides a more detailed look at the specifics of the use cases and the constraints they had. As the project progressed into the design phase, and the construction phase these requirements were constantly being reviewed and used as a basis for all other work done.
5. System Design

This chapter will discuss the software architecture, to be realized by DavMovie. In Section 5.1, an overview of the subsystems to be used is given, and a detailed package diagram is presented for them. This is followed by Subsystem Decomposition (Section 5.2), which shows how the subsystems are mapped back to the use cases. How the subsystems are mapped to software components and hardware nodes is described in Section 5.3. Finally, Section 5.4 reveals the database structure to be used by DavMovie.

5.1 Overview

DavMovie will employ a three-tier architecture, which is composed of interface, logic, and storage layers, as can be seen in Figure 5.1 below. The top layer, Interface, will be composed of clients in the form of browsers running the web pages generated by the web server. This layer will also accept data from the user and submit this data to the web server. The middle layer, Application Logic, consists of a web server, and contains all the business logic used in the application. It will accept input from the client and generate web pages for the client. It will also query the database layer as needed and accept responses from it. Finally the bottom layer, Storage, consists of the database management system. Its job is to store data submitted from, as well as return the appropriate data requested by the application layer. Now to delve a little deeper into each of the subsystems, the objects inside will be examined along with how they interact. (See Figure 5.1 below for a detailed look at the subsystems.)

The Interface layer consists of all the web page and GUI objects the user will see and interact with. Each page sent to the client will be processed by the user’s browser and displayed accordingly. Each page is independent from the other pages, with the exception of the Menu GUI which will link to several other pages. This will yield a subsystem low in cohesion. Additionally each page is tied to a controller object running in the application subsystem, making its coupling with the application layer high. Ordinarily low cohesion and high coupling is a bad sign for subsystem decomposition, but it is actually very common between client and server in a web application. Specifically in the .NET framework, which DavMovie will be using, every web page sent to the browser has a corresponding code-behind page that executes on the web server.

The Application layer consists of the web server, and all the controller objects contained within it to execute the business logic of the system. Each page that is sent to the client is generated by one of these controller objects. Additionally the controller object listens for events to be returned from its assigned page and will collect information from this page for processing. Again the cohesion within the subsystem is relatively low with the controllers working independently. Coupling is high with the interface layer for the same reasons described above, and coupling with the storage layer is found by interacting with the storage manager. Again the coupling/cohesion ratio is normal for web applications.

The Storage layer consists of a storage manager, all the entity objects, and various record objects. The Storage Manager acts as an interface for all persistent data interaction. This allows the details of data access to be abstracted from the rest of the application. The entity objects are populated with persistent data from the database and represent domain concepts the user will be aware of, as well as contain the relevant data functions applicable to the specific entity. Record objects simply contain data which will need to be transferred among objects in the system. These objects contain no functionality and are equivalent to a structure in C++. At last, in the storage subsystem the coupling/cohesion factor will meet expectations. The storage subsystem maintains low coupling by using exactly one object as an interface for other subsystems to interact with. Additionally, cohesion within the subsystem is fairly high with the storage manager interacting with all other subsystem objects, and many record objects being associated with corresponding entity objects.

The following section, Subsystem Decomposition, will show how these subsystems map to the use cases specified. (See Appendix A for a global use case diagram.)

[image: image2.emf]Tier 3 - Storage

Tier 2 - Application Logic

Tier 1 - Interface

Fig 2.1 Package Diagram

5.2 Subsystem Decomposition

As stated in the previous section all use cases (See Appendix A) will be realized by these subsystems, and in most cases all three subsystems will be involved in the use case implementation. According to the use cases specified thus far, the interface layer will play a role in executing every use case. This is due to the fact that every use case will be returning information to the client. Similarly, the application layer takes part in every use case, because every page that is returned to the client is generated by the web server. The storage layer will be utilized in most use cases, specifically those where access to persistent data is needed. Listed below are the realizations of all the use cases, which will be implemented in this phase. The detail of the use cases can be found in Appendix B at the end of this paper.

The use case login begins when the logon page displays in the browser (Interface Layer) where the LogonPage.FormLoad() function has generated the page. On submit the UserAuthenticator class (Business Layer) – calls the Storage Manager’s RetrieveUserCredentials() function (Storage Layer) to verify if the user is authorized to access the system.

The logout use case begins when a user clicks the logout button from any screen where the menu is displayed in the Interface. The Business Subsystem then removes all session values associated with the user and returns them to the logon page.

The Register New Member use case begins when a user is directed to the New Member page of the Interface Subsystem after clicking the New Member link of the logon page. The Business Subsystem validates the info entered by the user, and if okay passes the appropriate records to the Storage Subsystem’s AddUser() function.

The Add Admin use case begins when a user is directed to the New Manager page of the Interface Subsystem after clicking the Add Manager link of the menu. The Business Subsystem validates the info entered by the user, and if okay passes the appropriate records to the Storage Subsystem’s AddUser() function.

The Search Movies use case begins when the Search page displays in the Interface Layer. The Business Layer validates the entries made and if okay submits it to the Storage Layer’s SearchForMovies().

The Add Movie use case begins when the Add Movie page displays in the browser of the Interface. The Business controller validates the entries made and if okay submits it to the Storage Layer’s AddMovieRecord() function.

The Remove Movie use case begins when the Remove Movie page displays in the Interface. The Business controller validates the entries made and if okay submits it to the Storage Layer’s RemoveMovie() function.

The Acquire Movie use case begins when the Acquire Movie page displays in the Interface Layer after a user has clicked a Rent or Purchase link from the Search page. The Business Subsystem calls RecordTransactions() from the Storage Subsystem, which subsequently calls internal functions AddBillingTransaction() and AddMovieTransactions() to record the transactions in the database.

The Download Move use case begins when the Download Movie page displays in the Interface Subsystem after a user clicks a link either from the Acquire Movie page or the Menu. Prior to the page loading the Business Subsystem calls the GetMoviesToDownload() function from the Storage Subsystem. The Download Movie controller uses this information to populate the table of available movies for the user, and then to find the correct movie to download when the user selects a download link.

5.3 Hardware and Software Mapping

While the previous sections reviewed the architecture and decomposition, this one will show how these subsystems are mapped to hardware nodes and existing software components. DavMovie consists of three major subsystems modeling the three-tier architecture. These subsystems are reviewed below, while a deployment diagram for them can be found in Appendix C.

The interface layer can be viewed as one type of node, a machine with a browser and internet access. The type of machine and operating system can vary as long as the user is connected to the internet and using a compatible browser. This is depicted in the deployment diagram (Appendix C) where there are two client nodes: one running Windows and the other running Linux.

The application layer will reside on a Windows Server 2003 box, where an IIS server will execute the business logic and generate the html pages to return to the client nodes. Additionally, the IIS component will communicate with the database component to update/retrieve data as needed.

The storage layer will also be placed on a Windows Server 2003 box. The database component will be realized by an instance of SQL Server 2000, which will handle interaction with the persistent data for DavMovie. It will accept updates/queries from the IIS component.

5.4 Persistent Data Management

DavMovie will employ a SQL Server 2000 database, DavMovie, to store all persistent data for the system. The database will be composed of entity and support tables. The entity tables store information that will populate the entity objects in the system. While the support tables contain standard values for various drop down fields. For simplicity, each table will have a primary key called RecID, which will be incremented for each new record added. Please see figure 2.2 for more information.

All data management within DavMovie will be processed through a Storage Manager object, allowing data access to be abstracted to the rest of the system. In the event that the database was changed to another vendor, only the StorageManager and its data access classes would need to be modified, while the rest of the system continues to operate with no changes needed.

[image: image3.png]T wndon e

d & B%Q D abeg
Users
7 |Rectd
| |username
| |Password fe—
| |Accessievel
aave
UserInfo
7 |Rectd
| |usertink
Jrrsame
Lesthome MovieTransaction
edresst 7 [Rectd
ooz Userink
e | movieLink
state | TransactiorDate
|zpcods | TransactionType
|__|Phoneniumber | status
Admininfo BillingInfo
B |Rectd B |Rectd
| userInfoLink. | userInfoLink.
" |ssho e
Employeeld [umber
stanoate exrationoate

BillingTransactions
7 |Rectd
| |usertink
| Movietink
Jrrsane
iseame &
edresst e
ooz g
cry =
| |state
| |zinCode.
|| Phonetumber
| |cardType. States.
|| Cardniumber @ |Rectd
| |ExpirationDate. | Abbreviation
| |name.
CardTypes
7 |Rectd
] e
Movies
Rectd
e
| |Genre.
| |pirector
| Mainactor
| |ReleaseDate.
| |Location
i

Fig 5.2 Database Structure
6. Object Design
In this chapter, classes identified during the subsystem decomposition will be reviewed and shown with three different views. The first view (simplified class diagram in section 6.1) exposes relationships among classes. The second view (Sequence Diagrams in section 6.2) shows the dynamic interaction between classes. And the third view (detail class diagram in 6.3) makes emphasis on the attributes and operations of each class.

6.1 Overview

The following diagram represents a general low level view of the entire system. It contains only class names and relationships between classes. Four kinds of relationships can be seen. The dependency relations present classes that depend on or create other classes. The generalization relations shows inheritance among classes (See classes: UserInfoController, MovieUserInfoControler, and AdminInfoController in Fig 6.1). The realization relations shows interfaces that need to be implemented by specific components (See classes: AcquireMovieController, RentMovieController, and PurchaseMovieController in Fig 6.1). Finally, the aggregation relationships show classes that are contained within other classes. This would make the container class the owner of the internal class. See links of entity objects to the StorageManager class in Fig 6.1 for an example of aggregation.

[image: image4.emf]Movie Downloader

(from Tier 2 - Application Log...

Movie Uploader

(from Tier 2 - Application Log...

Add Movie Page

(from Tier 1 - Interface)

Acquire Movie Controller

(from Tier 2 - Application Logic)

Download

Movie Page

(from Tier 1 - Interface)

Menu Controller

(from Tier 2 - Application Log...

Movie Browser

(from Tier 2 - Application Logic)

Logon Page

(from Tier 1 - Interface)

Manager Info

Page

(from Tier 1 - Interface)

Member Info

Page

(from Tier 1 - Interface)

User Authenticator

(from Tier 2 - Application Log...

User Info Controller

(from Tier 2 - Application Log...

Movie User Info

Controller

(from Tier 2 - Application Logic)

Admin Info Controller

(from Tier 2 - Application Logic)

Rent Movie

Controller

(from Tier 2 - Application Logic)

Purchase Movie

Controller

(from Tier 2 - Application Logic)

Logout Controller

(from Tier 2 - Application Log...

Movie Remover

(from Tier 2 - Application Log...

Movie

(from Tier 3 - Storage)

Support Data

(from Tier 3 - Stora...

User Info

(from Tier 3 - Storage)

Billing Transaction

(from Tier 3 - Storage)

Movie Transaction

(from Tier 3 - Storage)

Storage Manager

(from Tier 3 - Storage)

n

1

n

1

n

1

n

1

n

1

n

1

n

1

n

1

n

1

n

1

Search Movie

Page

(from Tier 1 - Interface)

ErrorHandler

(from Tier 2 - Application Logic)

Every other

object will

access this

Singelton to log

erros to a file.

Acquire Movie

Page

(from Tier 1 - Interface)

Fig. 6.1 (Minimal Class Diagram)
6.2 Object Interaction.
Object interactions are said to be the closest link between objects and use cases. Through the following sequence diagrams, the dynamic relations between objects can be established making it possible to trace individual classes back to use cases (see use case diagram and use case description under appendix A and B respectively).

[image: image5.emf] : Administrator

 : Add Movie Link : Menu

Controller

 : Movie

Uploader

 : Add Movie Page

 : Storage

Manager

Press()

EnterMovieInfo()

EnterMovieLocation()

Submit()

Exit()

<<Create>>

<<Create>>

AddMovieRecord()

Submit()

Exit()

<<Destroy>>

<<Destroy>>

AddMovie()

<<Create>>

<<Destroy>>

UploadMovieFile()

ValidateData()

GenerateAck()

Refresh()

Fig. 6.2 (Add Movie Sequence Diagram)

The above diagram can be directly related with the ‘Add New Movie’ uses case. See appendix B for details on the ‘Add Movie’ functionality.

[image: image6.emf]ProceedToDownload()

 : Movie Renter/Buyer

 : Download Link

 : Acquire Movie

Controller

 : Movie

Downloader

 : Download Movie

Page

 : Storage

Manager

Press()

<<Create>>

<<Create>>

GetMoviesToDownload()

ReturnMoviesToDownload()

<<Create>>

DisplayMoviesToDownload()

SelectMovie()

SelectMovie()

<<Destroy>>

ReturnMovieStream()

<<Destroy>>

RetrieveSelectedMovie()

ReturnMovieStream()

<<Destroy>>

Fig. 6.3 (Download Sequence Diagram)

The above diagram can be directly related to the ‘Download Movie’ use case. See appendix B for details on the ‘Download Movie’ functionality.

[image: image7.emf]ProceedToDownload()

 : Movie Renter/Buyer

 : Purchase

Movie Link

 : Movie Browser

 : Acquire Movie Controller

 : Acquire Movie

Page

 : Storage

Manager

Press()

PurchaseMovie()

<<Create>>

<<Create>>

ConfirmBillingInfo()

ConfirmBillingInfo()

<<Create>>

AddMovieTransaction()

<<Destroy>>

ProceedToDownload()

<<Destroy>>

ValidateBillingInfo()

AddBillingTransaction()

SetMovieInfo()

ConfirmTransaction()

ConfirmTransaction()

GenerateReceipt()

Refresh()

Fig 6.4 (Purchase Movie Sequence Diagram)

The above diagram can be directly related to the ‘Purchase Movie’ use case. See appendix B for details on the ‘Purchase Movie’ functionality.

[image: image8.emf]<<Destroy>>

 : Movie Renter/Buyer

 : Search Link : Menu

Controller

 : Movie Browser

 : Search Movie

Page

 : Storage

Manager

Press()

SearchMovie()

<<Create>>

<<Create>>

FillSearchCriteria()

Submit()

DoSearch()

<<Create>>

SearchForMovies()

ReturnMovieList()

Refresh()

GetHotMovieList()

ReturnHotMovieList()

GenerateMovieList()

Fig. 6.5 (Search Movies Sequence Diagram)

The above diagram can be directly related to the ‘Search Movies’ use case. See appendix B for details on the ‘Search Movies’ functionality.

6.3 Detail Class Design.
This section will show classes almost as they will be implemented. The actual implementation will differ only in certain features that are language dependent. Notice the correlation between classes shown in this diagram and objects shown in the sequence diagrams shown previously. It can be seen that most of the operations from the classes correspond to messages between objects in the sequence diagrams. See Appendix E for a detailed class diagram, and Appendix F for class interfaces.

Class Descriptions:
See class diagram in appendix D, and Class Interfaces in appendix E for a visual representation.

Interface Layer
· AddMoviePage: It represents the graphical interface our system provides to external actors so that they can enter a new movie. This is an HTML page containing Web Controls that capture the data entered by the users.

AcquireMoviePage: It represents the graphical interface our system provides to external actors so that they can rent or buy movies. This is an HTML page containing Web Controls that capture the data entered by the users.

· DownloadMoviePage: Graphical Interface our system provides to allow users to browse movies that are ready to be downloaded and select a movie to download. This is an HTML page containing Web Controls that allow users to see a list movie records.

· SearchMoviePage: Graphical Interface our system provides to allow users to browse movies in our system and select one ore more to be purchased or rented. This is an HTML page containing Web Controls that capture the filter or search criteria entered by the users and allows them to see a list of movie records.

· LogonPage: Graphical interface our system provides to allow users to enter their credentials and logon to our system. This is an HTML page with web controls that capture the user’s credentials.

· MenuGUI: User defined HTML control that contains links to different pages of our system.

Business Layer
· MovieUploader: It listens to events fired by the Web Controls on the AddMoviePage, and responds by executing business logic that results on a movie being added to the system.

· AcquireMovieController: It listens to events fired by the Web Controls on the AddMoviePage. It responds by executing business logic that results on a movie being purchased or rented, and then shows a receipt to the user.

· MovieDownloader: It listens to events fired by the Web Controls on the DownloadMoviePage. It responds by executing business logic that results on a movie being downloaded.
· MovieBrowser: Class that listens to the SearchMoviePage events. It responds by executing business logic that generates a list of movie records for a given search criteria. The list is then displayed in the SearchMoviePage.

· UserAuthenticator: It contains handlers listening to events of the LogonPage. It responds by authenticating user credentials and initializing a session.

· MenuController: It contains handlers listening to events of the MenuGUI. It responds by redirecting web link clicks to the pages they represent.

· ErrorHandler: Singleton class that allows various threads to log errors in a sequential fashion.

Storage Layer
· StorageManager: Class that controls all access to persistent data. It delegates functionality to the different entity classes below. This class represents the interface for the storage Façade design pattern.

· BillingTransaction: Entity class that controls access to the BillingTransactions table in our database.

· MovieTransaction: Entity class that controls access to the MovieTransaction table in our database.

· Movie: Entity class that provides access to operations on the Movie table found in our database.

· UserInfo: Entity class that provide access to user information including credentials and personal information. User information is stored under the Users, UserInfo, AdminInfo and BillingInfo tables in our database.

· SupportData: Entity class that provides access to our Support tables (Genre, States, and CardTypes).

· MovieRecord: Record or structure representing a movie. It does not contain any functionality. It only contains data, and it is used to pass movie data between subsystems.

· BillingRecord: Record or structure representing billing information. It only contains attributes and it is used to pass billing information between subsystems.

· UserRecord: Record or structure that contains user credentials, an access level, and an availability flag for each user. It only contains attributes and it is used to pass user data between subsystems.

· MovieTrxRecord: Record or structure that contains a movie transaction record generated during a purchase or rental process. It only contains attributes and it is used to pass movie transaction info between subsystems.

· FilterRecord: Record or structure that contains filter criteria entered by users while searching for movies. It only contains attributes and it is used to pass filter criteria between different subsystems.

· StateRec: Record or structure that contains state information (abbreviation and name). It is used to pass state information to a dropdown list in a page.

7. Testing Process

7.1 System Tests
The system test plan was created to verify the correctness of the following use cases: Login, Logout, Register New Member, Add New Admin, Search Movies, Add Movie, Remove Movie, Acquire Movie, and Download Movie. Appendix B within this report holds the complete functional and non-functional information on these use cases. Appendix G contains the driver code used to perform subsystem tests

Test Suite 1: Purpose: To test the functionality of use case: DAV001 – Login

	Test case 1:
	

	Purpose
	To test behavior of the Login Screen when user tries to login without entering credentials.

	Precondition
	Login Screen is showing and Username and password are blank.

	Input
	User clicks submit button.

	Expected Output
	Error message “Username Can Not Be Blank. Please Try Again.” shows in browser.

	Test case 2:
	

	Purpose
	To test behavior of the Login Screen when user tries to login entering non-existent username credentials.

	Precondition
	· Login Screen is showing and Username and password are populated.

· System does not recognize the username entered as valid.

	Input
	User clicks submit button.

	Expected Output
	Error message “Invalid Credentials. Please Try Again.” shows in browser.

	Test case 3:
	

	Purpose
	To test behavior of the Login Screen when user tries to login entering existing username with invalid password.

	Precondition
	· Login Screen is showing and Username and password are populated.

· System recognizes the username entered as valid.

· Password entered does not correspond to password assigned to the entered username.

	Input
	User clicks submit button.

	Expected Output
	Error message “Invalid Password. Please Try Again.” shows in browser.

	Test case 4:
	

	Purpose
	To test behavior of the Login Screen when user tries to login entering existing username with valid password.

	Precondition
	· Login Screen is showing and Username and password are populated.

· System recognizes the username entered as valid.

· Password entered corresponds to password assigned to the entered username.

	Input
	User clicks submit button.

	Expected Output
	User is redirected to the Search page with a list of Hot Movies.

	Test case 5:
	

	Purpose
	To test behavior of the Login Screen when user Clicks the new member screen.

	Precondition
	Don’t care.

	Input
	User clicks New Member Link.

	Expected Output
	User is redirected to the New Member page.

Test Suite 2: Purpose: To test the functionality of use case: DAV003– Logout

	Test case 1:
	

	Purpose
	To test behavior of the System when user clicks Logout link.

	Precondition
	User must be logged in.

	Input
	User clicks Logout link under the main menu.

	Expected Output
	Session is terminated. Verified by trying to browse to the search page and being redirected to login page.

Test Suite 3: Purpose: To test the functionality of use case: DAV002 - Register New Member
	Test case 1:
	

	Purpose
	To test behavior of the New Member Screen when trying add a user and First Name is blank.

	Precondition
	First Name field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “First Name Is Required.” shows in browser.

	Test case 2:
	

	Purpose
	To test behavior of the New Member Screen when trying add a user and Last Name is blank.

	Precondition
	Last Name field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Last Name Is Required.” shows in browser.

	Test case 3:
	

	Purpose
	To test behavior of the New Member Screen when trying add a user and street address is blank.

	Precondition
	Street Address field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Street Address Is Required.” shows in browser.

	Test case 4:
	

	Purpose
	To test behavior of the New Member Screen when trying add a user and City is blank.

	Precondition
	City field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “City Is Required.” shows in browser.

	Test case 5:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and State is blank.

	Precondition
	State field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “State Is Required.” shows in browser.

	Test case 6:
	

	Purpose
	To test behavior of the New Member Screen when trying add a user and Zip Code is blank.

	Precondition
	Zip Code field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Zip Code Is Required.” shows in browser.

	Test case 7:
	

	Purpose
	To test behavior of the New Member Screen when trying add a user and Zip Code is not a number.

	Precondition
	Zip Code field is not numeric.

	Input
	User clicks Add button.

	Expected Output
	Error message “Zip Code Must Be Numeric.” shows in browser.

	Test case 8:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Phone Number is not a number.

	Precondition
	Phone Number field is not numeric.

	Input
	User clicks Add button.

	Expected Output
	Error message “Phone Number Must Be Numeric.” shows in browser.

	Test case 9:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user. Card Type field is blank.

	Precondition
	Credit Card Type field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Card Type Is Required.” shows in browser.

	Test case 10:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Card Number is blank.

	Precondition
	Card Number field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Card Number Is Required.” shows in browser.

	Test case 11:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Card Number is not numeric.

	Precondition
	Card Number field is not numeric or Number is less than 15 or Number is greater than 16.

	Input
	User clicks Add button.

	Expected Output
	Error message “Card Number Must Contain 15 Or 16 Numeric Digits.” shows in browser.

	Test case 12:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Expiration Date is blank.

	Precondition
	Card Number field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Expiration Date Is Required.” shows in browser.

	Test case 13:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Expiration date does not follow the mm/yyyy format.

	Precondition
	Expiration Date field does not contain text in the mm/yyyy format.

	Input
	User clicks Add button.

	Expected Output
	Error message “Expiration Date Must Be Entered As MM/YYYY.” shows in browser.

	Test case 14:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Expiration date is invalid.

	Precondition
	Expiration Date field is not valid (eg. 23/2004).

	Input
	User clicks Add button.

	Expected Output
	Error message “Expiration Date Month Must Be Between 1 and 12.” shows in browser.

	Test case 15:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and month of Expiration date has already passed.

	Precondition
	Expiration Date field is a pass date time .

	Input
	User clicks Add button.

	Expected Output
	Error message “Your credit card has expired.” shows in browser.

	Test case 16:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Username is blank.

	Precondition
	Username field is blank.

	Input
	User clicks Add button.

	Expected Output
	Error message “Username Must Be provided.” shows in browser.

	Test case 17:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Username is is already in our system.

	Precondition
	Username alread exitsts.

	Input
	User clicks Add button.

	Expected Output
	Error message “This username already exists in the database.” shows in browser.

	Test case 18:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and Pasword is blank.

	Precondition
	Password field is blank.

	Input
	User clicks Add button.

	Expected Output
	Error message “Password Must Be Provided.” shows in browser.

	Test case 19:
	

	Purpose
	To test behavior of the New Member Screen when trying to add a user and all required fields are populated.

	Precondition
	All required fields are populated and username entered is no already taken.

	Input
	User clicks Add button.

	Expected Output
	User gets added to database and Welcome message is displayed on the browser.

Test Suite 4: Purpose: To test the functionality of use case: DAV004– Add New Admin
	Test case 1:
	

	Purpose
	To test behavior of the New Manager Screen when trying add an admin and First Name is blank.

	Precondition
	First Name field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “First Name Is Required.” shows in browser.

	Test case 2:
	

	Purpose
	To test behavior of the New Manager Screen when trying add an Admin and Last Name is blank.

	Precondition
	Last Name field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Last Name Is Required.” shows in browser.

	Test case 3:
	

	Purpose
	To test behavior of the New Manager Screen when trying add an Admin and street address is blank.

	Precondition
	Street Address field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Street Address Is Required.” shows in browser.

	Test case 4:
	

	Purpose
	To test behavior of the New Manager Screen when trying add an Admin and City is blank.

	Precondition
	City field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “City Is Required.” shows in browser.

	Test case 5:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and State is blank.

	Precondition
	State field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “State Is Required.” shows in browser.

	Test case 6:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Zip Code is blank.

	Precondition
	Zip Code field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Zip Code Is Required.” shows in browser.

	Test case 7:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Zip Code is not a number.

	Precondition
	Zip Code field is not numeric.

	Input
	User clicks Add button.

	Expected Output
	Error message “Zip Code Most Be Numeric.” shows in browser.

	Test case 8:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Phone Number is not a number.

	Precondition
	Phone Number field is not numeric.

	Input
	User clicks Add button.

	Expected Output
	Error message “Phone Number Must Be Numeric.” shows in browser.

	Test case 9:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and SS# Field is blank.

	Precondition
	SS# field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Social Security # Is Required.” shows in browser.

	Test case 10:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and social security # does not contain 9 numeric digits.

	Precondition
	SS# does not contain 9 numeric digits.

	Input
	User clicks Add button.

	Expected Output
	Error message “Social Security # Must Contain 9 numeric digits.” shows in browser.

	Test case 11:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Employee Id is blank.

	Precondition
	Employee Id field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Employee Id is Required.” shows in browser.

	Test case 12:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Start Date is blank.

	Precondition
	Start Date field is not populated.

	Input
	User clicks Add button.

	Expected Output
	Error message “Sart Date Is Required.” shows in browser.

	Test case 13:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Start Date does not follow the mm/dd/yyyy format.

	Precondition
	Expiration Date field does not contain text in the mm/dd/yyyy format.

	Input
	User clicks Add button.

	Expected Output
	Error message “Sart Date Must Be Entered As MM/DD/YYYY.” shows in browser.

	Test case 14:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Username is blank.

	Precondition
	Username field is blank.

	Input
	User clicks Add button.

	Expected Output
	Error message “Username Must Be provided.” shows in browser.

	Test case 15:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Username is is already in our system.

	Precondition
	Username alread exitsts.

	Input
	User clicks Add button.

	Expected Output
	Error message “This username already exists in the database.” shows in browser.

	Test case 16:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and Pasword is blank.

	Precondition
	Password field is blank.

	Input
	User clicks Add button.

	Expected Output
	Error message “Password Must Be Provided.” shows in browser.

	Test case 17:
	

	Purpose
	To test behavior of the New Manager Screen when trying to add an Admin and all required fields are populated.

	Precondition
	All required fields are populated and username entered is no already taken.

	Input
	User clicks Add button.

	Expected Output
	Admin gets added to database and Welcome message is displayed on the browser.

Test Suite 5: Purpose: To test the functionality of use case: DAV007– Search Movies
	Test case 1:
	

	Purpose
	To test behavior of the Search Screen when page is loaded for the first time.

	Precondition
	User is logged in.

	Input
	User Clicks the Search link under the main menu or logs in to the system.

	Expected Output
	Search Screen is displayed with a list of Hot (New release) movies.

	Test case 2:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and no field under shearch criteria is populated.

	Precondition
	Search Criteria section is blank.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing all movies in the database.

	Test case 3:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and Title field is populated.

	Precondition
	Title field is populated.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing movies with database filed Title containing sequence of characters enterd in the Title field. Empty list is displayed if no match is found.

	Test case 4:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and Genre field is populated.

	Precondition
	Genre field is populated.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing movies with database field Genre mathcing value enterd in Genre filed. Empty List is displayed if no match is found.

	Test case 5:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and Director field is populated.

	Precondition
	Director field is populated.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing movies with database field Director containing sequence of characters enterd in the Director field. Empty List is displayed if no match is found.

	Test case 6:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and Main Actor field is populated.

	Precondition
	Main Actor field is populated.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing movies with database field MainActor containing sequence of characters enterd in the Main Actor field. Empty List is displayed if no match is found.

	Test case 7:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and Release Date field is entered in the wrong format.

	Precondition
	Release Date field is populated with an invalid format.

	Input
	User Clicks the Search Button.

	Expected Output
	Error message “Release Date Must Be Entered As MM/DD/YYYY.” Is sent to the browser.

	Test case 8:
	

	Purpose
	To test behavior of the Search Screen when searching for movies and Release Date field is entered with the right format.

	Precondition
	Release Date field is populated with the right format.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing movies with database field ReleaseDate matching Relase Date field entered. Empty List is displayed if no match is found.

	Test case 9:
	

	Purpose
	To test behavior of the Search Screen when number of movies to displyed is greather than 10.

	Precondition
	Number of movies in the database that meet the search criteria is greather than 10.

	Input
	User Clicks the Search Button.

	Expected Output
	Search Screen is refreshed showing the first 10 movies that meet the search criteria. Next button is enabled.

	Test case 10:
	

	Purpose
	To test behavior of the Search Screen header of a given column is clicked.

	Precondition
	Search screen is displaying a list of movies. Movies are sorted by the same column in decreasing order or not sorted at all.

	Input
	User Clicks the Header of one of the Grid columns.

	Expected Output
	Search Screen is refreshed showing the movies sorted in increasing order by the column clicked.

	Test case 11:
	

	Purpose
	To test behavior of the Search Screen header of a given column is clicked a second time.

	Precondition
	Search screen is displaying a list of movies and movies are sorted by the same column in increasing order.

	Input
	User Clicks the Header of one of the Grid columns.

	Expected Output
	Search Screen is refreshed showing the movies ordered in decreasing order by the column clicked.

Test Suite 6: Purpose: To test the functionality of use case DAV005 – Add Movie
	Test case 1:
	

	Purpose
	To test that the New Movie page is displayed when a user clicks on the New Movie link in the menu.

	Precondition
	1. The user is logged in.

2. The user is an administrator.

	Input
	The user clicks New Movie from the menu.

	Expected Output
	The New Movie page is displayed with all input fields empty awaiting the user’s input.

	Test case 2:
	

	Purpose
	To test that when an admin fills out movie info and selects a movie file to upload on the New Movie page and submits the movie, it is added to the appropriate directory on the server and a movie record is created with the information provided.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	The selected movie is added to the appropriate folder on the server. A movie record is added with the info provided by the user. The location field in the movie record contains the relative path to the movie file. A confirmation page is displayed.

	Test case 3:
	

	Purpose
	To test that when an admin does not fill in any data on the New Movie page and clicks Submit, an error should occur returning to the New Movie page.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has not filled out any fields on the screen.

4. The user has not selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Add Movie.

	Expected Output
	An error informing the user that they must enter all required fields.

	Test case 4:
	

	Purpose
	To test that when an admin fills out movie info and does not select a movie file to upload, then an error is returned on the New Movie page.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen.

4. The user has not selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that they need to select a file to upload.

	Test case 5:
	

	Purpose
	To test that when an admin fills out movie info except leaves title blank, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, except Title.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that they need to enter a title.

	Test case 6:
	

	Purpose
	To test that when an admin fills out movie info and enters a title greater than 50 characters, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Title with length>50.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the title is too long.

	Test case 7:
	

	Purpose
	To test that when an admin fills out movie info except doesn’t select a genre, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, except Genre.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that they need to enter a genre.

	Test case 8:
	

	Purpose
	To test that when an admin fills out movie info except leaves director blank, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, except Director.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that they need to enter a director.

	Test case 9:
	

	Purpose
	To test that when an admin fills out movie info and enters a director greater than 50 characters, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Director with length>50.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the director is too long.

	Test case 10:
	

	Purpose
	To test that when an admin fills out movie info except leaves main actor blank, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, except Main Actor.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that they need to enter a main actor.

	Test case 11:
	

	Purpose
	To test that when an admin fills out movie info and enters a main actor greater than 50 characters, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Main Actor with length>50.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the main actor is too long.

	Test case 12:
	

	Purpose
	To test that when an admin fills out movie info except leaves date blank, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, except Date.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that they need to enter a date.

	Test case 13:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with day > 31, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date>31.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 14:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with day=0, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with day=0.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 15:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with day<0, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with day<0.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 16:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with month > 12, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with month > 12.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 17:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with month=0, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with month=0.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 18:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with month<0, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with month<0.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 19:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with year=0, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with year=0.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 20:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with year<0, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with year<0.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 21:
	

	Purpose
	To test that when an admin fills out movie info except enters a date with characters, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date with characters.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

	Test case 22:
	

	Purpose
	To test that when an admin fills out movie info except enters a date in invalid format, and user selects a movie file to upload on the New Movie page an error is returned.

	Precondition
	1. The user is logged in and on the New Movie page.

2. The user is an administrator.

3. The user has filled out the fields on the screen, including Date in invalid format.

4. The user has selected a movie on their pc to upload using the file upload control.

	Input
	The user clicks Submit.

	Expected Output
	An error appears informing the user that the date entered is invalid.

Test Suite 7: Purpose: To test the functionality of use case DAV006 – Remove Movie
	Test case 1:
	

	Purpose
	To test that when a movie is selected and the Delete link is clicked the selected movie, and all associated records will be deleted.

	Precondition
	1. The user is logged in and is on the Search page.

2. The user logged in has Administrator access.

	Input
	The user clicks the Delete link for the desired movie.

	Expected Output
	The associated movie is deleted from the folder it was in. The status of the movie record is changed to unavailable.

Test Suite 8: Purpose: To test the functionality of use case DAV008 – Acquire Movie
	Test case 1:
	

	Purpose
	To test that when the user clicks Rent or Purchase from the Search Movies screen the correct information is displayed on the Billing Confirmation page.

	Precondition
	1. The user is logged in.

	Input
	The user clicks Rent or Purchase for a movie in the Search screen.

	Expected Output
	The Billing Confirmation page displays the whether the movie is being rented or bought, the correct movie name and price, as well as the correct billing information.

	Test case 2:
	

	Purpose
	To test that when the user confirms billing info the appropriate transactions are created and a receipt page is displayed.

	Precondition
	1. The user is logged in and is on the Billing Confirmation page.

	Input
	The user clicks on the Confirm button.

	Expected Output
	A billing transaction and a movie transaction are stored in the database, and a receipt page is displayed.

	Test case 3:
	

	Purpose
	To test that when the user clicks cancel no transactions are created, and they are returned to the Search page.

	Precondition
	1. The user is logged in and is on the Billing Confirmation page.

	Input
	1. The user clicks Cancel.

	Expected Output
	No additional movie or billing transactions are entered into the system. The user is redirected to the Search screen.

	Test case 4:
	

	Purpose
	To test that when the user clicks Rent from the Search Movies screen, the correct transaction type is stored after the user confirms.

	Precondition
	1. The user is logged in.

2. The user has clicked a Rent link on the Search Movies screen.

	Input
	The user clicks Submit on the Billing Confirmation page.

	Expected Output
	The user is directed to the Download Movie page. The movie transaction created contains a transaction type of “Rent”.

	Test case 5:
	

	Purpose
	To test that when the user clicks Purchase from the Search Movies screen, the correct transaction type is stored after the user confirms.

	Precondition
	1. The user is logged in.

2. The user has clicked a Purchase link on the Search Movies screen .

	Input
	The user clicks Submit on the Billing Confirmation page.

	Expected Output
	The user is directed to the Download Movie page. The movie transaction created contains a transaction type of “Purchase”.

Test Suite 9: Purpose: To test the functionality of use case DAV011 – Download Movie
	Test case 1:
	

	Purpose
	To test that all movies available to download for a user are displayed when the Download Movie page loads from Menu controller.

	Precondition
	1. The user is logged in.

2. The user has movies available to download.

	Input
	The user clicks Download from the top menu.

	Expected Output
	The Download page is loaded and all available movies for that user are displayed.

	Test case 2:
	

	Purpose
	To test that all movies available to download for a user are displayed when the Download Movie page loads from the Acquire Movie page.

.

	Precondition
	1. The user is logged in.

2. The user has just purchased/rented a movie and is on the Receipt page.

	Input
	The user clicks Download on the Receipt page.

	Expected Output
	The Download page is loaded and all available movies for that user are displayed.

	Test case 3:
	

	Purpose
	To test that on the Download page when the user clicks a Download link, the system pops up a window asking the user where they would like the file downloaded to on the pc.

	Precondition
	1. The user is logged in and is on the Download page.

2. The user has available movies which are displayed in the grid.

	Input
	The user clicks a Download link next to one of the available movies.

	Expected Output
	The user is prompted to choose where they would like to save the movie to.

	Test case 4:
	

	Purpose
	To test that when a user clicks Save in the Browse window the file is downloaded and it is the correct file.

	Precondition
	1. The user is logged in and is on the Download page.

2. The user has available movies which are displayed in the grid.

3. The user has clicked a link next to one of the movies in the grid.

4. The user has chosen where to save the file.

	Input
	2. The user clicks OK in the browse window.

	Expected Output
	The file is downloaded to the selected directory on the user’s pc. Additionally the file downloaded is the file associated with the link clicked.

	Test case 5:
	

	Purpose
	To test that if the user clicks Download Later the movie just rented/purchased will remain available.

	Precondition
	1. The user is logged in.

2. The user has just rented/purchased a movie and has been directed to the Download page.

	Input
	1. The user clicks the Download button.

	Expected Output
	The Movie Transaction, containing the selected movie id as well as the user’s id, contains a status of available.

	Test case 6:
	

	Purpose
	To test that once a file has finished downloading the associated movie transaction status will be set to “D” for Downloaded.

	Precondition
	1. The user is logged in and on the Download page.

2. The user has clicked the link of an available movie to download.

3. The user has chosen a location to save the file to on their pc and has clicked save.

4. The movie download has completed.

	Input
	None.

	Expected Output
	The Movie Transaction, containing the selected movie id as well as the user’s id, contains a status of downloaded.

7.2 Subsystem Tests

A test driver was created to test the functionality of the StorageManager class. Since this class is a Façade to all the classes in the StorageManager namespace, we are effectively testing all the classes in the namespace. The code for the test driver is displayed in Appendix F. The specific test cases for the class are portrayed in the table below.

	Test case 1:
	

	Purpose
	Test the RetrieveUserCredentials() function of StorageManager.

	Precondition
	1. There is a Users record in the database, which has a username=”david”.

2. There is a button btGetUserRecord on the tester form, whose OnClick event calls StorageManager.RetrieveUserCredentials(“david”).

	Input
	Click the Get User Record button on the tester form.

	Expected Output
	The fields printed match the associated fields in the database.

	Test case 2:
	

	Purpose
	Test the RetrieveUserCredentials() function of StorageManager when user doesn’t exist.

	Precondition
	1. There is no Users record in the database, which has a username=”usernotfound”.

2. There is a button btGetUserBad on the tester form, whose OnClick event calls StorageManager.RetrieveUserCredentials(“usernotfound”).

	Input
	Click the Get User Record button on the tester form.

	Expected Output
	No user fields should be displayed on the form.

	Test case 3:
	

	Purpose
	Test the GetMovie() function of StorageManager.

	Precondition
	1. There is a Movie record in the database, which has a recid=9.

2. There is a button btGetMovieRec on the tester form, whose OnClick event calls StorageManager.GetMovie(9).

	Input
	Click the Get Movie Record button on the tester form.

	Expected Output
	The fields printed match the associated fields in the database.

	Test case 4:
	

	Purpose
	Test the RecordTransactions() function of StorageManager with a purchase transaction.

	Precondition
	1. There is a Movie record in the database, which has a recid=1.

2. There is a Users record in the database, which has a recid=4.

3. There is a button btPurchaseMovie on the tester form, whose OnClick event creates a movie trx record mtrxRec with a movielink of 1, a userlink of 1, and a transactiontype of “Purchase” and which calls StorageManager.RecordTransactions(mtrxRec).

	Input
	Click the Purchase Movie button on the tester form.

	Expected Output
	The appropriate movie and billing transactions are stored in the database.

	Test case 5:
	

	Purpose
	Test the RecordTransactions() function of StorageManager with a Rent transaction.

	Precondition
	1. There is a Movie record in the database, which has a recid=1.

2. There is a Users record in the database, which has a recid=4.

3. There is a button btRentMovie on the tester form, whose OnClick event creates a movie trx record mtrxRec with a movielink of 1, a userlink of 1, and a transactiontype of “Rent” and which calls StorageManager.RecordTransactions(mtrxRec).

	Input
	Click the Rent Movie button on the tester form.

	Expected Output
	The fields printed match the associated fields in the database.

	Test case 6:
	

	Purpose
	Test the AddUser() function of StorageManager when adding a user.

	Precondition
	1. There is not a Users record in the database, which has a username=”fred”.

2. There is a button btAddAdmin on the tester form, whose OnClick event creates a user record, urec, with a username of “fred”, an access level of “User”, and test values in the other fields, and creates a billing info record, brec, which includes a user info record with test values for all the fields. Then OnClick calls StorageManager.AddUser(urec, brec).

	Input
	Click the Add User button on the tester form.

	Expected Output
	The fields in the database match the associated test values of the fields submitted.

	Test case 7:
	

	Purpose
	Test the AddUser() function of StorageManager when adding an admin.

	Precondition
	1. There is not a Users record in the database, which has a username=”fred2”.

2. There is a button btAddUser on the tester form, whose OnClick event creates a user record, urec, with a username of “fred2”, an access level of “Administrator”, and test values in the other fields, and creates an employee info record, erec, which includes a user info record with test values for all the fields. Then OnClick calls StorageManager.AddUser(urec, erec).

	Input
	Click the Add Admin button on the tester form.

	Expected Output
	The fields in the database match the associated test values of the fields submitted.

	Test case 8:
	

	Purpose
	Test the DeleteMovieRecord() function of StorageManager.

	Precondition
	1. There is a textfield, txtDelete, on the tester form which contains the value which matches a movie records recid.

2. There is a button btDeleteMovie on the tester form, whose OnClick calls StorageManager.DeleteMovieRecord((int)txtDelete.Text).

	Input
	Click the Delete Movie button on the tester form.

	Expected Output
	The movie record with the recid submitted no longer exists in the database.

	Test case 9:
	

	Purpose
	Test the GetMoviesToDownload() function of StorageManager.

	Precondition
	1. There is a user record with a recid=4.

2. There is a button btGetMoviesToDownload on the tester form, whose OnClick calls StorageManager. GetMoviesToDownload(1).

	Input
	Click the Get Movies To Download button on the tester form.

	Expected Output
	The list of movies displayed matches the movie transactions for user id 1, with a status of Available.

	Test case 10:
	

	Purpose
	Test the GetMoviesToDownload() function of StorageManager when user has no movies available.

	Precondition
	1. There is a user record with a recid=3, who has no movies with a status of “Available” in the movie transaction table.

2. There is a button btGetNoMovies on the tester form, whose OnClick calls StorageManager. GetMoviesToDownload(2).

	Input
	Click the Get No Movies button on the tester form.

	Expected Output
	There are no movies displayed.

	Test case 11:
	

	Purpose
	Test the SearchForMovies() function of StorageManager, when data matches record in database.

	Precondition
	1. There are text fields on the test search form matching the fields of a filter record.

2. The text fields contain values which match the values of a movie record in the database.

3. There is a button btSearch on the search tester form, whose OnClick creates a filter record, frec, populated with values from the associated text fields, and calls StorageManager. SearchForMovies(frec).

	Input
	Click the Search button on the tester form.

	Expected Output
	The list of movies displayed contains all movies that match the search criteria.

	Test case 12:
	

	Purpose
	Test the SearchForMovies() function of StorageManager when no data is sent.

	Precondition
	1. There are text fields on the test search form matching the fields of a filter record.

2. The text fields are all empty.

3. There is a button btSearch on the search tester form, whose OnClick creates a filter record, frec, populated with values from the associated text fields, and calls StorageManager. SearchForMovies(frec).

	Input
	Click the Search button on the tester form.

	Expected Output
	The list of all movies is displayed.

	Test case 13:
	

	Purpose
	Test the SearchForMovies() function of StorageManager when data doesn’t match any record in database.

	Precondition
	1. There are text fields on the test search form matching the fields of a filter record.

2. The text fields are populated with at least one not matching any record in the database.

3. There is a button btSearch on the search tester form, whose OnClick creates a filter record, frec, populated with values from the associated text fields, and calls StorageManager. SearchForMovies(frec).

	Input
	Click the Search button on the tester form.

	Expected Output
	An empty list is displayed.

	Test case 14:
	

	Purpose
	Test the GetHotMovieList() function of StorageManager.

	Precondition
	1. There is a button btGetHotFlix on the tester form, whose OnClick calls StorageManager.GetHotMovieList().

	Input
	Click the Get Hot Flix button on the tester form.

	Expected Output
	The list of all movies released in the last 30 days is displayed.

	Test case 15:
	

	Purpose
	Test the AddMovieRecord() function of StorageManager.

	Precondition
	1. There is a button btInsertMovie on the tester form, whose OnClick creates a movie record, mrec, with test values in its fields, and calls StorageManager.GetHotMovieList(mrec).

	Input
	Click the Insert Movie button on the tester form.

	Expected Output
	A new movie record is created in the database whose fields correspond to the test values in the movie record submitted.

	Test case 16:
	

	Purpose
	Test the GetStates () function of StorageManager.

	Precondition
	1. There is a button btGetStates on the tester form, whose OnClick calls StorageManager.GetStates().

	Input
	Click the Get States button on the tester form.

	Expected Output
	The states stored in the database are displayed.

	Test case 17:
	

	Purpose
	Test the GetCardTypes () function of StorageManager.

	Precondition
	1. There is a button btGetCardTypes on the tester form, whose OnClick calls StorageManager.GetCardTypes ().

	Input
	Click the Get Card Types button on the tester form.

	Expected Output
	The card types stored in the database are displayed.

	Test case 18:
	

	Purpose
	Test the GetGenre () function of StorageManager.

	Precondition
	1. There is a button btGetGenre on the tester form, whose OnClick calls StorageManager.GetGenre().

	Input
	Click the Get Genre button on the tester form.

	Expected Output
	The states stored in the database are displayed.

7.3 Evaluation of Tests

The following tables show the expected versus actual results identified during System and Subsystem Testing as documented above in Section 7.1 (System Testing) and Section 7.2 (Subsystem Testing). Any discrepancies are documented and corrected.

System Tests:

	System Tests: Test Suite 1: Purpose: To test the functionality of use case: DAV001 – Login

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	Error message “Username Can Not Be Blank. Please Try Again.” shows in browser.
	Error message “Username Can Not Be Blank. Please Try Again.” shows in browser.
	X
	
	

	Test Case 2
	Error message “Invalid Credentials. Please Try Again.” shows in browser.
	Error message “Invalid Credentials. Please Try Again.” shows in browser.
	X
	
	

	Test Case 3
	Error message “Invalid Password. Please Try Again.” shows in browser.
	Error message “Invalid Password. Please Try Again.” shows in browser.
	X
	
	

	Test Case 4
	User is redirected to the Search page with a list of Hot Movies.
	User is redirected to the Search page with a list of Hot Movies.
	X
	
	

	Test Case 5
	User is redirected to the New Member page.
	User is redirected to the New Member page.
	X
	
	

	System Tests: Test Suite 2: Purpose: To test the functionality of use case: DAV003– Logout

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	Session is terminated. Verified by trying to browse to the search page and being redirected to login page.
	Session is terminated. Verified by trying to browse to the search page and being redirected to login page.
	X
	
	

	System Tests: Test Suite 3: Purpose: To test the functionality of use case: DAV002 - Register New Member

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	Error message “First Name Is Required.” shows in browser.
	Error message “First Name Is Required.” shows in browser.
	X
	
	

	Test Case 2
	Error message “Last Name Is Required.” shows in browser.
	Error message “Last Name Is Required.” shows in browser.
	X
	
	

	Test Case 3
	Error message “Street Address Is Required.” shows in browser.
	Error message “Street Address Is Required.” shows in browser.
	X
	
	

	Test Case 4
	Error message “City Is Required.” shows in browser.
	Error message “City Is Required.” shows in browser.
	X
	
	

	Test Case 5
	Error message “State Is Required.” shows in browser.
	Error message “State Is Required.” shows in browser.
	X
	
	

	Test Case 6
	Error message “Zip Code Is Required.” shows in browser.
	Error message “Zip Code Is Required.” shows in browser.
	X
	
	

	Test Case 7
	Error message “Zip Code Must Be Numeric.” shows in browser.
	Error message “Zip Code Must Be Numeric.” shows in browser.
	X
	
	

	Test Case 8
	Error message “Phone Number Must Be Numeric.” shows in browser.
	Error message “Phone Number Must Be Numeric.” shows in browser.
	X
	
	

	Test Case 9
	Error message “Card Type Is Required.” shows in browser.
	Error message “Card Type Is Required.” shows in browser.
	X
	
	

	Test Case 10
	Error message “Card Number Is Required.” shows in browser.
	Error message “Card Number Is Required.” shows in browser.
	X
	
	

	Test Case 11
	Error message “Card Number Must Contain 15 Or 16 Numeric Digits.” shows in browser.
	Error message “Card Number Must Contain 15 Or 16 Numeric Digits.” shows in browser.
	X
	
	

	Test Case 12
	Error message “Expiration Date Is Required.” shows in browser.
	Error message “Expiration Date Is Required.” shows in browser.
	X
	
	

	Test Case 13
	Error message “Expiration Date Must Be Entered As MM/YYYY.” shows in browser.
	Accepted value with no slash.
	
	X
	See Functionality Corrections: Case 13.

	Test Case 14
	Error message “Expiration Date Month Must Be Between 1 and 12.” shows in browser.
	Accepted value out of range.
	
	X
	See Functionality Corrections: Case 14.

	Test Case 15
	Error message “Your credit card has expired.” shows in browser.
	Error message “Your credit card has expired.” shows in browser.
	X
	
	

	Test Case 16
	Error message “Username Must Be provided.” shows in browser.
	Error message “Username Must Be provided.” shows in browser.
	X
	
	

	Test Case 17
	Error message “This username already exists in the database.” shows in browser.
	Error message “This username already exists in the database.” shows in browser.
	X
	
	

	Test Case 18
	Error message “Password Must Be Provided.” shows in browser.
	Error message “Password Must Be Provided.” shows in browser.
	X
	
	

	Test Case 19
	User gets added to database and Welcome message is displayed on the browser.
	User gets added to database and Welcome message is displayed on the browser.
	X
	
	

	Functionality Corrections: System Tests: Test Suite 3: Purpose: To test the functionality of use case: DAV002 - Register New Member

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 13
	Error message “Expiration Date Must Be Entered As MM/YYYY.” shows in browser.
	Accepted value with no slash.
	X
	
	Added code to check that third digit is a slash.

	Test Case 14
	Error message “Expiration Date Month Must Be Between 1 and 12.” shows in browser.
	Accepted value out of range.
	X
	
	Fixed code to accept correct range.

	System Tests: Test Suite 4: Purpose: To test the functionality of use case: DAV004– Add New Admin

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	Error message “First Name Is Required.” shows in browser.
	Error message “First Name Is Required.” shows in browser.
	X
	
	

	Test Case 2
	Error message “Last Name Is Required.” shows in browser.
	Error message “Last Name Is Required.” shows in browser.
	X
	
	

	Test Case 3
	Error message “Street Address Is Required.” shows in browser.
	Error message “Street Address Is Required.” shows in browser.
	X
	
	

	Test Case 4
	Error message “City Is Required.” shows in browser.
	Error message “City Is Required.” shows in browser.
	X
	
	

	Test Case 5
	Error message “State Is Required.” shows in browser.
	Error message “State Is Required.” shows in browser.
	X
	
	

	Test Case 6
	Error message “Zip Code Is Required.” shows in browser.
	Error message “Zip Code Is Required.” shows in browser.
	X
	
	

	Test Case 7
	Error message “Zip Code Most Be Numeric.” shows in browser.
	Error message “Zip Code Most Be Numeric.” shows in browser.
	X
	
	

	Test Case 8
	Error message “Phone Number Must Be Numeric.” shows in browser.
	Error message “Phone Number Must Be Numeric.” shows in browser.
	X
	
	

	Test Case 9
	Error message “Social Security # Is Required.” shows in browser.
	Error message “Social Security # Is Required.” shows in browser.
	X
	
	

	Test Case 10
	Error message “Social Security # Must Contain 9 numeric digits.” shows in browser.
	Error message “Social Security # Must Contain 9 numeric digits.” shows in browser.
	X
	
	

	Test Case 11
	Error message “Employee Id is Required.” shows in browser.
	Error message “Employee Id is Required.” shows in browser.
	X
	
	

	Test Case 12
	Error message “Start Date Is Required.” shows in browser.
	Error message “Start Date Is Required.” shows in browser.
	X
	
	

	Test Case 13
	Error message “Start Date Must Be Entered As MM/DD/YYYY.” shows in browser.
	Error message “Start Date Must Be Entered As MM/DD/YYYY.” shows in browser.
	X
	
	

	Test Case 14
	Error message “Username Must Be provided.” shows in browser.
	Error message “Username Must Be provided.” shows in browser.
	X
	
	

	Test Case 15
	Error message “This username already exists in the database.” shows in browser.
	Error message “This username already exists in the database.” shows in browser.
	X
	
	

	Test Case 16
	Error message “Password Must Be Provided.” shows in browser.
	Error message “Password Must Be Provided.” shows in browser.
	X
	
	

	Test Case 17
	Admin gets added to database and Welcome message is displayed on the browser.
	Admin gets added to database and Welcome message is displayed on the browser.
	X
	
	

	System Tests: Test Suite 5: Purpose: To test the functionality of use case: DAV007– Search Movies

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	Search Screen is displayed with a list of Hot (New release) movies.
	Search Screen is displayed with a list of Hot (New release) movies.
	X
	
	

	Test Case 2
	Search Screen is refreshed showing all movies in the database.
	Sql Exception is raised.
	
	X
	See Functionality Corrections: Case 2.

	Test Case 3
	Search Screen is refreshed showing movies with database filed Title containing sequence of characters entered in the Title field. Empty list is displayed if no match is found.
	Search Screen is refreshed showing movies with database filed Title containing sequence of characters entered in the Title field. Empty list is displayed if no match is found.
	X
	
	

	Test Case 4
	Search Screen is refreshed showing movies with database field Genre matching value entered in Genre filed. Empty List is displayed if no match is found.
	Search Screen is refreshed showing movies with database field Genre matching value entered in Genre filed. Empty List is displayed if no match is found.
	X
	
	

	Test Case 5
	Search Screen is refreshed showing movies with database field Director containing sequence of characters entered in the Director field. Empty List is displayed if no match is found.
	Search Screen is refreshed showing movies with database field Director containing sequence of characters entered in the Director field. Empty List is displayed if no match is found.
	X
	
	

	Test Case 6
	Search Screen is refreshed showing movies with database field MainActor containing sequence of characters entered in the Main Actor field. Empty List is displayed if no match is found.
	Search Screen is refreshed showing movies with database field MainActor containing sequence of characters entered in the Main Actor field. Empty List is displayed if no match is found.
	X
	
	

	Test Case 7
	Error message “Release Date Must Be Entered As MM/DD/YYYY.” Is sent to the browser.
	Error message “Release Date Must Be Entered As MM/DD/YYYY.” Is sent to the browser.
	X
	
	

	Test Case 8
	Search Screen is refreshed showing movies with database field ReleaseDate matching Release Date field entered. Empty List is displayed if no match is found.
	Search Screen is refreshed showing movies with database field ReleaseDate matching Release Date field entered. Empty List is displayed if no match is found.
	X
	
	

	Test Case 9
	Search Screen is refreshed showing the first 10 movies that meet the search criteria. Next button is enabled.
	Search Screen is refreshed showing the first 10 movies that meet the search criteria. Next button is enabled.
	X
	
	

	Test Case 10
	Search Screen is refreshed showing the movies sorted in increasing order by the column clicked.
	Search Screen is refreshed showing the movies sorted in increasing order by the column clicked.
	X
	
	

	Test Case 11
	Search Screen is refreshed showing the movies ordered in decreasing order by the column clicked.
	Search Screen is refreshed showing the movies ordered in decreasing order by the column clicked.
	X
	
	

	Functionality Corrections: System Tests: Test Suite 5: Purpose: To test the functionality of use case: DAV007– Search Movies

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 2
	Search Screen is refreshed showing all movies in the database.
	SqlException is raised.
	X
	
	Added code to add ‘where ‘ clause to the Sql string only if and when a filter condition needed to be applied.

	System Tests: Test Suite 6: Purpose: To test the functionality of use case DAV005 – Add Movie

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	The New Movie page is displayed with all input fields empty awaiting the user’s input.
	The New Movie page is displayed with all input fields empty awaiting the user’s input.
	X
	
	

	Test Case 2
	The selected movie is added to the appropriate folder on the server. A movie record is added with the info provided by the user. The location field in the movie record contains the relative path to the movie file. A confirmation page is displayed.
	The selected movie is added to the appropriate folder on the server. A movie record is added with the info provided by the user. The location field in the movie record contains the relative path to the movie file. A confirmation page is displayed.
	X
	
	

	Test Case 3
	An error informing the user that they must enter all required fields.
	An error informing the user that they must enter all required fields.
	X
	
	

	Test Case 4
	An error appears informing the user that they need to select a file to upload.
	An error appears informing the user that they need to select a file to upload.
	X
	
	

	Test Case 5
	An error appears informing the user that they need to enter a title.
	An error appears informing the user that they need to enter a title.
	X
	
	

	Test Case 6
	An error appears informing the user that the title is too long.
	SqlException raised.
	
	X
	See Known Bugs.

	Test Case 7
	An error appears informing the user that they need to enter a genre.
	An error appears informing the user that they need to enter a genre.
	X
	
	

	Test Case 8
	An error appears informing the user that they need to enter a director.
	An error appears informing the user that they need to enter a director.
	X
	
	

	Test Case 9
	An error appears informing the user that the director is too long.
	SqlException raised.
	
	X
	See Known Bugs.

	Test Case 10
	An error appears informing the user that they need to enter a main actor.
	An error appears informing the user that they need to enter a main actor.
	X
	
	

	Test Case 11
	An error appears informing the user that the main actor is too long.
	SqlException raised.
	
	X
	See Known Bugs.

	Test Case 12
	An error appears informing the user that they need to enter a date.
	An error appears informing the user that they need to enter a date.
	X
	
	

	Test Case 13
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	X
	
	

	Test Case 14
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	X
	
	

	Test Case 15
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	
	X
	See Functionality Corrections: Case 15.

	Test Case 16
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	X
	
	

	Test Case 17
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	X
	
	

	Test Case 18
	An error appears informing the user that the date entered is invalid.
	Date is accepted. .Net function converted negative value to positive and accepted date.
	
	X
	See Functionality Corrections: Case 18.

	Test Case 19
	An error appears informing the user that the date entered is invalid.
	Date is accepted. .Net function converted 0 to year 2000.
	
	X
	See Functionality Corrections: Case 19.

	Test Case 20
	An error appears informing the user that the date entered is invalid.
	Date is accepted. .Net function converted negative value to positive and accepted date.
	
	X
	See Functionality Corrections: Case 20.

	Test Case 21
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	X
	
	

	Test Case 22
	An error appears informing the user that the date entered is invalid.
	An error appears informing the user that the date entered is invalid.
	X
	
	

	Functionality Corrections: System Tests: Test Suite 6: Purpose: To test the functionality of use case DAV005 – Add Movie

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 18
	An error appears informing the user that the date entered is invalid.
	Date is accepted.
	X
	
	Added date checker function to parse the date and check that the individual date units were in range.

	Test Case 19
	An error appears informing the user that the date entered is invalid.
	Date is accepted.
	X
	
	Date checker rejects 0 before .Net can try to convert it.

	Test Case 20
	An error appears informing the user that the date entered is invalid.
	Date is accepted.
	X
	
	Added date checker function to parse the date and check that the individual date units were in range.

	System Tests: Test Suite 7: Purpose: To test the functionality of use case DAV006 – Remove Movie

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	The associated movie is deleted from the folder it was in. The status of the movie record is changed to unavailable.
	The associated movie is deleted from the folder it was in. The status of the movie record is changed to unavailable.
	X
	
	

	System Tests: Test Suite 8: Purpose: To test the functionality of use case DAV008 – Acquire Movie

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	The Billing Confirmation page displays the whether the movie is being rented or bought, the correct movie name and price, as well as the correct billing information.
	The Billing Confirmation page displays the whether the movie is being rented or bought, the correct movie name and price, as well as the correct billing information.
	X
	
	

	Test Case 2
	A billing transaction and a movie transaction are stored in the database, and a receipt page is displayed.
	A billing transaction and a movie transaction are stored in the database, and a receipt page is displayed.
	X
	
	

	Test Case 3
	No additional movie or billing transactions are entered into the system. The user is redirected to the Search screen.
	No additional movie or billing transactions are entered into the system. The user is redirected to the Search screen.
	X
	
	

	Test Case 4
	The user is directed to the Download Movie page. The movie transaction created contains a transaction type of “Rent”.
	The user is directed to the Download Movie page. The movie transaction created contains a transaction type of “Rent”.
	X
	
	

	Test Case 5
	The user is directed to the Download Movie page. The movie transaction created contains a transaction type of “Purchase”.
	The user is directed to the Download Movie page. The movie transaction created contains a transaction type of “Purchase”.
	X
	
	

	System Tests: Test Suite 9: Purpose: To test the functionality of use case DAV011 – Download Movie

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	The Download page is loaded and all available movies for that user are displayed.
	The Download page is loaded and all available movies for that user are displayed.
	X
	
	

	Test Case 2
	The Download page is loaded and all available movies for that user are displayed.
	The Download page is loaded and all available movies for that user are displayed.
	X
	
	

	Test Case 3
	The user is prompted to choose where they would like to save the movie to.
	The user is prompted to choose where they would like to save the movie to.
	X
	
	

	Test Case 4
	The file is downloaded to the selected directory on the user’s pc. Additionally the file downloaded is the file associated with the link clicked.
	The file is downloaded to the selected directory on the user’s pc. Additionally the file downloaded is the file associated with the link clicked.
	X
	
	

	Test Case 5
	The Movie Transaction, containing the selected movie id as well as the user’s id, contains a status of available.
	The Movie Transaction, containing the selected movie id as well as the user’s id, contains a status of available.
	X
	
	

Subsystem Tests:

	Subsystem Tests: Purpose: To test the functionality of the StorageManager class

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 1
	The fields printed match the associated fields in the database.
	The fields printed match the associated fields in the database.
	X
	
	

	Test Case 2
	No user fields should be displayed on the form.
	No user fields should be displayed on the form.
	X
	
	

	Test Case 3
	The fields printed match the associated fields in the database.
	The fields printed match the associated fields in the database.
	X
	
	

	Test Case 4
	The fields printed match the associated fields in the database.
	The fields printed match the associated fields in the database.
	X
	
	

	Test Case 5
	The fields printed match the associated fields in the database.
	The fields printed match the associated fields in the database.
	X
	
	

	Test Case 6
	The fields in the database match the associated test values of the fields submitted.
	The fields in the database match the associated test values of the fields submitted.
	X
	
	

	Test Case 7
	The fields in the database match the associated test values of the fields submitted.
	The admininfo table was not populated, and a SqlException was raised.
	
	X
	See Functionality Corrections: Case 7.

	Test Case 8
	The movie record with the recid submitted no longer exists in the database.
	The movie record with the recid submitted no longer exists in the database.
	X
	
	

	Test Case 9
	The list of movies displayed matches the movie transactions for user id 3, with a status of Available.
	The list of movies displayed matches the movie transactions for user id 3, with a status of Available.
	X
	
	

	Test Case 10
	There are no movies displayed.
	There are no movies displayed.
	X
	
	

	Test Case 11
	The list of movies displayed contains all movies that match the search criteria.
	The list of movies displayed contains all movies that match the search criteria.
	
	
	

	Test Case 12
	The list of all movies is displayed.
	Sql Exception raised.
	
	X
	See Functionality Corrections: Case 12.

	Test Case 13
	An empty list is displayed.
	An empty list is displayed.
	X
	
	

	Test Case 14
	The list of all movies released in the last 30 days is displayed.
	The list of all movies released in the last 30 days is displayed.
	X
	
	

	Test Case 15
	A new movie record is created in the database whose fields correspond to the test values in the movie record submitted.
	A new movie record is created in the database whose fields correspond to the test values in the movie record submitted.
	X
	
	

	Test Case 16
	The states stored in the database are displayed.
	The states stored in the database are displayed.
	X
	
	

	Test Case 17
	The card types stored in the database are displayed.
	The card types stored in the database are displayed.
	X
	
	

	Test Case 18
	The states stored in the database are displayed.
	The states stored in the database are displayed.
	X
	
	

	Functionality Corrections: Subsystem Tests: Purpose: To test the functionality of the StorageManager class

	
	Expected Outcome
	Actual Outcome
	Pass
	Fail
	Corrections

	Test Case 7
	The fields in the database match the associated test values of the fields submitted.
	The admininfo table was not populated, and a SqlException was raised.
	X
	
	Test data contained value which violated a constraint. Updated data.

	Test Case 12
	The list of all movies is displayed.
	Sql Exception raised.
	X
	
	In test code not assigning date an empty string value when empty, thus leaving it null, which caused the sql exception. Updated test code.

	Known Bugs

	Error conditions
	Error caused
	Risk
	Future Resolution

	New user enters the same billing info as an existing user.
	SqlException raised.
	Low.
	Will add error checking for this on a later revision.

	Fields entered have length greater than their associated field size in the database.
	Sql Exception raised.
	Low.
	Will add error checking for this on a later revision.

8. Glossary
.NET: A Microsoft operating system platform that incorporates applications, a suite of tools and services, and a change in the infrastructure of the company's Web strategy.

.Net framework: A programming infrastructure created by Microsoft for building, deploying, and running applications and services that use .NET technologies, such as desktop applications and Web services.
Aggregation: An association denoting a whole-part relationship between two classes.
API: Application program interface, a set of routines, protocols, and tools for building software applications. A good API makes it easier to develop a program by providing all the building blocks. A programmer puts the blocks together.
API Engineer: Software development participant in charge of the application program interface.

Byte: Abbreviation for binary term, a unit of storage capable of holding a single character. On almost all modern computers, a byte is equal to 8 bits.
C++: A high-level programming language developed by Bjarne Stroustrup at Bell Labs. C++ adds object-oriented features to its predecessor, C.
Class: An Abstraction of a set of objects with the same attributes, operations, relationships, and semantics.

Code-behind: .Net code corresponding to web screens. This code is converted to HTML by the .Net Just In Time Compiler.
Cohesion: The strength of dependencies within subsystem or class.
Coupling: The strength of dependencies between subsystems or classes.
Database: Often abbreviated DB. A collection of information organized in such a way that a computer program can quickly select desired pieces of data. You can think of a database as an electronic filing system.
DSL: Digital subscriber lines, the two main categories being ADSL and SDSL. Two other types of DSL technologies are High-data-rate DSL (HDSL) and Very high DSL (VDSL). DSL technologies use sophisticated modulation schemes to pack data onto copper wires. They are sometimes referred to as last-mile technologies because they are used only for connections from a telephone switching station to a home or office, not between switching stations.

DVD: Short for digital versatile disc or digital video disc, a type of optical disk technology similar to the CD-ROM. A DVD holds a minimum of 4.7GB of data, enough for a full-length movie. DVDs are commonly used as a medium for digital representation of movies and other multimedia presentations that combine sound with graphics.
Gantt chart: Is a bar chart where the horizontal axis represents time and the vertical axis the different software development tasks to be done. This is a project management tool.
Generalization: A modeling activity that results in identifying abstract concepts from lower level ones.
Giga: Prefix indicating a multiplication by 1 billion. For example 20 Gigabytes is equivalent to 20 billion bytes.

GUI: Acronym for graphical user interface. A program interface that takes advantage of the computer's graphics capabilities to make the program easier to use.

Hertz: A unit of frequency of electrical vibrations equal to one cycle per second. The Hertz is named after Heinrich Hertz, who first detected electromagnetic waves.
HTML: Short for Hypertext Markup Language, the authoring language used to create documents on the World Wide Web.
IBM: Short for International Business Machines, the largest computer company in the world. IBM started in 1911 as a producer of punch card tabulating machines.
IIS: Short for Internet Information Server, Microsoft's Web server that runs on Windows NT platforms. In fact, IIS comes bundled with Windows NT 4.0, and all subsequent Windows Server operating systems. Because IIS is tightly integrated with the operating system, it is relatively easy to administer.
Interface: A boundary across which two independent systems meet and act or communicate with each other.

ISP: Short for Internet Service Provider, a company that provides access to the Internet.

LAN: Short for Local Area Network, a computer network that spans a relatively small area. Most LANs are confined to a single building or group of buildings.

Linux: A freely-distributable open source operating system that runs on a number of hardware platforms. The Linux kernel was developed mainly by Linus Torvalds.
Mega: Prefix indicating a multiplication by 1 million. For example 20 Megabytes is equivalent to 20 million bytes.

Microsoft Project: Development tool used by developers during the project management period.

Microsoft Visual Studio .Net: Software suite containing compilers for different programming languages that support .NET technology.

Mono-processor Machine: Computer containing one Central Processing Unit.

Multiprocessor Machine: Computer containing two or more Central Processing Units.

Package: A UML grouping concept denoting a set of objects or classes that are related.
Package diagram: Diagram showing relationship between packages.

Persistent Data: Data that survives a reboot of the system. For example, data stored on a file or a database table is persistent.
PERT chart: Is an acyclic graph of tasks that represents a schedule.

Rational Rose: Software product, used by software developers, which supports the Unified Modeling Language (UML).

Realization: A modeling activity that results in the implementation of an abstract class or interface.
Scalability: A popular buzzword that refers to how well a hardware or software system can adapt to increased demands. For example, a scalable network system would be one that can start with just a few nodes but can easily expand to thousands of nodes.
Sequence diagram: UML notation representing the behavior of the system as a series of interactions among a group of objects.
SQL: Abbreviation for structured query language, and pronounced either see-kwell or as separate letters. SQL is a standardized query language for requesting information from a database.
SQL Server: A powerful Microsoft database management system (DBMS) that responds to queries formatted in the SQL language.
Subsystems: Well defined software components that provide a number of services to other subsystems.

T1: A dedicated phone connection supporting data rates of 1.544Mbits per second. A T-1 line actually consists of 24 individual channels, each of which supports 64Kbits per second.
Three-Tier Architecture: A special type of client/server architecture consisting of three well-defined and separate processes, each running on a different platform. First, we have the user interface, which runs on the user's computer (the client). Second, we have the functional modules that actually process data. This middle tier runs on a server and is often called the application server. And finally, we have a database management system (DBMS) that stores the data required by the middle tier. This tier runs on a second server called the database server.
URL: Abbreviation of Uniform Resource Locator, the global address of documents and other resources on the World Wide Web.
Use case: A general sequence of interaction between one or more actors (system users or external systems) and the main system.

Use case diagram: UML notation used during requirement elicitation and analysis to represent the functionality of a software system.
VHS: The most common format for coding and playing a video tape for a video cassette recorder.
Visio: A Microsoft software product used by software developers to plan and model software systems.
WAN: Short for wide-area network, a computer network that spans a relatively large geographical area. Typically, a WAN consists of two or more local-area networks (LANs).

9. Appendices

Appendix B: Use Cases

Logon

Use Case ID: DAV001

Use Case Level: High Level

Scenario:

· Actor: DavMovie User and DavMovie Administrator.
· Pre-conditions:

1) User has internet access and knows the URL of The DavMovie System.

2) User Types URL and sees the login screen on the browser.

· Description:
1) The user initiates an action by typing his user name and password already stored on our system.

2) The user then clicks the Submit button to send credentials and therefore gain access to our system.

3) The system responds by displaying DavMovie home page if credentials are authentic.

4) The system responds by displaying DavMovie Admin page if credentials correspond to one of the administrators.

5) The system responds by re-displaying the Logon screen with error message if credentials are not authentic.
· Post-conditions:

1) For Users, DavMovie main page is displayed and user can start browsing.

2) For Administrators, DavMovie Admin Page is displayed and administrator can start browsing.
· Alternative Courses of Action:

1) User can request a new membership by clicking New Member button.

Extensions:

1) New Member: Visiting members must fill out a form and sumbit in order to login into our system. See Register New Member use case.
Exceptions:

1) Connection is lost during login proccess.

2) DavMovie is down or under construction.

Concurrent Uses: None

Related Use Cases:
1) Search Movies.

2) Add Movie.

3) Delete Movie.

4) Add Admin.

5) Edit Admin.
--
Decision Support:
Frequency:
Logon operations will occur once for every session started. Session by become idle after 5 minutes of inactivity. We estimate an average of 1 login every two minutes for a system with 1000 customers.
Criticality:
High: Authetication is crucial to maintain high levels of security and to acomplish online privacy. User has to login to make use of any other functionality of the system.
Risk:

Medium: Functionality will be implemented using web technology.

Constaints:
Usability:
It should take less than five minutes to train an inexperienced user how to use the login screen

Performance:
User should see a response after 10 seconds on a worst case scenario.

Reliability:
System should be able to handle login request in presence of congestion and paket lost conditions.
--

Modification History
Owner: David Peraza – Team 3

Initiation date: 01/27/04

Date last modified: 01/31/04

Add New Movie
Use Case Id: DAV005
Use Case Level: High.
Scenario:

· Actor: DavMovie administrator.
· Precondition:

1) Admin must be logged in.

2) Admin must have loaded the movie file to a local directory.

3) Movie is not in the system.
· Description:

1) Admin clicks the Add Movie link.

2) System shall display the Add New Movie screen.

3) Admin should fill the movie info (Genre, Title, Date, Director, Main Actor, and Abstract) and the location of the movie file.

4) Admin shall click submit.

5) System shall enter the new movie record and shall store the movie file in the movie storage directory.

6) System shall then display a confirmation page.
· Post Condition:

1) Movie was added to our system.

2) User can now search for it a get it.
Alternative Course of Action: None.
Extensions: None.
Exceptions:

1. Connection is lost.

2. System is down or it is being updated.

3. Error occurs during the file transfer process.
Concurrent Uses: None.
Related Uses: None
--
Decision Support:

Frequency:
Once for every movie in our system. We predict 2 movies will be added per week.
Criticality:
Medium. Movie can be added at a later time.
Risk:

Medium. Implementing this functionality requires the standard web base technology.

Constraints:
Quality:

Admin must be connected through a DSL line or better.

Performance:
If admin is running on the server machine the response time shall be 3 seconds worst case scenario.

Performance:
If admin is running on a remote machine the response time shall be 30 minute worst case scenario.

Reliability:
Adding new movie should immediately allow users to get it.
--
Modification History

Owner: David Peraza – Team 3
Initiation date: 02/01/04

Date last modified: 02/01/04

Search Movies
Use Case Id: DAV007
Use Case Level: High.
Scenario:

· Actor: DavMovie User
· Precondition:

1) User is logged in.

2) Search screen is displayed.
· Description:

1) User enters the search criteria. (Title, Genre, Director, Date Range, and/or Main Actors)

2) User clicks the Find Button.

3) System shall display a list of movies that meet the search criteria.
· Relevant Requirements: None.
· Post Condition:

1) Desired movie is displayed.
Alternative Course of Action:

1) System shall re-display the search screen with a special message, if no movies are found during a search.
Extensions: None.
Exceptions:

1) Connection is lost.

2) System is being updated.
Concurrent Uses: None.
Related Uses:
1) Remove Movie, Rent Movie, Buy Movie, Download Movie.
--

Decision Support:

Frequency:
Once for every transaction in our system. This is the most important operation most of the functionality of the system depends on searches. We estimate that for every 1000 customers there will be an average of one search operation every 5 minutes.
Criticality:
High, most operations of our system depends on the search functionality. If the search functionality fails the system could be declare useless or crashed.
Risk:

Medium. Implementing this functionality requires the standard web base technology.
Constraints:
Performance:
System should respond within 5 seconds worst case scenario.

Reliability:
System should allow for paging if list of movies that meets search criteria does not fit on screen.

Usability:

Any person that has basic knowledge of components like text boxes and buttons should find the search screen intuitive.
--
Modification History

Owner: David Peraza. – Team 3
Initiation date: 02/04/04

Date last modified: 02/04/04

Acquire Movie

Use Case ID: DAV008

Use Case Level: High

Scenario:

· Actor: DavMovie User
· Pre-conditions:

1) Movie User has successfully logged in to the system

2) Movie User has browsed available movies

3) Movie User has selected a movie to acquire
· Description:

1) The use case begins when the Movie User clicks on a rent/buy button from the available movies list

2) The system will direct the user to a billing information screen

3) The user will enter all required fields and click the Submit button

4) The system will store a billing transaction as well as an acquire movie transaction. Additionally, the user will be directed to a receipt screen showing the details and amount of the transaction

5) From the receipt screen the user will have the ability to save or print the receipt for his/her records and can click Continue to proceed

6) The system directs the user to the download page where they can download the selected movie

7) Use case ends after billing information has been verified and stored and the user is on the download page

· Post-conditions:

1) The number of transactions to be billed in the system has increased by one

2) The user has been directed to the download page

· Alternative Courses of Action
1) In D.3 the user can cancel the request

2) In D.4 if there is missing or invalid input, the system will prompt the user to correct it

Exceptions:

1) The internet connection is dropped at some point during the acquire movie use case
Extensions:

1) The Rent Movie use case inherits from this one

2) The Purchase Movie use case inherits from this one
Related Use Cases:

1) The Browse Movies use case would precede this one purchase

2) The Download Movie use case would follow it

--
Decision Support:
Frequency:
We estimate for every 1000 customers there will be one movie every 15 minutes. As a globally available application it should have the ability to scale to hundreds of millions of transactions per day.
Criticality:
Without this use case the system will be of no value, as all business must be generated through this use case
Risk:

If the demand for service increases more quickly than anticipated will the underlying architecture be able to support this use case
Constraints:

Usability:
Page offers a standard look and feel, where forms will offer the traditional web interface users have become accustomed to.

Performance:
Users should see no more than a 10 second delay between any two pages.

Supportability: All of the code will reside on the webserver making updates transparent to the client.

--

Modification History –

*Owner: David Crowther – Team 3

*Initiation date: 01/25/2004

*Date last modified: 01/25/2004

Purchase Movie

Use Case ID: DAV010

Use Case Level: High

Scenario:

· Actor: Inherited from AcquireMovie
· Pre-conditions: Inherited from AcquireMovie
· Description:

1) The use case begins when the Movie User clicks on the “Rent Movie” button from the available movies list. A transaction type of Rent is stored in the transaction.

2) - 7) Inherited from AcquireMovie

· Post-conditions: Inherited from AcquireMovie
· Alternative Courses of Action Inherited from AcquireMovie
Exceptions: Inherited from AcquireMovie
Related Use Cases: Inherited from AcquireMovie
--
Decision Support:
Frequency:
Inherited from AcquireMovie

Criticality:
Inherited from AcquireMovie

Risk:

Inherited from AcquireMovie

Constraints: Inherited from AcquireMovie

--

Modification History --
*Owner: David Crowther – Team 3

*Initiation date: 01/25/2004

*Date last modified: 01/25/2004

Download Movie

Use Case ID: DAV011

Use Case Level: High

Scenario:

· Actor: Movie User
· Pre-conditions:

1) User has just completed the AcquireMovie use case or user has movies available for download

2) User is on the DownloadMovie page

· Description:

1) The use case begins when the user has available movies and is being directed to the Download Movies page

2) The system will retrieve all available movies for the user

3) The system will open the Download Movie page, on which the movie(s) that are available will be listed along with link(s) to download them

4) The user will click a download link

5) The system will create a Storage Entity, which will stream the movie to the user

6) The use case ends when the user clicks on the Accept button or closes the browser

· Post-conditions:

1) A flag is set in the appropriate acquire movie transaction indicating that the user has successfully downloaded the movie

· Alternative Courses of Action
1) In D.3 the user can click Download Later to leave without yet downloading
Exceptions:

1) The internet connection is dropped at some point during the download
Related Use Cases:

1) The Acquire Movie use case would usually precede this one

--Decision Support:
Frequency:
This should be another frequently used use case, as all purchase and rental transactions, should at some point be downloaded. As a globally available application it should have the potential to scale to hundreds of millions of transactions per day. In regards to download this will necessitate the implementation of a content delivery network to handle high volumes of simultaneous downloads.
Criticality:
Without this use case the system will lose potential customers very quickly. If people are unable to download a movie they have purchased or rented they will not be likely to give return business.
Risk:

Medium. Implementing this use case employs standard web-based technology.

Constraints:

Usability:
Page offers a standard look and feel, where forms will offer the traditional web interface users have become accustomed to.

Performance:
Users should see no more than a 10 second delay between any two pages.

Supportability: All of the code will reside on the webserver making updates transparent to the client.

--Modification History –

*Owner: David Crowther – Team 3

*Initiation date: 01/25/2004

*Date last modified: 01/25/2004

 Appendix D: User Interface Designs

Login Screen:

[image: image9.png]3 Login - Microsoft Internet Explorer

Ele Edt Vew Favertes Took

0= 0 HEO

e

Pt Jorwmies @ @ (- 12 B L @)

e €] e focahosioavtaveogi.ssps

User 1d:

Password:

Mew Member

&) Local ntranet

New Member Screen:

[image: image10.png]2 NewMember - Microsoft Internet Explorer,

Ele Edt View Favortes Toos Help

Qo - O [¥] [B] @) POsewen Forovoes @ rede @ (3 L2 L@

e €] e focahosioavtovieenenter ssps

'Netw, Membéﬁ ,

Ve e > @l

Add Manager Add Movie Search Dowmload Logout

Personal Info

Credit Card Info

First Name:

Type:

Last Name:

Number:

Street Address:

Expiration Date:

City:

State:

Zip Code:

Phone Number:

Credentials

User 1d:

Password:

G oot

Search Screen:

[image: image11.png]2 Search - Microsoft Internet Explorer,

Ele Edt View Favortes Toos Help

Qo - O [¥] [B] @) POsewen Forovoes @ rede @ (3 L2 L@

Address |] http:/flocahost/DavMoviefSearch.aspx. Go

Add Manager Add Movie

Search Criteria

Director: Main Actor: Date:

Rent Purchase Delete Lord Of The Rings Adventure David Peraza David Crowther 10/14/2003 12:00:00 AM
Rent Purchase Delete Matrix Action David Peraza David Crowther 10/14/2003 12:00:00 AM
Rent Purchase Delete Underworld Horror David Peraza David Crowther 10/14/2003 12:00:00 AM
Rent Purchase Delete Gone With The Wind Drama David Peraza David Crowther 10/14/1970 12:00:00 AM
Rent Purchase Delete Planet OF Apes Science Fiction David Peraza David Crowther 10/14/2003 12:00:00 AM
Rent Purchase Delete Mission Tmposible Action David Peraza David Crowther 10/14/2003 12:00:00 AM
Prev Next

oo

New Manager Screen:

[image: image12.png]3 NewManager - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qs - © - ¥ B] s Frrovonss @t @

gdress]t focalostfDaoviiNowManager.spx

Add Manager Add Movie Search Dowmload Logout

Personal Info Employee Info

First Name: ss#:

Last Name: Employee ID:

Street Address: Start Date:

City:

Credentials

State:

User 1d:

Zip Code:

Password:

Phone Number:

CIeT

New Movie Screen:

[image: image13.png]2 NewMovie - Microsoft Internet Explorer,

Ele Edt View Favortes Toos Help

Qe - © (] [& G| Pt Fpraonee @ @

e €] e focahosioamavieentr, s

Add Manager Add Movie

Description Abstract

Director:

Main Actor:

Date:

Source Location:

@ oo G Loca et b

Download Screen:

[image: image14.png]2 Dowload - Microsoft Internet Explorer,
Ele Edt Vew Favortes Took Help

Qs - © - ¥ B] s Frrovonss @t @ Dz- 3

Adhess | €] http:flocalhost/DavMovie/Dowload. aspi Go

Add Manager Add Movie

Dowload Lord OfThe Rings ~ Adventre David Peraza David Crowther 10/1412003 1200:00 AM
Dowload Matrix Action David Peraza David Crowther 10/14/2003 12:00.00 AM
Dowload Underworld Horror David Peraza David Crowther 10/14/2003 12:00.00 AM
Dowload Gone With The Wind Drama David Peraza David Crowther 10/14/1970 12:00.00 AM
Dowload Planet OF Apes Science Fiction David Peraza David Crowther 10/14/2003 12:00.00 AM
Prev Next

CIeT

Appendix D: Deployment Diagram
[image: image15.emf]Windows 98

:Internet Explorer

6.0

RedHat Linux 7.0

Windows Server 2003

Windows Server 2003

:Godzilla

:IIS (Web

Server)

:SQL Server

2000

Appendix E: Detailed Class Diagrams
[image: image16.emf]Movie Uploader

MovieRec : MovieRecord

Submit()

ValidateData() : Boolean

Exit()

GenerateAck()

(from Tier 2 - Application Logic)

Add Movie Page

txtTitle : TextBox

txtGenre : TextBox

txtDirector : TextBox

txtMainActor : TextBox

txtReleaseDate : TextBox

txtLocation : TextBox

btSubmit : Button

btExit : Button

Menu : MenuControl

Post()

(from Tier 1 - Interface)

Acquire Movie Controller

BillingRec : BillingRecord

Type : String

SetMovieInfo()

ConfirmBillingInfo()

ValidateBillingInfo() : Boolean

ConfirmTransaction()

GenerateReceipt()

ProceedToDowload()

DownloadLater()

Cancel()

ModifyBillingInfo()

(from Tier 2 - Application Logic)

Acquire Movie Page

txtFirstName : TextBox

txtLastName : TextBox

txtZipCode : TextBox

txtCardType : TextBox

txtNumber : TextBox

txtExpirationDate : TextBox

btConfirmBillingInfo : Button

btConfirmTransaction : Button

btModifyBillingInfo : Button

btProceedToDownload : Button

btDownloadLater : Button

btCancel : Button

lbMovieName : Label

lbPrice : Label

Post()

(from Tier 1 - Interface)

MovieRecord

RecId : Integer

Title : String

Genre : String

Director : String

MainActor : String

ReleaseDate : String

Location : String

Available : Boolean

(from Tier 3 - Storage)

BillingRecord

UserLink : Integer

MovieLink : Integer

CardType : String

Number : String

ExpirationDate : String

FirstName : String

LastName : String

Address1 : String

Address2 : String

City : String

State : String

ZipCode : String

PhoneNumber : String

(from Tier 3 - Storage)

 <<Precondition>>

btSumit.clicked = true AND

All required fields (txtTitle,

txtReleaseDate) are filled

 <<Postcondition>>

A new movie is

found in our Movie

Table.

 <<Precondition>>

Before calling Submit(),

ValidateData() == true

 <<Postcondition>>

After calling Submit(),

A new movie is found in

our Movie Table.

 <<precondition>>

Before posting a button action Labels

lbMovieName and lbPrice must

contain values AND a button must

have been clicked AND all Billing fields

are filled.

 <<Postcondition>>

After ConfirmTransaction() a

new Movie Transaction is found

in our MovieTransactionTable

and a new Billing Transaction

is found in our

BillingTransaction Table

 <<Postcondition>>

After ProceedToDownload() is

called the Download Page is

displayed.

 <<Postcondition>>

After calling DownloadLater()

or Cancel() Serach Page is

displayed.

Detailed Class Diagram

[image: image17.emf]Movie Downloader

MovieRecList : MovieRecord[]

GenerateMovieList()

DownloadSelection()

DownloadLater()

(from Tier 2 - Application Logic)

Download Movie Page

dgMovies : DataGrid

btDownloadLater : Button

Menu : MenuControl

Post()

(from Tier 1 - Interface)

Movie Browser

MovieRecList : MovieRecord[]

DoSearch()

GenerateMovieList()

(from Tier 2 - Application Logic)

Logon Page

txtUserName : TextBox

txtPassword : TextBox

btSubmit : Button

lkNewMember : Link

post()

(from Tier 1 - Interface)

Search Movie Page

Menu : MenuControl

txtTitle : TextBox

txtGenre : TextBox

txtDirector : TextBox

txtMainActor : TextBox

txtDate : TextBox

btSearch : Button

dgMovies : DataGrid

Post()

(from Tier 1 - Interface)

 <<Precondition>>

Before posting Download Link

for a selected movie was

clicked.

 <<Postcondition>>

After calling DowloadSelection()

Movie Dowloaded becomes

unavilable for that costumer

 <<Postcondition>>

After Calling DowloadLater()

Search Page is Displayed

 <<Precondition>>

Before posting Username and

Password most be filled AND

user is not authenticated.

 <<Postcondition>>

After posting User is

authenticated and Logon

to the system

Detailed Class Diagram Cont.

[image: image18.emf]Menu Controller

SearchMovie()

AddManager()

AddMovie()

DownloadMovie()

Logout()

(from Tier 2 - Application Logic)

User Authenticator

UserRec : UserRecord

Logon()

NewMember()

(from Tier 2 - Application Logic)

UserRecord

RecId : Integer

UserName : String

Pasword : Byte[]

AccessLevel : String

Active : Boolean

(from Tier 3 - Storage)

MenuGUI

lkAddManager : Link

lkAddMovie : Link

lkSearch : Link

lkDownload : Link

lkLogout : Link

post()

(from Tier 1 - Interface)

 <<Precondition>>

Before Calling Logon() user is

not authenticated.

 <<Postcondition>>

After calling Logon() User

is authenticated and

Logon to the system

 <<Precondition>>

After calling NewMember()

New Member Screen is shown

 <<Postcondition>>

After posting the page

represented by the link clicked

is displayed.

 <<Postcondition>>

After Loagout() is called

Session is terminated

 <<Postcondition>>

After SearchMovie is called

Search Movie Page is

displyed

 <<Postcondition>>

After DownloadMovie is

called Download Movie Page

is displyed

 <<Postcondition>>

After AddMovie is called Add

Movie Page is displyed

 <<Postcondition>>

After AddManager is called

Add Manager Page is

displyed

UserInfoRec

FirstName : String

LastName : String

Address1 : String

Address2 : String

City : String

State : String

ZipCode : String

PhoneNumber : String

BillingInfoRecord

CardType : String

Number : String

ExpirationDate : String

UserInfoRec : UserInfoRec

EmployeeInfoRecord

SSNo : String

EmployeeId : String

StrartDate : String

UserInfoRec : UserInfoRec

Detailed Class Diagram Cont.

[image: image19.emf]Storage Manager

entSupportData : SupportData

entUserInfo : UserInfo

entMovie : Movie

entMovieTransaction : MovieTransaction

entBillingTransaction : BillingTransaction

GetMoviesToDownload(UserLink : Integer) : MovieRecord[]

RetrieveSelectedMovie(movieLink : Integer) : String

AddMovieRecord(movieRec : MovieRecord)

UploadMovieFile(fileStream : FileStream)

AddMovieTransaction(movieTrxRec : MovieTrxRecord)

AddBillingTransaction(billingRec : BillingRecord)

GetHotMovieList() : MovieRecord[]

SearchForMovies(filterRec : FilterRecord) : MovieRecord[]

RetrieveUserCredentials(userName : String) : UserRecord

DeleteMovieRecord(movieLink : Integer)

AddUser(userRec : UserRecord, billingInfoRec : BillingInfoRecord)

AddUser(userRec : UserRecord, empRec : EmployeeInfoRecord)

GetGenre() : String[]

GetCardTypes() : String[]

GetStates() : StateRec[]

(from Tier 3 - Storage)

 <<Precondition>>

Before calling

GetMoviesToDownload()

entMovieTransaction != null

 <<Precondition>>

Before calling

RetrieveSelectedMovie()

selected movie must

correspond to a file stored in

our Movie File Directory.

 <<Precondition>>

Before calling

AddMovieRecord() Movie being

added is not in our Movie table

and movieRec contains values

for Title and ReleaseDate.

 <<Postcondition>>

After calling

AddMovieRecord() there should

be a new movie in our Movie

table.

 <<Precondition>>

Before calling UploadMovieFile() File

most not be in our Movie File Directory.

 <<Postcondition>>

After calling UploadMovieFile() File most

be in our Movie File Directory.

Detailed Class Diagram Cont.

[image: image20.emf]Movie

MovieRec : MovieRecord

SetMovieRec(movieRec : MovieRecord)

GetMovieRec() : MovieRecord

Insert(movieRec : MovieRecord)

Update()

Select()

RetrieveMoviesToDownload(userLink : Integer) : MovieRecord[]

GetHotMovieList() : MovieRecord[]

SearchForMovies(filterRec : FilterRecord) : MovieRecord[]

Delete(movieLink : Integer)

(from Tier 3 - Storage)

Support Data

GetCardTypes() : String[]

GetStates() : StateRec[]

GetGenreList() : String[]

(from Tier 3 - Storage)

User Info

GetUserCredentials(userName : String) : UserRecord

(from Tier 3 - Storage)

Billing Transaction

BillingRec : BillingRecord

Insert(billRec : BillingRecord)

Update()

Select()

SetBillingRecord(billingRec : BillingRecord)

GetBillingRecord() : BillingRecord

(from Tier 3 - Storage)

Movie Transaction

MovieTrxRec : MovieTrxRecord

Insert(movieTrxRec : MovieTrxRecord)

Update()

GetMoviesToDownload() : MovieRecord[]

SetMovieTrxRec(movieTrxRec : MovieTrxRecord)

GetMovieTrxRec() : MovieTrxRecord

(from Tier 3 - Storage)

ErrorHandler

<<static>> UniqueErrorHandler : ErrorHandler

<<static>> Create() : ErrorHandler

LogError(errorMsg : String)

(from Tier 2 - Application Logic)

StateRec

Abbreviation : String

Name : String

(from Tier 3 - Storage)

MovieTrxRecord

UserLink : Integer

MovieLink : Integer

TransactionType : String

(from Tier 3 - Storage)

FilterRecord

Title : String

Genre : String

Director : String

MainActor : String

Date : Date

(from Tier 3 - Storage)

 <<Precondition>>

Before calling Selecting BillingRecord.

FirstName and BillingRecord.LastName

Must be filled.

 <<Precondition>>

Before calling select

MovieRecord.MovieLink should

be populated and it must match

the id of one of our movies.

 <<Invariant>>

There is only one instance of the class

handling errors for the whole system.

Detailed Class Diagram Cont.

Appendix F: Class Interfaces
Presentation Layer:

Note: All pages are represented with C# Code but they are actually translated to HTML pages by the web server.

using System;

namespace DavMovie.Presentation

{

/*===

 Purpose: Add Movie user interface that collects New Movie Info

 Name: David Peraza

 Date: 03/23/04

 ===*/

 public class AddMoviePage

 {

 public AddMoviePage()

 {

 }

 public TextBox txtTitle;

 public TextBox txtGenre;

 public TextBox txtDirector;

 public TextBox txtMainActor;

 public TextBox txtReleaseDate;

 public TextBox txtLocation;

 public Button btSubmit;

 public Button btExit;

 public MenuControl Menu;

 //@pre btSubmit.clicked == true

 //@pre txtboxes->forall(t:Textbox | (t.Required & t.Length > 0) ||

 //!t.Required)

 //@post Movies.Count = @pre.Movies.Count + 1

 public void Post()

 {

 }

 }

 /*===

 Purpose: Rent or Purchase user interface. Transaction Page

 Name: David Crowther

 Date: 03/26/04

 ===*/
 public class AcquireMoviePage

 {

 public AcquireMoviePage()

 {

 }

 public TextBox txtFirstName;

 public TextBox txtLastName;

 public TextBox txtZipCode;

 public TextBox txtCardType;

 public TextBox txtNumber;

 public TextBox txtExpirationDate;

 public Button btConfirmBillingInfo;

 public Button btConfirmTransaction;

 public Button btModifyBillingInfo;

 public Button btProceedToDownload;

 public Button btDownloadLater;

 public Button btCancel;

 public Label lbMovieName;

 public Label lbPrice;

 //@pre lbMovieName.Length > 0

 //@pre lbPrice.Length > 0

 //@pre buttons->forall(b:Button | b.Name != "btCancel" && b.Clicked

 //== true) @pre txtboxes->forall(t:Textbox | (t.Required & t.Length

 //> 0) || !t.Required)

 public void Post()

 {

 }

 }

 /*===

 Purpose: Download user interface. It displays a list of movies

 Ready to be downloaded.

 Name: David Crowther

 Date: 03/26/04

 ===*/
 public class DownloadMoviePage

 {

 public DownloadMoviePage()

 {

 }

 public DataGrid dgMovies;

 public Button btDownloadLater;

 public MenuControl Menu;

 //@pre dgMovies.Row.Selected == true

 //@pre lkDownload.Clicked == true

 public void Post()

 {

 }

 }

 /*===

 Purpose: Search user interface. It displays a list of movies

 Ready to be rented or purchased.

 Name: David Peraza

 Date: 03/25/04

 ===*/
 public class SearchMoviePage

 {

 public SearchMoviePage()

 {

 }

 public MenuControl Menu;

 public TextBox txtTitle;

 public TextBox txtGenre;

 public TextBox txtDirector;

 public TextBox txtMainActor;

 public TextBox txtDate;

 public Button btSearch;

 public DataGrid dgMovies;

 public void Post()

 {

 }

 }

 /*===

 Purpose: Login user Interface. It collects credentials from user.

 Name: David Peraza

 Date: 03/25/04

 ===*/

 public class LogonPage

 {

 public LogonPage()

 {

 }

 public TextBox txtUserName;

 public TextBox txtPassword;

 public Button btSubmit;

 public Link lkNewMember;

 //@pre btSubmit.Clicked == true

 //@pre TxtUserName. Length > 0

 //@pre TxtPassword. Length > 0

 //@pre Session.Authenticated == false

 //@post Session.Authenticated == true

 public void Post()

 {

 }

 }

/*===

 Purpose: Link Menu to be included in every other page.

 Name: David Peraza

 Date: 03/28/04

 ===*/ public class MenuGUI

 {

 public MenuGUI()

 {

 }

 public Link lkAddManager;

 public Link lkAddMovie;

 public Link lkSearch;

 public Link lkDownload;

 public Link lkLogout;

 //@pre exists(l:Link | l.Clicked == true)

 //@post exists(l:Link | @pre.l.Clicked == true &&

 //Response.Redirect(l.PageName) == true

 public void Post()

 {

 }

 }

}

Business Layer:

using System;

namespace DavMovie.Business

{

 /*===

 Purpose: Control object that responds to events of the New

 Movie Page.

 Name: David Peraza

 Date: 03/28/04

 ===*/

 public class MovieUploader

 {

 public MovieUploader()

 {

 }

 private MovieRecord MovieRec;

 //@pre ValidateData == true

 //@post Movies.Count = @pre.Movies.Count + 1

 public void Submit()

 {

 }

 private bool ValidateDate()

 {

 }

 public void Exit()

 {

 }

 private void GenerateAck()

 {

 }

 }

 /*===

 Purpose: Control object that responds to events of the

 Transaction and Receipt Pages.

 Name: David Peraza

 Date: 04/03/04

 ===*/

 public class AcquireMovieController

 {

 public AcquireMovieController()

 {

 }

 private BillingRecord BillingRec;

 public string Type;

 public void SetMovieInfo()

 {

 }

 public void ConfirmBillingInfo()

 {

 }

 private bool ValidateBillingInfo()

 {

 }

 //@post BillingTransaction.Count = @pre.BillingTransaction.Count + 1

 //@post MovieTransaction.Count = @pre.MovieTransaction.Count + 1

 public void ConfirmTransaction()

 {

 }

 private void GenerateReceipt()

 {

 }

 //@post Response.Redirect("/DownloadPage")

 public void ProceedToDownload()

 {

 }

 //@post Response.Redirect("/SearchPage")

 public void DownloadLater()

 {

 }

 //@post Response.Redirect("/SearchPage")

 public void Cancel()

 {

 }

 public void ModifyBillingInfo()

 {

 }

 }

 /*===

 Purpose: Control object that responds to events of the

 Download Page.

 Name: David Peraza

 Date: 04/03/04

 ===*/

 public class MovieDownloader

 {

 public MovieDownloader()

 {

 }

 private MovieRecord[] MovieRecList;

 private void GenerateMovieList()

 {

 }

 //@post Movies.Available = @pre Movies.Available - 1

 public void DowloadSelection()

 {

 }

 //@post Response.Redirect("/SearchPage")

 public void DowloadLater()

 {

 }

 }

 /*===

 Purpose: Control object that responds to events of the

 Search Page.

 Name: David Peraza

 Date: 04/05/04

 ===*/

 public class MovieBrowser

 {

 public MovieBrowser()

 {

 }

 private MovieRecord[] MovieRecList;

 public void DoSearch()

 {

 }

 public void GenerateMovieList()

 {

 }

 }

 /*===

 Purpose: Control object that responds to events of the

 Login Page.

 Name: David Peraza

 Date: 04/03/04

 ===*/

 public class UserAuthenticator

 {

 public UserAuthenticator()

 {

 }

 private UserRecord UserRec;

 //@pre LogonPage.UserName != string.Empty

 //@pre LogonPAge.Password != string.Empty

 public void Logon()

 {

 }

 //@pre StorageManager.RetrieveUserCredentials(UserRec.UserName) ==

 //null

 //@post Users.Count = @pre.Users.Count + 1

 public void NewMember()

 {

 }

 }

 /*===

 Purpose: Control object that responds to events of the

 Main Menu web Control.

 Name: David Peraza

 Date: 04/03/04

 ===*/

 public class MenuController

 {

 public MenuController()

 {

 }

 //@post Response.Redirect("/SearchPage")

 public void SearchMovie()

 {

 }

 //@post Response.Redirect("/AddManagerPage")

 public void AddManager()

 {

 }

 //@post Response.Redirect("/AddMoviePage")

 public void AddMovie()

 {

 }

 //@post Response.Redirect("/DownloadMoviePage")

 public void DownloadMovie()

 {

 }

 //@pre Session.Authenticated == true

 //@post Session.Authenticated == false

 //@post Response.Redirect("/LogonPage")

 public void Logout()

 {

 }

 }

 /*===

 Purpose: Singleton Object in charge of logging system and

 database errors.

 Name: David Peraza

 Date: 04/05/04

 ===*/

 //@inv (# of -1 < instances < 2)

 public class ErrorHandler //Singleton

 {

 private ErrorHandler()

 {

 }

 private static ErrorHandler UniqueErrorHandler;

 public static ErrorHandler Create()

 {

 }

 public void LogError(string errorMsg)

 {

 }

 }

}

Storage Layer:

using System;

namespace DavMovie.Storage

{

//***
 public enum TransactionType : byte

 {

Purchase = (byte) 'P',

Rent = (byte) 'R'

 }

//***
 public enum Status : byte

 {

Available = (byte) 'A',

Downloaded = (byte) 'B'

 }

//***
 public enum AccessLevel : byte

 {

Administrator = (byte) 'A',

User = (byte) 'U'

 }

//***
 public enum Constants

 {

DaysHot = -30

 }

//***
 public struct MovieTrxRecord

 {

 public int UserLink;

 public int MovieLink;

 public TransactionType TransactionType;

 }

 //***

 public struct StateRec

 {

 public string Abbreviation;

 public string Name;

 }

 //***

 public struct FilterRecord

 {

 public string Title;

 public string Genre;

 public string Director;

 public string MainActor;

 public string Date;

 }

 //***

 public struct MovieRecord

 {

 public int RecId;

 public string Title;

 public string Genre;

 public string Director;

 public string MainActor;

 public string ReleaseDate;

 public string Location;

 public bool Available;

 }

 //***

 public struct BillingRecord

 {

 public int UserLink;

 public int MovieLink;

 public string FirstName;

 public string LastName;

 public string Address1;

 public string Address2;

 public string City;

 public string State;

 public string ZipCode;

 public string PhoneNumber;

 public string CardType;

 public string Number;

 public string ExpirationDate;

 }

//***

 public struct UserRecord

 {

 public int RecId;

 public string UserName;

 public byte[] Password;

 public AccessLevel AccessLevel;

 public bool Active;

 }

//***

 public struct UserInfoRecord

 {

 public string FirstName;

 public string LastName;

 public string Address1;

 public string Address2;

 public string City;

 public string State;

 public string ZipCode;

 public string PhoneNumber;

 }

//***

 public struct BillingInfoRecord

 {

 public UserInfoRecord UserInfoRec;

 public string CardType;

 public string Number;

 public string ExpirationDate;

 }

//***

 public struct EmployeeInfoRecord

 {

 public UserInfoRecord UserInfoRec;

 public string SSNo;

 public string EmployeeId;

 public string StartDate;

 }

/*===

 Purpose: Object that interface the Data Storage Subsystem.

 Name: David Crowther

 Date: 03/21/04

 ===*/

 public class StorageManager

 {

 public StorageManager()

 {

 }

 private SupportData entSupportData;

 private UserInfo entUserInfo;

 private Movie entMovie;

 private MovieTransaction entMovieTransaction;

 private BillingTransaction entBillingTransaction;

 //@pre entMovieTransaction != null

 public MovieRecord[] GetMoviesToDownload(int userLink)

 {

 }

 //@pre movieRec.Title != string.empty

 //@pre movierec.ReleaseDate != string.empty

 //@pre !Exist(r: Record | r in Movie table and r.Title ==

 //movieRec.Title and

 // r.ReleaseDate == movierec.ReleaseDate)

 //@post in Database, Movie.Cont = @pre.Movie.Cont + 1

 public void AddMovieRecord(MovieRecord movieRec)

 {

 }

 public void DeleteMovieRecord(int movieLink)

 {

 }

 //@pre fileStream not in Movie File Directory

 //@post fileStream is in Movie File Directory

 public void UploadMovieFile(FileStream fileStream)

 {

 }

 //@pre movieTrxRec != null

 public void AddMovieTransaction(MovieTrxRecord movieTrxRec)

 {

 }

 //@pre billingRec != null

 public void AddBillingTransaction(BillingRecord billingRec)

 {

 }

 public MovieRecord[] GetHotMovieList()

 {

 }

 public MovieRecord[] SearchForMovies(FilterRecord filterRec)

 {

 }

 //@pre userName != string.Empty

 public UserRecord RetrieveUserCredentials(string userName)

 {

 }

 //@pre userRec.UserName is not in database.

 //@post userRec.UserName is in database
 public void AddUser(UserRecord userRec,

 BillingInfoRecord billInfoRec)

 {

 }

 //@pre userRec.UserName is not in database.

 //@post userRec.UserName is in database.
 public void AddUser(UserRecord userRec, EmployeeInfoRecord empRec)

 public DataSet GetStates()

 {

 }

 public DataSet GetCardTypes()

 {

 }

 public DataSet GetGenre()

 {

 }

 }

 /*===

 Purpose: Object in charge of creating Movie transactions in the

 database.

 Name: David Crowther

 Date: 03/22/04

 ===*/

 public class MovieTransaction

 {

 public MovieTransaction()

 {

 }

 private MovieTrxRecord MovieTrxRec;

 //@pre MovieTrxRec != null

 public void Insert(MovieTrxRecord movieTrxRec)

 {

 }

 //@pre MovieTrxRec != null

 public void Update()

 {

 }

 public void SetMovieTrx(MovieTrxRecord movieTrxRec)

 {

 }

 public MovieTrxRecord GetMovieTrxRec()

 {

 }

 }

 /*===

 Purpose: Object in charge of creating Billing transactions in the

 database.

 Name: David Crowther

 Date: 03/24/04

 ===*/

 public class BillingTransaction

 {

 public BillingTransaction()

 {

 }

 private BillingRecord BillingRec;

 //@pre BillingRec != null

 public void Insert(BillingRecord billRec)

 {

 }

 //@pre BillingRec != null

 public void Update()

 {

 }

 //@pre BillingRec.FirstName != string.empty

 //@pre BillingRec.LastName != string.empty

 public void Select()

 {

 }

 public void SetBillingRecord(BillingRecord billingRec)

 {

 }

 public BillingRecord GetBillingRecord()

 {

 }

 }

 /*===

 Purpose: Object in charge of Inserting, Modifying and retrieving

 Movies of our database.

 Name: David Crowther

 Date: 03/28/04

 ===*/

 public class Movie

 {

 public Movie()

 {

 }

 private MovieRecord MovieRec;

 public void SetMovieRec(MovieRecord movieRec)

 {

 }

 public MovieRecord GetMovieRec()

 {

 }

 public MovieRecord[] SearchForMovies(FilterRecord filter)

 {

 }

 public MovieRecord[] RetrieveMoviesToDownload(int userLink)

 {

 }

 public MovieRecord[] RetrieveHotMovieList()

 {

 }

 public void Delete(int movieLink)

 {

 }

 public void Insert(MovieRecord movieRec)

 {

 }

 public void Update()

 {

 }

 //@pre exist(r: Record | r in Movies and r.RecId = MovieRec.RecId)

 public MovieRecord Select(int movieLink)

 {

 }

 }

 /*===

 Purpose: Object in charge retrieving support data from our

 database.

 Name: David Crowther

 Date: 03/28/04

 ===*/

 public class SupportData

 {

 public SupportData()

 {

 }

 public string[] GetCardTypes()

 {

 }

 public StateRec[] GetStates()

 {

 }

 public string[] GetGenreList()

 {

 }

 }

 /*===

 Purpose: Object in charge retrieving and storing user info in our

 database.

 Name: David Crowther

 Date: 04/01/04

 ===*/

 public class UserInfo

 {

 public UserInfo()

 {

 }

 //@pre userName != string.empty

 public UserRecord GetUserCredentials(string userName)

 {

 }

 public BillingRecord GetBillingRecord(int userLink, int movieLink)

 {

 }

 public void AddUser(UserRecord userRec,

 BillingInfoRecord billInfoRec)

 {

 }

 public void AddAdmin(UserRecord userRec, EmployeeInfoRecord empRec)

 {

 }

 }

}

Appendix G: Test Driver

 using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using DavMovie.Storage;

using System.Security.Cryptography;

namespace DavMovieTester

{

/// <summary>

/// Summary description for Form1.

/// </summary>

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Button btGetUserRec;

private System.Windows.Forms.Button btInsertMovie;

private System.Windows.Forms.Button btSearch;

private System.Windows.Forms.Button btAddUser;

private System.Windows.Forms.Button btAddAdmin;

private System.Windows.Forms.Button btGetHotFlix;

private System.Windows.Forms.Button btGetMovieRec;

private System.Windows.Forms.Button btPurchaseMovie;

private System.Windows.Forms.Button btGetMoviesToDownload;

private System.Windows.Forms.Button btDeleteMovie;

private System.Windows.Forms.Button btGetStates;

private System.Windows.Forms.Button btGetCardTypes;

private System.Windows.Forms.Button btGetGenre;

private System.Windows.Forms.Button btRentMovie;

private System.Windows.Forms.TextBox txtDelete;

private System.Windows.Forms.Button btGetUserBad;

private System.Windows.Forms.Button btGetNoMovies;

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

public Form1()

{

//

// Required for Windows Form Designer support

//

InitializeComponent();

//

// TODO: Add any constructor code after InitializeComponent call

//

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.btGetUserRec = new System.Windows.Forms.Button();

this.label1 = new System.Windows.Forms.Label();

this.btRentMovie = new System.Windows.Forms.Button();

this.btInsertMovie = new System.Windows.Forms.Button();

this.btSearch = new System.Windows.Forms.Button();

this.btAddUser = new System.Windows.Forms.Button();

this.btAddAdmin = new System.Windows.Forms.Button();

this.btGetHotFlix = new System.Windows.Forms.Button();

this.btGetMovieRec = new System.Windows.Forms.Button();

this.btPurchaseMovie = new System.Windows.Forms.Button();

this.btGetMoviesToDownload = new System.Windows.Forms.Button();

this.btDeleteMovie = new System.Windows.Forms.Button();

this.btGetStates = new System.Windows.Forms.Button();

this.btGetCardTypes = new System.Windows.Forms.Button();

this.btGetGenre = new System.Windows.Forms.Button();

this.txtDelete = new System.Windows.Forms.TextBox();

this.btGetUserBad = new System.Windows.Forms.Button();

this.btGetNoMovies = new System.Windows.Forms.Button();

this.SuspendLayout();

//

// btGetUserRec

//

this.btGetUserRec.Location = new System.Drawing.Point(32, 32);

this.btGetUserRec.Name = "btGetUserRec";

this.btGetUserRec.Size = new System.Drawing.Size(128, 23);

this.btGetUserRec.TabIndex = 0;

this.btGetUserRec.Text = "Get User Record";

this.btGetUserRec.Click += new System.EventHandler(this.btGetUserRec_Click);

//

// label1

//

this.label1.Location = new System.Drawing.Point(200, 312);

this.label1.Name = "label1";

this.label1.Size = new System.Drawing.Size(360, 216);

this.label1.TabIndex = 1;

//

// btRentMovie

//

this.btRentMovie.Location = new System.Drawing.Point(40, 144);

this.btRentMovie.Name = "btRentMovie";

this.btRentMovie.Size = new System.Drawing.Size(128, 23);

this.btRentMovie.TabIndex = 2;

this.btRentMovie.Text = "Rent Movie";

this.btRentMovie.Click += new System.EventHandler(this.btRentMovie_Click);

//

// btInsertMovie

//

this.btInsertMovie.Location = new System.Drawing.Point(344, 96);

this.btInsertMovie.Name = "btInsertMovie";

this.btInsertMovie.TabIndex = 3;

this.btInsertMovie.Text = "Insert Movie";

this.btInsertMovie.Click += new System.EventHandler(this.btInsertMovie_Click);

//

// btSearch

//

this.btSearch.Location = new System.Drawing.Point(344, 32);

this.btSearch.Name = "btSearch";

this.btSearch.TabIndex = 6;

this.btSearch.Text = "Search";

this.btSearch.Click += new System.EventHandler(this.btSearch_Click);

//

// btAddUser

//

this.btAddUser.Location = new System.Drawing.Point(40, 176);

this.btAddUser.Name = "btAddUser";

this.btAddUser.TabIndex = 7;

this.btAddUser.Text = "Add User";

this.btAddUser.Click += new System.EventHandler(this.btAddUser_Click);

//

// btAddAdmin

//

this.btAddAdmin.Location = new System.Drawing.Point(40, 208);

this.btAddAdmin.Name = "btAddAdmin";

this.btAddAdmin.TabIndex = 8;

this.btAddAdmin.Text = "AddAdmin";

this.btAddAdmin.Click += new System.EventHandler(this.btAddAdmin_Click);

//

// btGetHotFlix

//

this.btGetHotFlix.Location = new System.Drawing.Point(344, 64);

this.btGetHotFlix.Name = "btGetHotFlix";

this.btGetHotFlix.TabIndex = 9;

this.btGetHotFlix.Text = "Get Hot Flix";

this.btGetHotFlix.Click += new System.EventHandler(this.btGetHotFlix_Click);

//

// btGetMovieRec

//

this.btGetMovieRec.Location = new System.Drawing.Point(32, 72);

this.btGetMovieRec.Name = "btGetMovieRec";

this.btGetMovieRec.Size = new System.Drawing.Size(128, 23);

this.btGetMovieRec.TabIndex = 10;

this.btGetMovieRec.Text = "Get Movie Rec";

this.btGetMovieRec.Click += new System.EventHandler(this.btGetMovieRec_Click);

//

// btPurchaseMovie

//

this.btPurchaseMovie.Location = new System.Drawing.Point(40, 112);

this.btPurchaseMovie.Name = "btPurchaseMovie";

this.btPurchaseMovie.Size = new System.Drawing.Size(104, 23);

this.btPurchaseMovie.TabIndex = 11;

this.btPurchaseMovie.Text = "Purchase Movie";

this.btPurchaseMovie.Click += new System.EventHandler(this.btPurchaseMovie_Click);

//

// btGetMoviesToDownload

//

this.btGetMoviesToDownload.Location = new System.Drawing.Point(40, 272);

this.btGetMoviesToDownload.Name = "btGetMoviesToDownload";

this.btGetMoviesToDownload.Size = new System.Drawing.Size(144, 23);

this.btGetMoviesToDownload.TabIndex = 12;

this.btGetMoviesToDownload.Text = "Get Movies To Download";

this.btGetMoviesToDownload.Click += new System.EventHandler(this.btGetMoviesToDownload_Click);

//

// btDeleteMovie

//

this.btDeleteMovie.Location = new System.Drawing.Point(40, 240);

this.btDeleteMovie.Name = "btDeleteMovie";

this.btDeleteMovie.Size = new System.Drawing.Size(80, 23);

this.btDeleteMovie.TabIndex = 13;

this.btDeleteMovie.Text = "Delete Movie";

this.btDeleteMovie.Click += new System.EventHandler(this.btDeleteMovie_Click);

//

// btGetStates

//

this.btGetStates.Location = new System.Drawing.Point(344, 128);

this.btGetStates.Name = "btGetStates";

this.btGetStates.Size = new System.Drawing.Size(136, 23);

this.btGetStates.TabIndex = 15;

this.btGetStates.Text = "Get States";

this.btGetStates.Click += new System.EventHandler(this.btGetStates_Click);

//

// btGetCardTypes

//

this.btGetCardTypes.Location = new System.Drawing.Point(344, 160);

this.btGetCardTypes.Name = "btGetCardTypes";

this.btGetCardTypes.Size = new System.Drawing.Size(104, 23);

this.btGetCardTypes.TabIndex = 16;

this.btGetCardTypes.Text = "Get Card Types";

this.btGetCardTypes.Click += new System.EventHandler(this.btGetCardTypes_Click);

//

// btGetGenre

//

this.btGetGenre.Location = new System.Drawing.Point(344, 192);

this.btGetGenre.Name = "btGetGenre";

this.btGetGenre.TabIndex = 17;

this.btGetGenre.Text = "Get Genre";

this.btGetGenre.Click += new System.EventHandler(this.btGetGenre_Click);

//

// txtDelete

//

this.txtDelete.Location = new System.Drawing.Point(128, 240);

this.txtDelete.Name = "txtDelete";

this.txtDelete.TabIndex = 18;

this.txtDelete.Text = "";

//

// btGetUserBad

//

this.btGetUserBad.Location = new System.Drawing.Point(184, 32);

this.btGetUserBad.Name = "btGetUserBad";

this.btGetUserBad.Size = new System.Drawing.Size(104, 23);

this.btGetUserBad.TabIndex = 19;

this.btGetUserBad.Text = "Get User Rec Bad";

this.btGetUserBad.Click += new System.EventHandler(this.btGetUserBad_Click);

//

// btGetNoMovies

//

this.btGetNoMovies.Location = new System.Drawing.Point(200, 272);

this.btGetNoMovies.Name = "btGetNoMovies";

this.btGetNoMovies.Size = new System.Drawing.Size(104, 23);

this.btGetNoMovies.TabIndex = 20;

this.btGetNoMovies.Text = "Get No Movies";

this.btGetNoMovies.Click += new System.EventHandler(this.btGetNoMovies_Click);

//

// Form1

//

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

this.ClientSize = new System.Drawing.Size(656, 534);

this.Controls.Add(this.btGetNoMovies);

this.Controls.Add(this.btGetUserBad);

this.Controls.Add(this.txtDelete);

this.Controls.Add(this.btGetGenre);

this.Controls.Add(this.btGetCardTypes);

this.Controls.Add(this.btGetStates);

this.Controls.Add(this.btDeleteMovie);

this.Controls.Add(this.btGetMoviesToDownload);

this.Controls.Add(this.btPurchaseMovie);

this.Controls.Add(this.btGetMovieRec);

this.Controls.Add(this.btGetHotFlix);

this.Controls.Add(this.btAddAdmin);

this.Controls.Add(this.btAddUser);

this.Controls.Add(this.btSearch);

this.Controls.Add(this.btInsertMovie);

this.Controls.Add(this.btRentMovie);

this.Controls.Add(this.label1);

this.Controls.Add(this.btGetUserRec);

this.Name = "Form1";

this.Text = "Form1";

this.ResumeLayout(false);

}

#endregion

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.Run(new Form1());

}

private void btGetUserRec_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

UserRecord urec;

urec = sm.RetrieveUserCredentials("david");

label1.Text =
"recID: " + urec.RecId.ToString() +

"username: " + urec.UserName +

"access: " + urec.AccessLevel.ToString();

}

private void btGetUserBad_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

UserRecord urec;

urec = sm.RetrieveUserCredentials("usernotfound");

label1.Text =
"recID: " + urec.RecId.ToString() +

"username: " + urec.UserName +

"access: " + urec.AccessLevel.ToString();

}

private void btGetMovieRec_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

MovieRecord mrec;

mrec = sm.GetMovie(9);

label1.Text =
"recID: " + mrec.RecId.ToString() +

"title: " + mrec.Title +

"director: " + mrec.Director.ToString();

}

private void btPurchaseMovie_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

MovieTrxRecord mtrxRec = new MovieTrxRecord();

mtrxRec.MovieLink = 1;

mtrxRec.UserLink = 4;

mtrxRec.Type = TransactionType.Purchase;

sm.RecordTransactions(mtrxRec);

label1.Text = "Transaction recorded.";

}

private void btRentMovie_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

MovieTrxRecord mtrec;

mtrec.UserLink = 4;

mtrec.MovieLink = 1;

mtrec.Type = TransactionType.Rent;

sm.RecordTransactions(mtrec);

label1.Text = "Transactions Added";

}

private void btAddUser_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

UserRecord urec = new UserRecord();

BillingInfoRecord brec = new BillingInfoRecord();

urec.UserName = "fred";

MD5 md5 = new MD5CryptoServiceProvider();

urec.Password = md5.ComputeHash(Utilities.ConvertToBytes("fred123"));

urec.AccessLevel = AccessLevel.User;

urec.Active = true;

brec.CardType = "American Express";

brec.Number = "123456789012346";

brec.ExpirationDate = "01/2004";

brec.UserInfoRec.FirstName = "David";

brec.UserInfoRec.LastName = "Crowther";

brec.UserInfoRec.Address1 = "123 45th Street";

brec.UserInfoRec.City = "Miami";

brec.UserInfoRec.State = "FL";

brec.UserInfoRec.ZipCode = "33025";

brec.UserInfoRec.PhoneNumber = "305-305-3053";

sm.AddUser(urec, brec);

label1.Text = "User Added";

}

private void btAddAdmin_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

UserRecord urec = new UserRecord();

EmployeeInfoRecord erec = new EmployeeInfoRecord();

urec.UserName = "fred2";

MD5 md5 = new MD5CryptoServiceProvider();

urec.Password = md5.ComputeHash(Utilities.ConvertToBytes("fred123"));

urec.AccessLevel = AccessLevel.Administrator;

urec.Active = true;

erec.SSNo = "123456789";

erec.EmployeeId = "123456789";

erec.StartDate = "01/01/2004";

erec.UserInfoRec.FirstName = "David";

erec.UserInfoRec.LastName = "Crowther";

erec.UserInfoRec.Address1 = "123 45th Street";

erec.UserInfoRec.City = "Miami";

erec.UserInfoRec.State = "FL";

erec.UserInfoRec.ZipCode = "33025";

erec.UserInfoRec.PhoneNumber = "305-305-3053";

sm.AddUser(urec, erec);

label1.Text = "User Added";

}

private void btDeleteMovie_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

sm.DeleteMovieRecord(Convert.ToInt32(txtDelete.Text));

label1.Text = "Movie deleted";

}

private void btGetMoviesToDownload_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

DataSet ds = new DataSet();

ds = sm.GetMoviesToDownload(4);

DataTable dt = new DataTable();

dt = ds.Tables["Movies"];

label1.Text += "Title \t\t Genre \t\t Director \t\t MainActor \t\t ReleaseDate \n";

foreach (DataRow row in dt.Rows)

{

label1.Text += row["Title"] + "\t\t";

label1.Text += row["Genre"] + "\t\t";

label1.Text += row["Director"] + "\t\t";

label1.Text += row["MainActor"] + "\t\t";

label1.Text += row["ReleaseDate"].ToString() + "\n";

}

}

private void btGetNoMovies_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

DataSet ds = new DataSet();

ds = sm.GetMoviesToDownload(3);

DataTable dt = new DataTable();

dt = ds.Tables["Movies"];

label1.Text += "Title \t\t Genre \t\t Director \t\t MainActor \t\t ReleaseDate \n";

foreach (DataRow row in dt.Rows)

{

label1.Text += row["Title"] + "\t\t";

label1.Text += row["Genre"] + "\t\t";

label1.Text += row["Director"] + "\t\t";

label1.Text += row["MainActor"] + "\t\t";

label1.Text += row["ReleaseDate"].ToString() + "\n";

}

}

private void btSearch_Click(object sender, System.EventArgs e)

{

SearchTester frm = new SearchTester();

frm.ShowDialog();

}

private void btGetHotFlix_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

DataSet ds = new DataSet();

ds = sm.GetHotMovieList();

DataTable dt = new DataTable();

dt = ds.Tables["Movies"];

label1.Text += "Title \t\t Genre \t\t Director \t\t MainActor \t\t ReleaseDate \n";

foreach (DataRow row in dt.Rows)

{

label1.Text += row["Title"] + "\t\t";

label1.Text += row["Genre"] + "\t\t";

label1.Text += row["Director"] + "\t\t";

label1.Text += row["MainActor"] + "\t\t";

label1.Text += row["ReleaseDate"].ToString() + "\n";

}

}

private void btInsertMovie_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

MovieRecord mrec = new MovieRecord();

mrec.Title = "Jaws2";

mrec.Genre = "Horror";

mrec.Director = "John Sharks";

mrec.MainActor = "Tim Fisher";

mrec.ReleaseDate = "06/09/1977";

mrec.Location = "/horror/jaws.avi";

mrec.Available = true;

sm.AddMovieRecord(mrec);

label1.Text = "Movie Added";

}

private void btGetStates_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

DataSet dsStates = sm.GetStates();

DataTable dtStates = new DataTable();

dtStates = dsStates.Tables["states"];

label1.Text += "State Abbr \t\t State \n";

foreach (DataRow row in dtStates.Rows)

{

label1.Text += row["Abbreviation"] + "\t\t";

label1.Text += row["Name"] + "\n";

}

}

private void btGetCardTypes_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

DataSet dsCardTypes = sm.GetCardTypes();

DataTable dtCardTypes = new DataTable();

dtCardTypes = dsCardTypes.Tables["cardtypes"];

label1.Text += "Card Types \n";

foreach (DataRow row in dtCardTypes.Rows)

{

label1.Text += row["CardType"] + "\n";

}

}

private void btGetGenre_Click(object sender, System.EventArgs e)

{

StorageManager sm = new StorageManager();

DataSet dsGenre = sm.GetGenre();

DataTable dtGenre = new DataTable();

dtGenre = dsGenre.Tables["genre"];

label1.Text += "Genre \n";

foreach (DataRow row in dtGenre.Rows)

{

label1.Text += row["Genre"] + "\n";

}

}

//

private void btGetMovieLoc_Click(object sender, System.EventArgs e)

//

{

////

string strLocation;

////

StorageManager sm = new StorageManager();

////

//strLocation = sm.RetrieveSelectedMovie(9);

////

label1.Text = strLocation;

//

}

//

private void btInsertBilling_Click(object sender, System.EventArgs e)

//

{

//

StorageManager sm = new StorageManager();

//

//

BillingRecord brec;

//

brec.UserLink = 1;

//

brec.MovieLink = 1;

//

brec.FirstName = "David";

//

brec.LastName = "Crowther";

//

brec.Address1 = "2586 Centergate Drive";

//

brec.Address2 = "Apt 306";

//

brec.City = "Miramar";

//

brec.State = "FL";

//

brec.ZipCode = "33025";

//

brec.PhoneNumber = "954-517-0254";

//

brec.CardType = "Amex";

//

brec.Number = "12345";

//

brec.ExpirationDate = "01/2005";

//

//

sm.AddBillingTransaction(brec);

//

//

label1.Text = "Billing Trx added";

//

}

}

}

