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Abstract

Many software developers are using the Java language as the language of choice on many applications. This is
due to the effective use of the object-oriented (OO) paradigm to develop large software projects and the ability of
the Java language to support the increasing use of web technologies in business applications. The recent release of
the Java version 5.0 has further increased its popularity due to the inclusion of new features that exist in other OO
languages. The transition from Java 1.4.x to Java 1.5.x has provided the programmer with more flexibility when
implementing programs in Java.

In this paper we present the first study that investigates how the characteristics of a class are combined, thereby
providing feedback on how the features provided by Java 1.4.x or earlier and Java 1.5.x or earlier are currently
used. The study uses a taxonomy of OO classes that provides a mechanism to catalog any class written in Java
into one of a finite set of groups. A detailed description on how we enumerated all the possible groups of Java
classes is also provided. Using TaxTOOLJ (a Taxonomy Tool for the Object-Oriented Language Java) we cataloged
over 155k classes from a cross-section of Java applications written in Java 1.4.x and Java 1.5.x to identify the
distribution of groups used by developers. We use the data from the study to create prediction models that would
allow developers to estimate the number of different groups of classes, fields and methods that are expected to be
generated for large Java applications. This knowledge would be of significant benefit to aid developers in testing
and maintenance activities during the software process.

1 Introduction

The widespread use of the OO paradigm to develop large software applications and the use of web technologies
has resulted in many software applications being written in the Java language [Sun05]. The recent release of the
Java version 1.5 has also increased its popularity due to the inclusion of new features such as: generics, enhanced
loops, autoboxing, unboxing, varargs, static imports and metadata. The transition from Java 1.4.x [AGH00] to
Java 1.5.x [AGH05] has provided the programmer with more flexibility when implementing programs in Java. One
question that has not been addressed by many researchers is, given the additional flexibility of the Java language
how the different features of the language will be combined when writing classes.

Many studies have been done using object-oriented design metrics (OODMs) to investigate and predict certain
properties of software applications. Some of these properties include class complexity, coupling, cohesion, fault-
proneness, and system size [BvD04, DGP03, FN01, PV03]. However, few studies that use OODMs are performed
on large software systems. In addition, the OODMs focus on single properties of the a class or the system. For
example, Weighted Methods per Class, Depth of Inheritance Tree, Number of Children, among others [HCN97].
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One other important aspect of these studies is that the OODMs are independent of the implementation language
and does not consider features peculiar to a particular language.

There are various class abstraction techniques (CATs) that are used during the software development process.
These include abstractions which are both syntactically and semantically close to the implementation [GC99]
such as control flow graphs [Bin00]. Other abstractions, such as class diagrams, [RJB99] provide a higher level
of abstraction but have a greater syntactic and semantic distance from the implementation. Furthermore, these
abstractions are usually not scalable and even though existing OO metrics can handle large systems they are also
syntactically far from the implementation. The taxonomy by Clarke et al. [CMG03] provides scalability and is
syntactically closer to the program than existing OO metrics.

In this paper we present the first study that uses the taxonomy of OO classes for Java [CBC05] to investigate
how class characteristics are combined in a cross-section of Java applications. The class characteristics include
constructs for abstraction, encapsulation, genericity, inheritance, polymorphism and exception handling. We refer
to the combination of these characteristics as groups of classes, fields (attributes) and methods (routines). The
data generated from this study is relevant to both the validation and maintenance phases of the software process.
Clarke et al. show how applying the taxonomy of OO classes is useful for identifying changes in OO software
[CMG03] and combining implementation-based testing techniques during software validation [CM05]. The study
involves the analysis of over 155k classes from 22 different Java applications. Java applications were chosen from
several domains including compiler tools, application frameworks, code analyzers, among others. The applications
were then analyzed using TaxTOOLJ (A Taxonomy Tool for the Object-Oriented Language Java).

In addition to the study, the paper also identifies the total number of possible groups generated by the taxonomy
for any class written in Java. That is, given any class written in Java, we can place it into one of a finite set of
groups. In this paper we enumerate the class groups for Java 1.4.x or earlier (versions) and Java 1.5.x. Using the
data generated from TaxTOOLJ we created several models that can be used to predict the number of different
groups for large Java applications. We can use these prediction models in other studies to investigate properties
of the software such as class complexity, coupling, cohesion, fault proneness and testability.

The contributions of this paper are as follows:

1. An enumeration of all possible groups of classes, fields and methods that can be written in Java 1.4.x and
Java 1.5.x.

2. The first study to analyze over 155K Java classes from a cross section of applications and identify the class,
field, and method groups used in each application.

3. An empirical investigation and analysis of the classes, fields and methods associated with the Java applications
to produce prediction models for the number of groups that cannot be currently analyzed by existing tools.

In the next section we provide background information on the taxonomy of OO classes. In Section 3 we decribe
the process used to enumerate the Java class groups. Section 4 provide and overview of TaxTOOLJ. Section 5
provides a description of the empirical study performed on the Java applications. Section 6 presents the prediction
models. Section 7 describes the related work and we give the concluding remarks in Section 8.

2 Background

In this section we describe the terminology used in the paper and provide an overview of the taxonomy of OO
classes for Java. We also provide a detailed example showing the artifact generated when a Java class is cataloged
using the taxonomy.

2.1 Class Characteristics

The foundational unit of OO programs is the class, which defines how to create objects - instances of the
class [AGH05]. Meyer [Mey97] provides a comprehensive description of the features of a class and describes how
these features are used to support OO programming. Upon closer inspection of the structure of a class in OO
programming languages such as Java [AGH05], C++ [Str00], and Eiffiel [Mey97], it is easy to appreciate the
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Descriptors Type
Nomenclature Attributes Routines Families

(Public) (Transient) (Final) NA no type

(Final) (Volatile) (Native) P primitive type

(Has-Nested) New (Generic) P* reference to P

(Has-Inner) Recursive New U user-defined type

(Interface) Concurrent Recursive U* reference to U

(Implements) Polymorphic Redefined L library

(Serializable) Private Concurrent L* reference to L

Generic Protected Synchronized A any type (generics)

Concurrent Public Exception-R A* reference to A

Abstract Constant Exception-H m < n > parameterized type

Inheritance-free Static Has-Polymorphic m < n >* reference to
Parent - Non-Virtual parameterized type

External Child - Virtual where m ∈ {U, L}
Internal Child - Deferred n is any combination of

- - Private where m ∈ {U, L}
- - Protected {P, P*, U, U*, L, L*, A, A*}

- - Public - -

Static - -

Table 1. Descriptors and type families used in a cataloged en try for a Java class. Add-on descriptors
peculiar to the Java language are shown in parentheses.

similarities of the class structure in each language and the uniqueness of some of the features. In this paper, we
focus mainly on the structure of classes in Java. In Java the members of a class are referred to as fields and
methods. In this paper we refer to members of a class as features [Mey97], fields as attributes and methods as
routines to be consistent with other references describing the taxonomy of OO classes [CM05, CMG03].

In this paper we collectively refer to the properties of the attributes and routines in a class, as well as the
dependencies of a class with other classes as class characteristics. Clarke and Malloy [CM05] define class charac-
teristics for a given class C as the properties of the features in C and the dependencies C has with other types
(built-in and user-defined) in the implementation. The properties of the features in C describe how criteria such as
types, accessibility, shared class features, polymorphism, dynamic binding, deferred features, exception handling,
and concurrency are represented in the attributes and routines of C. The dependencies C has with other types are
realized through declarations and definitions of C’s features, andC’s role in an inheritance hierarchy. Additional
information regarding how class characteristics are manifested in the structure of a Java class are described in
references [AGH05, GJSB05].

2.2 Cataloging a Java Class

Clarke et al. [Cla03, CM05, CMG03] propose a taxonomy of OO classes that is used to succinctly abstract
the characteristics of a class. The taxonomy of OO classes is used to classify class C into a group based on the
dependencies C has with other types (built-in and user-defined) in a program. The dependencies of C with other
types are realized through declarations and definitions of C’s features and C’s role in an inheritance hierarchy
[CMG03]. The artifact generated when a class is cataloged using the taxonomy is a cataloged entry. The properties
of the taxonomy include: (1) domain coverage - provides a means of cataloging classes written in virtually any OO
language, (2) mutual exclusion - partitions the set of all OO classes into mutually exclusive groups (taxa), and (3)
unambiguous - the strings used to represent groups of classes (attributes and routines) are specified using a regular
grammar [Cla03].
Cataloged Entry: A cataloged entry [CM05] is defined as a 5-tuple consisting of:

1. Class Name - fully qualified name of the class,
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1 // Contents of f i l e ThreadCount . java
2 import java . u t i l . ∗ ;
3 public class ThreadCount extends Thread{
4 f ina l stat ic int NUMBER OBJS = 5 ;
5 private int countDelay = 8 ;
6 private int numThreads , delay , threadNum ;
7 private stat ic int countThreads = 0 ;
8 private stat ic ArrayList<Integer> s t o r e ;
9 public ThreadCount ( int inThreadNum){

10 numThreads = ++countThreads ;
11 de lay = inThreadNum ;
12 threadNum = inThreadNum ;
13 s t o r e . add ( threadNum ) ;
14 }
15 public void run (){
16 try{
17 while ( true ){
18 Inne rPr in t e r p r i n t = new Inne rPr in t e r ( ) ;
19 p r in t . p r i n t ( ) ;
20 s l e ep ( de lay ) ;
21 i f (−−countDelay == 0){
22 s t o r e . remove ( s t o r e . indexOf ( threadNum ) ) ;
23 return ;
24 }
25 }
26 }
27 catch ( Inter ruptedExcept ion e ){
28 return ;
29 }
30 }
31 public stat ic void main ( St r ing [ ] a rgs ){
32 s t o r e = new ArrayList<Integer >() ;
33 for ( int i =0; i < NUMBER OBJS; i++)
34 new ThreadCount ( i ) . s t a r t ( ) ;
35 }
36 public class Inne rPr in t e r {
37 public void pr in t ( ){
38 System . out . p r i n t l n ( ”Active threads . . . ” ) ;
39 for ( int i =0; i < s t o r e . s i z e ( ) ; i++)
40 System . out . p r i n t l n ( s t o r e . get ( i ) ) ;
41 }
42 }
43 }

Feature Properties

External Child Families P  U  L*  L<L*>*

Nomenclature:

Class: ThreadCount

Attributes:

(Public) (Has−Inner) Concurrent

[1]  Private Constant Family P 

[4]  Private Family P 

{countDelay, numThreads,

{NUMBER_OBJS}

delay, threadNum}

[1]  Private Static Family L<L*>* 

{store}

Routines:

{ThreadCount(int)}

[1]  Exception−H Virtual Public Family U*  L*

{run()}

[1]  Concurrent Non−Virtual Public Static

 Families P  U  L*

{main(String[])}

[1]  Non−Virtual Public Family P

Feature Classification:

[1]  Private Static Family P 

{countThreads}

Not_Cataloged

(a) (b)

Figure 1. (a) Java code for the classes ThreadCount and InnerPrinter. (b) Cataloged entry for the class
ThreadCount.

2. Nomenclature Component - the group (or taxon) containing the class,

3. Attributes Component - a list of entries representing the subgroups of attributes,

4. Routines Component - a list of entries representing the routines, and

5. Feature Classification Component - a list summarizing the inherited features of the class.

Each component entry consists of two parts: (1) a modifier - describing the properties of the class and its
features (attributes and routines), and (2) the type families - types associated with the class. A modifier consists
of a list of (core and add-on) descriptors representing the class characteristics. The core descriptors represent class
characteristics found in most OO languages and the add-on descriptors represent characteristics peculiar to a given
language.

Table 1 lists the descriptors and type families used in the component entries in a cataloged entry. Columns 1,
2, and 3 in Table 1 show the descriptors used in the modifier part of the component entries in the Nomenclature,
Attributes and Routines components respectively. Column 4 shows the type families used in the Nomenclature,
Attributes and Routines component entries. The descriptors in Columns 1, 2 and 3 represent both the add-ons,
shown in parentheses, and core descriptors. The names of the descriptors were chosen to symbolize the characteristic
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they represent. For example, the add-on descriptor Final, Table 1 Row 2, indicates that the definition of the class
is complete and no subclasses are allowed [GJSB05]. The core descriptor Generic in Row 8, indicates that the class
uses one or more unknown types in its declaration. The type family P represents a primitive type such as an int or
double. A detailed explanation of the descriptors and type families are provided in references [CMG03, CBC05].

2.3 Example of a Cataloged Entry

In this section we give a non-trivial example of a cataloged entry generated by applying the taxonomy of OO
classes to a Java class. Figure 1(a) shows the Java source code for the classes ThreadCount and InnerPrinter, and
Figure 1(b) shows the cataloged entry for the class ThreadCount. This example was first presented by Crowther et
al. in [CBC05]. We present a summary of the example in the sequel.

The nomenclature of class ThreadCount, shown in Figure 1(b), is (Public) (Has-Inner) Concurrent External Child
Families P U L* L<L*>*. The add-on descriptors for ThreadCount are (Public) (Has-Inner) reflecting the fact
that ThreadCount is declared public and declares an inner class (InnerPrinter). The core descriptors Concurrent and
External Child state that ThreadCount instantiates concurrent objects and is a derived class with no descendants,
respectively. The type families P U L* L<L*>* indicate that ThreadCount declares instance variables or routine
locals (local variables or parameters) that are primitive types P, user-defined objects U, references to standard
library objects L*, and references to instances of parameterized standard class libraries L<L*>*.

The Attributes component entries represent the attributes in the class ThreadCount. For example, the attribute
store, line 8 of Figure 1(a), is declared as private, static, and is a reference to an instance of a parameterized class
library (ArrayList). The component entry for attribute store, shown as the last entry in the Attributes component
of Figure 1(b), is therefore Private Static Family L<L*>*. Where L<L*>* represents a type family that is a
parametrized class library that has a library type as the parameter i.e. ArrayList<Integer>.

The Routine component entries are described in a similar way to the Attribute component entries. For example,
the entry Concurrent Non-Virtual Public Static Families P, U, L* represents the routine main(...) shown on lines
31 through 35 in Figure 1(a). The descriptor Concurrent represents the concurrent objects instantiated in the
routine and the type family U is used since the objects instantiated are anonymous. Type family L* represents
the args parameter of type String[] (a reference to a class library). The other descriptors Non-Virtual Public Static
state that main(...) is statically bound, accessible outside the class, and is static. The type family P represents the
local variable i.

3 Java Class Groups

The properties of a good taxonomy separate the elements into groups that: (1) are mutually exclusive, (2) are
represented in an unambiguous manner, and (3) provide complete domain coverage [Wha02]. In this section we
describe how the taxonomy of OO classes satisfies property (1). In addition, we compute the total number of
groups for all possible classes written in Java version 1.5.x and 1.4.x. Clarke [Cla03] shows how the taxonomy of
OO classes satisfies properties (2) and (3) for the language C++. A similar approach can be used for the Java
language.

3.1 Tree Representation of Descriptors and Type families

Figures 2 and 3 show how the taxonomy is used to catalog all Java classes into mutually exclusive groups (or
taxa). The trees in Figures 2 and 3 are structured to ensure that there is one and only one path from the root of
the tree in Figure 2 to a leaf in Figure 3. Each leaf in the tree of 2 is prepended to a copy of the tree in Figure 3.
Concatenating the labels of the nodes on the paths of the combined trees in Figures 2 and 3 generate a superset of
groups that can be formed using the taxonomy. Each group maps to one and only one nomenclature component
entry.

An example of one group generated from the trees in Figures 2 and 3 is (Not-Public) (Final) (Has-Nested) (Not
Has-Inner) (Implements) (Serializable) Non-Generic Sequential Abstract External Child Family P. The descriptors
(Not-Public), (Not Has-Inner), Non-Generic, and Sequential are default descriptors reducing the nomenclature
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Implements)

Serializable

Serializable
Not

(Interface or

. . .

. . .

. . .

Implements

Not

Interface

Public

Public

Final

Final

. . .

Final

Final

. . .
Not

Not

Not

Not

Has−Nested

Has−Nested

Has−Inner

Has−Inner
Not

Figure 2. Tree showing the add-on descriptors used in the Nom enclature component in a cataloged entry.
The default descriptors are shown in italics.

{Family NA, Family P,

Families P U U* L L*,

. . .

Families P U*<L*>,

Families P U* L,

. . .

. . . 
. . . 

}

Generic

Generic

Non−

Sequential

Concurrent

Sequential

. . .
. . .

Concrete

Concurrent

Abstract

Parent

External Child

Internal Child

Inheritance−Free

. . . . . .
. . .

. . .

. . .

Figure 3. Tree showing the core descriptors and type familie s used in the Nomenclature component in a
cataloged entry. The default descriptor are shown in italics.

component entry to (Final) (Has-Nested) (Implements) (Serializable) Abstract External Child Family P. This
entry represents a group of classes that: are only accessible within the package; cannot be extended; contain a
static class definition; implement an interface; instantiate objects that can be serialized; do not use unknown types;
instantiate object that do not create threads; is declared as abstract; is a leaf class in the inheritance hierarchy;
and declares only primitive types. The add-on descriptors used in component entries are enclosed in parentheses,
e.g., (Final). The avid reader should realize that such a class is not possible in Java because a final class cannot
be abstract.

3.2 Number of Java Class Groups

To compute the total number of groups for classes written in the Java language we use an approach similar to
the one presented by Crowther et al. [CBC05]. It should be noted that not all paths in the combined trees of
Figures 2 and 3 are legal groups (nomenclature component entries). In addition to the example mention in the
last sentence of the previous paragraph, there is no group that contains the descriptor Non-Generic and the type
families A or A*. In computing the total number of groups it is therefore necessary to partition the tree structure
to remove these inconsistencies. We use the following notation to represent the trees used in computing the total
number of groups for Java versions 1.5.x and 1.4.x.
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• TT - the combined tree representing the add-on and core descriptors, and type families shown in Figures 2
and 3.

• TA - the tree of add-on descriptors Figure 2, and

• TCF - tree of core descriptors and type families in Figure 3,

TCF is further divided into eight sub-trees to remove inconsistencies between add-on and core descriptors, and
type families.

1. TCFNF NG C - tree with nodes Not Final, Non-Generic and Concrete. Non-Generic implies that type
families do not contain unknown types i.e., type families A or A*.

2. TCFF NG C - tree with nodes Final, Non-Generic and Concrete. It represents classes that do not have
unknown types, are concrete and are cataloged as Parent and Internal Child. Recall Final classes cannot
descendant classes.

3. TCFNF G C - tree with nodes Not Final, Generic and Concrete. Generic implies that the tree contains
unknown types.

4. TCFF G C - tree with nodes Final, Generic and Concrete. It contains unknown types, the branches Parent
and Internal Child are pruned, and contains the descriptor Concrete.

5. TCFNF NG A - tree with nodes Not Final, Non-Generic and Abstract. Similar to (1) except the classes are
abstract.

6. TCFF NG A - Similar to (2) but classes are abstract.

7. TCFNF G A - Similar to (3) but classes are abstract.

8. TCFF G A - Similar to (4) but classes are abstract.

We separate the abstract classes and concrete classes since an interface cannot be concrete. We also consider
two special cases to remove extra leaves from the final tree representing the following: (1) groups containing
the Interface, Concurrent, and Inheritance-free combination of descriptors, and (2) groups with the descriptors
Serializable, Inheritance-Free, and Not (Implements). These groups are infeasible for the following reasons: (1)
concurrent classes must either inherit from the library class Thread or implement the interface Runnable, and (2) a
class can only be serializable if it implements the interface Serializable or inherits from a class that is serializable.
Note we do not consider serializable by making all the fields serializable.

Table 2 shows how the total number of leaves in the sub-tree TCFNF NG C is computed. Column 1 in Table
2 shows the identifier assigned to groups of siblings at the same level in the sub-tree. Column 2 contains the
descriptors and type families assigned to the siblings in the sub-tree for the given level. Columns 3 and 4 show
the number of siblings for Java 1.5.x and 1.4.x respectively. The data in Row 1 of Table 2 represents the first level
of the sub-tree TCFNF NG C . That is, the group of siblings is assigned the identifier C1, the siblings are labeled
with the values from the set of core descriptors {Sequential, Concurrent}, and there are 2 siblings at this level for
both Java 1.5.x and 1.4.x. Row 3 shows data for the third level of the tree and is described as having identifier
F1. At this level, the possible groups of type families are P({P ,U ,U ∗,L,L∗}) resulting in 32 combinations for
both Java 1.5.x and 1.4.x. Row 4, labeled F2, shows that the possible groups of parameterized types generated are
P({m <n >, m <n > ∗}) resulting in 24 combinations for Java 1.5.x. The number of combinations for Java 1.4.x
is 1, the empty set, since Java 1.4.x does not support parameterized types. Note P(S ) represents the power set of
the set S . The last row of Table 2 shows the number of leaves for the sub-tree TCFNF NG C computed using the
following formula:

Leaves(T ) =|C1| ∗ |C2| ∗ |C3| ∗ |F1| ∗ |F2| (1)

where
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Groups Class Characteristics Java

in the Tree TCFNF NG C 1.5.x 1.4.x

C1 {Sequential, Concurrent} 2 2

C2 {Inheritance-Free, Parent 4 4
External Child, Internal Child}

F1 P({P ,U ,U ∗

,L,L∗}) 32 32

F2 P({m <n >, m <n >
∗}), 24 1

m ∈ P({U ,L}), |m| = 1 (∅)
and n ∈ P({U ∗

,L∗}) − ∅

Leaves(TCFNF NG C ) 4,472 256

Table 2. Total number of leaves generated for the Non-Final classes with the core descriptors Non-Generic
and Concrete for Java versions 1.5.x and 1.4.x. C1 . . .Cn represent the siblings for the core descriptor
nodes in the tree and F1 . . .Fn represent the groups of siblings for the type family nodes in the tree.
Leaves(T ) =|C1| ∗ |C2| ∗ |F1| ∗ |F2|.

• |S| is the number of siblings in the group represented by S ,

• C1 . . .Cn represent the siblings for the core descriptor nodes in the tree, and

• F1 . . .Fn represent the groups of siblings for the type family nodes in the tree.

The sub-tree TCFNF NG C generates 4,472 leaves for Java 1.5.x and 256 for Java 1.4.x. The number of leaves in
the sub-tree TCFF NG C are computed using a similar approach. The only difference is that the siblings for C2

are {Inheritance-free, External Child}, since final classes cannot have descendants. The sub-tree TCFNF NG C

therefore generates 2,236 leaves for Java 1.5.x and 128 for Java 1.4.x.
Table 3 shows how the number of leaves is computed for the sub-tree TCFNF G C . The structure of Table 3

is similar to that of Table 2. The sub-tree in Table 3 contain unknown types families, that is, all combinations
of types families must contain either A or A*. Rows 1 and 2 in Table 3 are the same as in Table 2. To compute
the number of types families for generic types we require four groups of type families these are: (1) F1 - Non-
parametrized types without unknown types, Row 3, (2) F2 - Non-parametrized types with unknown types, Row
4, (3) F3 - Parametrized types without unknown types, Row 5, and (4) F3 - Parametrized types with unknown
types, Row 6. We compute the leaves of the tree shown in Table 3 as follows:

Leaves(T ) = |C1| ∗ |C2| ∗ (|F1| ∗ |F4| + |F2| ∗ |F3| + (2)

|F2| ∗ |F4|)

The sub-tree TCFNF G C generates 38,208 leaves for Java 1.5.x and 0 for Java 1.4.x. The number of leaves in
the sub-tree for Java 1.4.x is 0 since there are no generics in Java 1.4.x. The number of leaves in the sub-tree
TCFF G C are computed using a similar approach. The only difference is that the siblings for C2 are {Inheritance-
free, External Child}, since final classes cannot have descendants. The sub-tree TCFF G C therefore generates
19,104 leaves for Java 1.5.x and 0 for Java 1.4.x.

Table 4 shows how the total number of leaves for the tree consisting of TA - add-on descriptors and TCF -
core descriptors and type families for concrete classes are computed. The structure of the Table 4 is similar to
Tables 2 and 3. The major difference is that the identifiers L1 . . .Ln represent the leaves of the sub-trees in Rows
6 through 9. The identifier E1 represents the sub-tree that contains extraneous leaves in the combined tree. The
siblings of E1 are the leaves of the sub-tree whose descriptors are Serializable, Inheritance-free and Not(Interface
or Implements), since a class can only be serializable if it implements the interface Serializable or inherits from a
class that is serializable. We compute the leaves of the tree shown in Table 3 as follows:

Leaves(T ) = (|A1| ∗ |A2| ∗ |A3| ∗ |A4| ∗ |A5| ∗ (3)

(|L1| + |L2| + |L3| + |L4|))− |E1|
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Groups Class Characteristics Java

in the Tree TCFNF G C 1.5.x 1.4.x

C1 {Sequential, Concurrent} 2 2

C2 {Inheritance-Free, Parent} 4 4
{External Child,
Internal Child}

F1 P({P ,U ,U ∗

,L,L∗}) 32 32

F2 s ∈ P({P ,U ,U ∗

,L,L∗

,A,A∗}) 96 0
s.t. A ∈ s or A∗ ∈ s

F3 P({m <n >, m <n >
∗}), 24 1

m ∈ P{U ,L}, |m| = 1
and n ∈ P{U ∗

,L∗}

F4 P({m <n >, m <n >
∗}), 24 0

s.t. m ∈ P{U ,L} , |m| = 1
and n ∈ P{U ∗

,L∗

,A∗},
and A∗ ∈ n

Leaves(TCFNF G C ) 38,208 0

Table 3. Total number of leaves generated for the Final classes with the core descriptors Non-Generic
and Concrete for Java versions 1.5.x and 1.4.x. C1 . . .Cn represent the siblings for the core descriptor
nodes in the tree and F1 . . .Fn represent the groups of siblings for the type family node in t he tree.
Leaves(T ) = |C1| ∗ |C2| ∗ (|F1| ∗ |F4| + |F2| ∗ |F3| + |F2| ∗ |F4|).

where

• A1 . . .An represent the siblings for the add-on descriptor nodes in the tree,

• L1 . . .Ln represent the leaves generated by the sub-trees, and

• E1 . . .En represent the extraneous leaves to be remove from the combined tree.

The total number of leaves in the tree generated from TA and TCF is 1,707,200 for Java 1.5.x and 10,240 for Java
1.4.x.

Table 5 is similar to Table 4 except for the the following: (1) the combined tree represents abstract classes,
(2) the Java language does not allow final classes to be abstract, hence the values in the rows labeled L1 and L4

are 0, and (3) there is an additional sub-tree to be removed, E2, that represents classes that are concurrent, are
inheritance-free and are interfaces. Note a class is considered concurrent if it inherits from the library class Thread
or implement the interface Runnable. The total number of leaves in the tree generated from TA and TCF in Table
5 is 1,790,640 for Java 1.5.x and 10,752 for Java 1.4.x. These numbers are computed using an equation similar to
Equation 3.

We compute the total number of Java classes groups by summing the totals in Tables 4 and 5 resulting in
3,497,840 for Java 1.5.x and 20,992 for Java 1.4.x. Table 6 shows a summary of these results and the number
of attribute groups and routine groups for Java 1.5.x and Java 1.4.x. Our preliminary work has identified 12,096
attribute groups for Java 1.5.x and 961 for Java 1.4.x. Similarly, the number of routine groups for Java 1.5.x is
255,888 and 29,376 for Java 1.4.x.

4 TaxTOOLJ

TaxTOOLJ - A Taxonomy Tool for the OO Language Java is a tool that reverse engineers Java classes producing
cataloged entries. TaxTOOLJ is based on the prototype tool (TaxTOOL) created by Clarke et al. [CMG03] for
the C++ language. Unlike TaxTOOL, TaxTOOLJ catalogs all the class characteristics in Java classes. This is
accomplished by using the reflection facility provided by Java and inspection of the abstract syntax tree (AST) for
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Groups Class Characteristics Java

in Trees TA and TCF 1.5.x 1.4.x

for Concrete classes

A1 {Public, Not-Public} 2 2

A2 {Has-Nested, 2 2
Not Has-Nested}

A3 {Has-Inner, 2 2
Not Has-Inner} 2 2

A4 {Implements, 2 2
Not (Interface or
Implements)}

A5 {Serializable, 2 2
Not Serializable}

L1 Leaves(TCFNF NG C ) 4472 256

L2 Leaves(TCFF NG C ) 2236 128

L3 Leaves(TCFNF G C ) 38208 0

L4 Leaves(TCFF G C ) 19104 0

E1 Serializable Inheritance-Free 341440 2048
Not(Interface or Implements)

Total # of Leaves = (|A1| ∗ |A2| ∗ |A3| ∗ |A4| ∗ |A5| ∗
(|L1| + |L2| + |L3| + |L4|))− |E1|

Total # of Leaves 1707200 10240

Table 4. Total number of leaves (class groups) generated for the trees TA and TCF for concrete classes.
A1 . . .An represent the siblings for the add-on descriptor nodes in th e tree in Figure 2 and L1 . . .Ln rep-
resent the leaves generated by sub-trees in Figure 3. Extran eous leaves E1 are removed from the tree
generated from the combined trees in Figures 2 and 3 for concr ete classes.

the features of a class. Figure 4 shows the packages in the class diagram for TaxTOOLJ. The major packages in
TaxTOOLJ are: (1) clouseauJ API - an interface that allows access to the details of the class, (2) tax CatalogerJ -
stores the cataloged entries, and (3) tax ControllerJ - catalogs the classes in a Java application

4.1 ClouseauJ API

The clouseauJ API provides an interface that allows the class CatalogerJ to access all the information required
to generate cataloged entries for the application being reverse engineered. This information includes: the directory
structure of the packages and the characteristics of the classes, methods, and fields. ClouseauJ API obtains this
information by a combination of using the reflection facility in Java and querying the abstract syntax tree (AST) for
a class generated by the ASTParser class in the Java Development Tooling (JDT) package in the Eclipse framework
[Ecl05].

Reflection provides a means for determining the properties, events, methods, and members of a class. However,
reflection does not provide the information about the details of the implementation for method. These details
include local variable declarations and the form of the exception handling mechanism used in the method. Such
information may affect the descriptors and type families of the routine component entries in a cataloged entry
and possibly the Nomenclature of the class. For example, if a method for a class creates an instance of another
class C as part of its implementation, then some routine descriptors and type families may not be captured in
the component entry of the routine. These routine descriptors include Concurrent, Synchronized, Exception-R,
Exception-H,, and Has-Polymorphic. The type families may be U, U*, L, L*, U<U*>*, L<U*>*, and so on.
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Groups Class Characteristics Java

in the Trees TA and 1.5.x 1.4.x

TCF for Abstract classes

A1 {Public, Not-Public} 2 2

A2 {Has-Nested, 2 2
Not Has-Nested}

A3 {Has-Inner, 2 2
Not Has-Inner} 2 2

A4 {Interface, Implements, 3 3
Not (Interface or
Implements)}

A5 {Serializable, 2 2
Not Serializable}

L1 Leaves(TCFNF NG A) 4472 256

L2 Leaves(TCFF NG A) 0 0

L3 Leaves(TCFNF G A) 38208 0

L4 Leaves(TCFF G A) 0 0

E1 Serializable 247136 1024
Inheritance-Free

Not(Interface or
Implements)

E2 Concurrent 10864 512
Inheritance-Free
Interfaces

Total # of Leaves = |A1| ∗ |A2| ∗ |A3| ∗ |A4| ∗ |A5| ∗
(|L1| + |L2| + |L3| + |L4|)− |E1| − |E2|

Total # of Leaves 1790640 10752

Table 5. Total number of leaves (class groups) generated for the trees TA and TCF for abstract classes.
A1 . . .An represent the siblings for the add-on descriptor nodes in th e tree in Figure 2 and L1 . . .Ln repre-
sent the leaves generated by sub-trees in Figure 3. Extraneo us leaves, E1 and E1, are removed from the
tree generated from the combined trees in Figures 2 and 3 for a bstract classes.

4.2 Tax ControllerJ

The tax ControllerJ package uses the clouseauJ API to access information to catalog each class in a Java
application recursively, starting with the classes in the global package of the application followed by the class
definitions and packages in the nested packages. The tax ControllerJ queries the clouseauJ API for the information
to generate entries for the Nomenclature, Attributes, Routines and Feature Classification components. As the
entries for the Attributes and Routines components are being generated, the modifier and type family parts of
the Nomenclature component entry as well as Feature Classification are updated. During the cataloging process
the tax ControllerJ invokes instances of the tax CatalogerJ to store the different component entries as well as the
signatures for the attributes and routines.

TaxTOOLJ provides the user with two options when cataloging classes in a Java application. These options
are Reflection only, and All Characteristics, and are realized in the tax ControllerJ package. The reflection only
option ignores the implementation of methods during the cataloging process. As a result, the Eclipse JDT plugin
is not invoked and therefore the AST is not generated. As the results in Section 5 will show, there is significant
running time trade-off with respect to whether the AST is built or not.

11



Entities No. of Groups for Java
1.5.x 1.4.x

Classes 3,497,840 20,992
Attributes 12,096 961
Routines 255,88 29,376

Table 6. Number of groups for the classes, attributes and rou tines in Java 1.5.x and 1.4.x

Provides
Reflection

Builds AST
for a Java class

<<invokes>><<accesses>>
org.taxTOOLJ

core.dom

org.eclipse.jdt.

<<plug−in>>

(java.lang.)

<<library>>

<<invokes>> <<queries>>
<<subsystem>>

clouseauJ_API

<<subsystem>>

tax_CatalogerJ

<<subsystem>>

tax_ContollerJ

Figure 4. Class diagram for TaxTOOLJ.

5 Empirical Study

In this section we describe the study that was performed to catalog 155,340 classes from 22 Java applications
using the taxonomy of OO classes presented in [CBC05]. The classes were cataloged using only TaxTOOLJ’s
reflection capability. The classes in the Java applications contained a total of 575,153 attributes and 1,466,857
routines. The applications were written in Java 1.4.x (13 applications) and 1.5.x (8 applications). Due to the large
volume of data generated from performing the experiments, it is infeasible to include them in the paper and we
refer the interested reader to view some of the result at [BCC06].

The main goals of the study is to address the following questions for large Java applications written in Java
1.4.x or earlier and Java 1.5.x or earlier:

RQ 1: Can the number of class groups be predicted from the number of classes?

RQ 2: Can the number of attribute groups be predicted from the number of attributes?

RQ 3: Can the number of routine groups be predicted from the number of routines?

The results presented in this section forms the basis for answering the above questions in Section 6.

5.1 Overview of Applications

Our study involved the analysis of 22 Java applications consisting of just over 155K classes, 575K attributes
and 1,466K routines. The applications were chosen from a variety of domains, ranging from compiler tools to
application servers. We also selected the applications that were written in Java 1.4.x or earlier and Java 1.5.x or
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App. Application/ Domain Version SLOC No. Classes
No. Package Name

Java 1.4.x

1 SableCC [GMN+05] Parser Generator 3.2 1013 286

2 BCEL [DvH03] Byte Code Engineering Libray 5.1 14,488 373

3 Barat [Bok03] Compiler Front-End 1.6.1 5,256 373

4 PMD [DPC06] Source Code Analyzer 3.5 23,591 453

5 Colt [Hos02] High Performance Computing Libraries 1.0.3 45,099 951

6 Spring Framework [HJ05] Java/J2EE Application Framework 1.2.3 37,852 1,533

7 Freemind [FP05] Mind Mapping Software 0.8.0 72,318 1,910

8 Soot [Soo05] Java Optimization Framework 2.2.2 102,479 2,476

9 Azuereus [CRG06] BitTorrent Client 2.3.0.6 112,522 3,483

10 Twister [FR05] B2B oriented Business Process Management 0.3 176,296 5,116

11 Common Proper [Jak] A repository of reusable Java components 198,629 5,409

12 Netbeans [Net06] Integrated Development Environment (IDE) 5.0 874,630 17,575

13 Eclipse [Ecl05] Integrated Development Environment (IDE) 3.1.1 1,182,662 22,723

Java 1.5.x

14 TaxTOOLJ [BCC06] Reverse Engineering Tool 1.0 4,688 59

15 javelin* [BEA05] Package in BEA Web logic - application server 9.1 66,663 880

16 JRefactoryModule [Atk04] Reverse Engineering Tool 2.9.19 114,058 2629

17 AspectJ [The05] Aspect-oriented extension to Java 9.1 284,784 3,464

18 org* [BEA05] Package in BEA Web logic - application server 9.1 580,368 14,236

19 Compiere [ Co05] Integrated business environment application 2.5.2 632,442 10,433

20 JDK [Sun05] Java Development Kit 1.5.0.5 981,753 17,343

21 weblogic* [BEA05] Package in BEA Web logic - application server 9.1 1,544,794 24,245

22 com* [BEA05] Package in BEA Web logic - application server 9.1 ? 26,064

Table 7. Summary of the Java applications used in the study. * indicates a package taken from an appli-
cation.

earlier. Table 7 shows a summary of the applications used in our study. The table consists of two major sections,
6 columns and contains entries for the 22 Java applications used in the study.

Column 1 of Table 7 contains the number we allocate to each Java application and will be used in several of
the tables in this section containing data in the study. Column 2 contains the names of the Java applications
with the relevant citations, Column 3 is a short description of the application and Column 4 identifies the version
of the application used in the study. Column 5 identifies the number of single lines of code (SLOC) generated
by Dependency Finder [Tes02], and Column 6 the number of classes generated by Windows Explorer. The * in
Column 2 represents packages from larger applications that were analyzed.

The rows in Table 7 are separated into two groups based on the version of Java used to develop the application.
Rows 1 through 13 represent data for applications written in Java 1.4.x or earlier, and Rows 14 through 22 for
applications written in Java 1.5.x or earlier. For example, application number 1 is SableCC [GMN+05], and which
is written in Java 1.4.x or earlier. SableCC is a parser generator, the version analyzed is 3.2, it consists of 1013
single lines of code and has 286 classes. Application 21 weblogic* [BEA05] is a package from BEA’s Web Logic
Server and it is written in Java 1.5.x or earlier. The package weblogic* is from version 9.1 of the Web Logic Server,
contains just over 1.5M single lines of code and has 24,245 classes. The “?” in the Column 5 (SLOC) for application
22 com* [BEA05] represents the fact that Dependency Finder was unable to identify the number of single lines of
code due to an out of memory error in the JVM.
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5.2 Experimental Setup

The general approach to setting up the experiments consisted of several steps. The first step involved obtaining
the jar files for the applications. This required either downloading the jar file from the application’s web page or
installing the entire application and then running a script to extract the jar files. For example, to obtain the jar file
for SableCC the compressed file was downloaded and extracted. However, obtaining the packages of the BEA Web
Logic Server required a complete installation of the application. The second step of the setup involved running a
script to copy all the jar files into the root of a test directory and then extract the jar files into the appropriate
sub-directories. Note, if all the classes in the entire application were not analyzed then the directory containing
the package of interest was copied to another test directory, ensuring that the directory structure is preserved.

The third step of the setup process involved the creation of a repository to store all the libraries required by each
application in Table 7. This was achieved by running TaxTOOLJ on the applications and continually updating
the contents of the repository until all related classes could be loaded by the JVM.

The experiments were performed on a Xeon 2.40 GHz PC with 3GBs of RAM. The settings for the JVM were
-Xms1000m -Xmx1500m -XX:MaxPermSize=128m, i.e., a minimum heap size of 1.0GB, a maximum heap size of
1.5GB and a maximum permanent generation size for the garbage collector at 128M. These settings were required
due to the large number of classes that were loaded during analysis. The results presented in the Section 5.3 were
produced using only the reflection option in TaxTOOLJ.

5.3 Results

Table 8 shows the number of entities cataloged using TaxTOOLJ. The entities include: the Classes - total
number of classes processed (Column 2), Attrs - the total number of attributes processed (Column 3), New Attrs
- the attributes declared in a class and not inherited from a superclass (Column 4), Routs - the total number
of routines processed (Column 5), and Non-Rec Routines - the number of routines in a class that are new or
are overridden (non-recursive). For example, if we consider Application 13, the Eclipse IDE [Ecl05], TaxTOOLJ
cataloged 22,664 classes, 155,316 attributes of which 93,331 were not inherited, and 520,409 routines of which
174,626 were non-recursive (i.e., routines with a newly declared implementation). Note that some of the values
in Column 2 of Table 8 are less than number of classes in Column 6 of Table 7. The reason for this is that if
TaxTOOLJ cannot load all the .class files for a given class being cataloged, then an exception is thrown and the
cataloged entry for that class is not added to the list of completed cataloged entries.

Table 9 shows the number of groups generated for the classes, attributes and routines in each of the 22 applica-
tions in the study. For example, if we consider Application 22, the Eclipse IDE [Ecl05], the 22,664 classes cataloged
by TaxTOOLJ were mapped to 467 groups, the 155,316 attributes were mapped to 195 groups, and the 520,409
routines were mapped to 757 groups. In addition, the percentage of the groups to the total number of possible
groups are also shown in Table 9. For example, of the 20,992 possible class groups (see Table 6) in Java 1.4.x or
earlier, the classes in the Eclipse IDE were all mapped to 2.22% of the total number of class groups. Similarly,
the attributes were mapped to 10.93% of the total attribute groups and the routines were mapped to 2.58% of the
total number of possible routines groups.

In Section 6 we perform the analysis on the data presented in this section to determine if the research questions
RQ1, RQ2, and RQ3 can be answered. However, there are several characteristics of the data shown in Tables 8 and
9 that worth mentioning here. The main characteristic is the surprisingly small number of groups that are used
in the Java applications cataloged by TaxTOOLJ. The average number of groups for applications written in Java
1.4.x or earlier are, 1.04% for classes, 6.93% for atttributes and 1.21% for routines. Similarly the groups for the
applications written in Java 1.5.x or earlier are, .01% for classes, 0.93% for attributes and .25% for routines. The
percentages of groups used for the applications written in Java 1.5.x or earlier are an order of magnitude smaller
than the those for the applications written in Java 1.4.x or earlier.

In this paper we present snapshot of the large volume of data collected when the Java applications in Table 7
were cataloged using the reflection capability of TaxTOOLJ. The data not presented includes summaries of: (1) all
the class groups for each application, similar to the Nomenclature entry in Figure 1(b), (2) all the attribute groups,
similar to the Attributes entries in the cataloged entry shown in Figure 1(b), and (3) all the Routine entries for
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No. Number of Entities Cataloged
Classes Attrs New Routs Non-Rec

Attrs Routs

Java 1.4.x

1 286 539 539 13,108 2,346
2 373 1,724 987 7,742 3,069
3 395 661 579 7,175 4,147
4 453 2,969 1,330 21,247 3,900
5 951 2,871 1,852 12,098 7,370
6 1,390 3,651 2,993 15,216 8,908
7 1,905 9,948 4,822 31,828 14,932
8 2,476 9,565 4,743 41,836 19,877
9 3,479 9,245 8,218 29,733 20,280
10 5,080 28,594 17,743 90,865 48,084
11 5,355 30,712 17,806 110.873 48,585
12 17,266 97,412 66,525 331,499 147,831
13 22,664 155,316 93,331 520,409 174,626

Java 1.5.x

14 59 416 413 642 614
15 880 11,094 3,618 14,549 9,622
16 2,614 10,528 6,106 52,712 20,527
17 3,461 58,612 17,905 100,235 38,596
18 9,900 50,446 33,793 279,349 140,030
19 10,405 77,927 50,589 307,046 140,030
20 17,343 106,825 66,799 542,554 143,047
21 24,192 158,708 98,423 522,884 254,894
22 24,413* 119,272 76,039 1,063,953 247,087

Table 8. Summary of the entities cataloged in the study. * app lications that were not completely cataloged
due to the size of the application.

each application. In addition, there is also a listing containing a cataloged entry for each class in each of the 22
applications. The size of the file containing the listing of the cataloged entries for JDK 1.5.05 is 45 MB [BCC06].

5.4 Validity of the Data

Since not other empirical study in the research literature has cataloged the classes in Java applications based
on the taxonomy of OO classes [CBC05] it is difficult to completely validate our results. However, we ran the
applications used in this study through several OO metrics tools to get data on individual class characteristics.
The individual class characteristics used were number of classes, number of attributes and the number of routines.
We eliminated several of the OO metrics tool initially due to the fact that the number of class files identified with
Windows Explorer differed significantly from the number of classes identified using the metrics tools. Dependency
Finder [Tes02] identified all the classes in 17 of the applications used in the study. The number of classes, attributes
and routines identified by TaxTOOLJ were similar in number to those identified by Dependency Finder.

The are several limitations of the study including: (1) the use of the reflection only component in TaxTOOLJ,
(2) the preparation of the applications used in the study, (3) finding the class libraries required by the various
applications, and (4) limitations of the JVM. Using the reflection only component in TaxTOOLJ eliminates in-
formation generated from the implementation of methods being used in the cataloging process. The information
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No. Number of Groups Identified
Classes Attrs Routs

Java 1.4.x

1 47 (0.22%) 25 (2.60%) 71 (0.24%)
2 87 (0.41%) 30 (3.12%) 178(0.61%)
3 63 (0.30%) 34 (3.54%) 131 (0.45%)
4 83 (0.40%) 41 (4.27%) 148(0.50%)
5 126 (0.60%) 69 (7.18%) 340 (1.16%)
6 190 (0.91%) 48 (4.9%) 272 (0.93%)
7 228 (1.09%) 84 (8.74%) 409 (1.39%)
8 181 (0.86%) 51 (5.31%) 226 (0.77%)
9 165 (0.79%) 77 (8.01%) 288 (0.98%)
10 384 (1.83%) 114 (11.86%) 639 (2.18%)
11 231 (1.10%) 76 (7.91%) 407 (1.39%)
12 589 (2.81%) 112 (11.65%) 768 (2.61%)
13 467 (2.22%) 105 (10.93%) 757 (2.58%)

Java 1.5.x

14 34 (0.00%) 24 (0.20%) 60 (0.02%)
15 244 (0.01%) 90 (0.74%) 235 (0.09%)
16 344 (0.01%) 88 (0.73%) 444 (0.17%)
17 229 (0.01%) 72 (0.06%) 400 (0.16%)
18 476 0.01(%) 125 (1.03%) 750 (0.29%)
19 461 (0.01%) 128 (1.06%) 774 (0.30%)
20 1057 (0.03%) 198 (1.64%) 1056 (0.41%)
21 619 (0.02%) 149 (1.23%) 1013 (0.40%)
22 660 (0.02%) 141 (1.17%) 970 (0.38%)

Table 9. Number of groups identified for the classes, attribu tes and routines for each artifact in the study.

contains local variable declarations and exception handling constructs. During the preparation of the applications
it was observed that some of the same library packages were reused. This observation forced us to cataloged only
the classes in the application distribution that carried the name of the application, e.g. Compiere (application 19)
in Table 7.

One other difficulty encountered was finding the class libraries used by the applications in the study. This
resulted in TaxTOOLJ not cataloging all of the classes in some applications. For example, TaxTOOLJ was unable
to catalog 143 classes in the Spring-framework (application 6) [HJ05] and 1417 in package org (application 18)
from BEA Web logic [BEA05]. Several problems were encountered with the JVM when we attempted to cataloged
large applications. The main problem was an out of memory error. BEA Web logic [BEA05] contained over 80K
classes but taxTOOLJ can cataloged at most 27K classes before generating an out of memory error.

6 Prediction Models

In this section we address the research questions stated in the introduction to Section 5. That is, we present
models that allow a developer to predict the number of groups of classes, attributes and routines that are used in
large Java applications. We use log-linear regression models [Die00] to predict the number of groups for large Java
applications. It is observed that all the prediction models are statistically significant. We show the scatter plots
for the groups of classes, attributes and routines versus the number of classes, attributes and routines, respectively,
for the applications written in Java 1.4.x or earlier. We also show the log transform of these plots showing that
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they become linear. The plots for the data captured for the Java 1.5.x or earlier applications are not presented in
this paper. We use a similar approach to create the models for the applications written in Java 1.4.x or earlier and
Java 1.5.x or earlier.

6.1 Prediction of Class Groups

Applications in Java 1.4.x or earlier: When we plot the number of class groups versus the number of classes
for Java applications written in Java 1.4.x or earlier we obtain the scatter plot as shown in Figure 5(a). The points
in Figure 5(a) are non-linear. However, the scatter plot between the log transformed data becomes linear, see
Figure 5(b). Thus we have considered log transformed data to fit the model. The fitted log-linear regression model
is:

log(y) = 1.2670 + 0.5099 ∗ log(x ) (4)

The regression coefficient is found to be statistically significant (p-value = 0.0000) and R2 = 0.91, which implies
that the 91% of the total variation has been explained by the regressor (classes). Thus, the number of groups can
be predicted from the number of classes. Given the number of classes we can predict the number of groups and
their 95% prediction intervals. For example, if we use the model shown in Equation 4 an application containing
50,000 classes is predicted to generate 884 class groups with 95% confidence limits between 607 and 1288.

Applications in Java 1.5.x or earlier: The fitted log-linear regression model for applications written in Java
1.5.x or earlier is:

log(y) = 1.7889 + 0.4832 ∗ log(x ) (5)

The regression coefficient is found to be statistically significant (p-value = 0.0001) and R2 = 0.91, which implies
that the 91% of the total variation has been explained by the regressor (classes). Using the model shown in Equation
5 an application containing 50,000 classes is predicted to generate 1116 class groups with 95% confidence limits
between 735 and 1694. Note here that the variation in the confidence interval is greater than for the applications
written in Java 1.4.x or earlier.

6.2 Prediction of Attribute Groups

Applications in Java 1.4.x or earlier: Figure 6(a) shows a scatter plot for the number of attribute groups
versus the number of attributes for Java applications written in Java 1.4.x or earlier. The scatter plot of the log
transform is shown in Figure 6(a). The fitted log-linear regression model is:

log(y) = 1.7584 + 0.2612 ∗ log(x ) (6)

The regression coefficient is found to be statistically significant (p-value = 0.0000) and R2 = 0.80, which is high
enough to create the prediction model. Thus, the number of attribute groups can be predicted from the number
of attributes in a given application. For example, if we use the model shown in Equation 6 then an application
containing 100,000 attributes is predicted to generate 118 attribute groups with 95% confidence limits between 90
and 153.

Applications in Java 1.5.x or earlier: The fitted log-linear regression model for applications written in Java
1.5.x or earlier is:

log(y) = 1.5010 + 0.2997 ∗ log(x ) (7)

The regression coefficient is found to be statistically significant (p-value = 0.0000) and R2 = 0.84, which implies
that the 84% of the total variation has been explained by the regressor (attributes). Using the model shown in
Equation 7 an application containing 100,000 attributes is predicted to generate 141 attribute groups with 95%
confidence limits between 110 and 181.
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Figure 5. Scatter plots between Class groups and Classes for the Java 1.4.x or earlier applications. (a)
Plot of Class groups versus Classes. (b) Plot of log of Class g roups versus log of Classes.

6.3 Prediction of Routine Groups

Applications in Java 1.4.x or earlier: Figure 7(a) shows a scatter plot for the number of routine groups versus
the number of routines for Java applications written in Java 1.4.x or earlier. The scatter plot of the log transform
is shown in Figure 7(a). The fitted log-linear regression model is:

log(y) = 1.2403 + 0.4209 ∗ log(x ) (8)

The regression coefficient is found to be statistically significant (p-value = 0.0009) and R2 = 0.65, which is a good
enough fit to create the prediction model. Using the model shown in Equation 8 an application containing 1000,000
routines is predicted to generate 1160 routine groups with 95% confidence limits between 558 and 2407.

Applications in Java 1.5.x or earlier: The fitted log-linear regression model for applications written in Java
1.5.x or earlier is:

log(y) = 1.5952 + 0.3978 ∗ log(x ) (9)

The regression coefficient is found to be statistically significant (p-value = 0.0000) and R2 = 0.98, which is a very
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Figure 6. Scatter plots between Attribute groups and Attrib utes for the Java 1.4.x or earlier applications.
(a) Plot of Attribute groups versus Attributes. (b) Plot of l og of Attribute groups versus Log of Attributes.

good fit. Using the model shown in Equation 9 an application containing 1000,000 routines is predicted to generate
1201 routine groups with 95% confidence limits between 1015 and 1421.

6.4 Discussion

Using SPlus 7.0 software we have fitted six models in this section. These models correspond to classes, attributes
and routines for Java 1.4.x or earlier and Java 1.5.x or earlier. We observed that all regressors (classes, attributes,
routines) are statistically significant (at 1% level of significance, since all p-values are less than 0.01) for predicting
the corresponding groups for both Java 1.4.x or earlier and Java 1.5.x or earlier. However, based on the values
of R2, we see that both Java 1.4.x or earlier and Java 1.5.x or earlier fitted class groups and attribute groups
equivalently. It was also noted that routine groups had a better fit for Java 1.5.x or earlier than for Java 1.4.x or
earlier.

Conducting the experiments with a larger sample size would have improved the accuracy of the prediction
model. Please note that all the results of the empirical study and the analysis performed are not shown in this
paper. The additional data and analysis can be obtained from the authors upon request.
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Figure 7. Scatter plots between Routine groups and Routines for the Java 1.4.x or earlier applications. (a)
Plot of Routine groups versus Routines. (b) Plot of log of Rou tine groups versus log of Routines.

7 Related Work

There are several class abstraction techniques used to aid in the software development process of OO systems.
However, we feel that this work is most closely related to object-oriented design metrics (OODMs) and therefore
examine the related work in that area. Numerous metrics have been used to estimate and predict various prop-
erties of OO systems including class complexity, coupling, cohesion, fault-proneness and system size. Purao and
Vaishnavi [PV03] present a survey of existing product metrics that were proposed for measuring coverage of the
entities, attributes, and development stages of an OO system. Fioravanti and Nesi [FN01] describe a study on
more than 200 different OO metrics extracted from the literature and proposes a new approach to define mod-
els for fault-proneness detection and prediction. However, these studies do not consider the ways in which class
characteristics are combined and therefore fail to address the impact that these combinations will have on the
resultant prediction/analysis models. Thus, our taxonomy of OO classes could be used to perform and improve
similar empirical studies in the future.

Denaro et al. [DGP03] present an empirical study on an industrial telecommunication application in which
three different versions of the system were analyzed. Each version consists of more than 2 million lines of code
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written in C++. The analysis by Denaro et al. focuses on the set of OO metrics defined by Chidamber and
Kemerer [CK94]. These include Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT), Number
Of Children (NOC), Response For Class (RPC), Lack Of Cohesion of Methods (LCOM), and Coupling Between
Objects (CBO). The impact of each single metric on the fault-proneness of the software modules is evaluated and
multivariate regression analysis is used to investigate the combined impact of pairs of metrics. Our taxonomy could
also be utilized to identify impact that specific class groups have on fault-proneness, and this could be extended
to show the combined impact using a similar approach to Denaro et al. [DGP03].

Bruntink and Deursen [BvD04] identify a significant correlation between class level metrics and test level metrics
and discuss how various OO metrics can contribute to software testability. They present the results of conducting
experiments on two large Java systems (DocGen and Apache Ant), and then define and evaluate a set of metrics
that can be used to assess the testability of the classes of a Java system. TaxTOOLJ catalogs all of the class
characteristics in Java classes and therefore could be used to analyze similar Java systems to establish correlations
between Java class characteristics and their testability.

Clarke et al. [CMG03, Cla03] developed the taxonomy of OO classes that provides a mechanism to catalog
classes written in virtually any OO language. The taxonomy provides a core set of descriptors and the facility
to create new descriptors to represent feature peculiar to a specific OO language. Clarke et al. [CMG03] showed
how the taxonomy is extended for the C++ by defining a set of add-on descriptors. Although the taxonomy was
motivated because of the need to aid testers in identifying which testing techniques are more suitable to test
different features of a class, it has also been use to aid in the identification of changes of class characteristics during
maintenance. Previous work using the taxonomy of OO classes has only been applied to small and medium scale
software applications written in C++. This is the first study that uses the taxonomy on large systems written
using Java. Crowther et al. [CBC05] extended the core taxonomy by Clarke et al. to include the feature peculiar
to Java. In addition, an estimate of the number of groups of classes for Java 1.4.x and Java 1.5.x was provided
without a sound rigorous proof. Crowther et al. also out line the basic design of TaxTOOlJ used in this paper.
This work significantly extends the work presented by Crowther et al.[CBC05].

8 Concluding Remarks

In this paper we described the first study that uses a taxonomy of OO classes to catalog over 155K classes
taken form a cross-section of Java applications written in Java 1.4.x and Java 1.5.x. The data collected on the
classes, attributes, and routines cataloged was used to create a set of prediction models. These models can be
used by developers to identify how class characteristics such as abstraction, encapsulation, genericity, inheritance,
polymorphism and exception handling are expected to be used in large Java applications. Surprisingly, the data
showed that out of 20,992 possible Java class groups that can be used when writing Java 1.4.x applications only
1.04% (218) of the groups were used. Similarly, of the possible 3,497,840 Java class groups that can be used, only
0.01% (349) of the groups were used. The groups for attributes and routines showed a similar trend.

We plan to further analyze the data generated form the experiments in this study since we have only analyzed
and presented the result of a small fraction of the data collected. We also plan to use the taxonomy for Java
classes to investigate how it can be used to assist developer in developing model for class complexity, coupling,
cohesion, and fault proneness. We are confident that these studies used in conjunction with the existing studies
using OODMs will improve the implementation, testing and maintenance of Java applications.
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