11/18/22

COP 4610

Operating System Principles

Protection

Overview

Goals of Protection

Principles of Protection

Domain of Protection

Access Matrix

Implementation of Access Matrix
Access Control

Revocation of Access Rights
Capability-Based Systems
Language-Based Protection

COP 4610 — Operating System Principles 2

Objectives

* Discuss the goals and principles of protection
in @ modern computer system

* Explain how protection domains combined
with an access matrix are used to specify the

resources a process may access

* Examine capability-based protection systems

COP 4610 — Operating System Principles 3

Goals of Protection

* In one protection model, a computer consists of
a collection of objects, hardware or software

* Each object has a unique name and can be
accessed through a well-defined set of
operations

* Protection problem - ensure that each object is
accessed correctly and only by those processes
that are allowed to do so

COP 4610 — Operating System Principles 4

11/18/22

Principles of Protection

* Guiding principle — principle of least privilege
— Static
— Dynamic - domain switching, privilege escalation
— “Need to know” a similar concept regarding access to data
— “Containment of failure”

* Must consider “grain” aspect
— Rough-grained
— Fine-grained

* Domain can be user, process, procedure

COP 4610 — Operating System Principles

Domain Structure

* Access-right = <object-name, rights-set>
where rights-set is a subset of all valid
operations that can be performed on the
object

* Domain = set of access-rights
Dy D, Ds

< O, {read, write} >
< Oy, {read, write} >
< O,, {execute} >

< O,, {execute} >
< O, {read} >

< O,, {write} >(< O,, {print} >

COP 4610 — Operating System Principles 6

11/18/22

Domain Implementation (UNIX)

Domain = user-id

Domain switch accomplished via file system
 Each file has associated with it a domain bit (setuid bit)

* When file is executed and setuid = on, then user-id is set to owner of the file

being executed (in a similar fashion “setgid”)
* When execution completes user-id is reset

Domain switch accomplished via passwords

— su command temporarily switches to another user’s domain when

other domain’s password provided

Domain switching via commands

— sudo command prefix executes specified command in another

domain (if original domain has privilege or password given)

COP 4610 — Operating System Principles

Password Example

cooluser@LAPTOP-5V55HONS:~$ 1s -1 /etc/shadow
-rw-r— 1 root shadow 1824 Oct 18 19:49 /etc/shadow
cooluser@LAPTOP-5V55HONS : ~$

cooluser@LAPTOP-5V55HON5: ~$ passwd
Changing password for cooluser.
Current password:

New password:

Retype new password:

passwd: password updated successfully
cooluser@LAPTOP-5V55HONS: ~1$

cooluser@LAPTOP-5V55HONS:~$ 1s -1 /bin/ls
L root root 142144 Sep 5 2019 /bin/ls
TOP-5V55HON5:~$ 1s -1 /bin/passwd

root root 68208 May 28 01:37 /bin/passwd
cooluser@LAPTOP-5V55HONS: ~$

11/18/22

Domain Implementation (MULTICS)

* Let D; and D; be any two domain rings
° Ifj<l:>D, ng

ring O

ring 1

ring N—1

COP 4610 — Operating System Principles 9

Multics Benefits and Limits

* Ring / hierarchical structure provided more than
the basic kernel / user or root / normal user
design

* Fairly complex -> more overhead

¢ But does not allow strict need-to-know

— Object accessible in D; but not in D;, then j must be <

— But then every segment accessible in D; also
accessible in D;

COP 4610 — Operating System Principles 10

10

11/18/22

Access Matrix

* View protection as a matrix (access matrix)

* Rows represent domains

Columns represent objects

Access(i, j) is the set of operations that a process
executing in Domain; can invoke on Object;

COP 4610 — Operating System Principles 11

11
Access Matrix
object
) F; F> F3 printer
domain
D, read read
D, print
Dy read execute
read read
D, write write
COP 4610 — Operating System Principles 12
12

11/18/22

Use of Access Matrix

* If a process in Domain D; tries to do “op” on object O;, then “op”
must be in the access matrix

* User who creates object can define access column for that object

* Can be expanded to dynamic protection
— Operations to add, delete access rights
— Special access rights:
* ownerof O,
copy op from D; to D; (denoted by “*”)
control — D; can modify D; access rights
transfer — switch from domain D; to D;

— Copy and Owner applicable to an object
— Control applicable to domain object

COP 4610 — Operating System Principles

13

13
object
F1 F2 F(!
domain
D, execute write*
D, execute read” execute
D; execute
(a)
object
Fi F> Fs
domain
Dy execute write*
D, execute read™ execute
Dy execute read
(b)
COP 4610 — Operating System Principles 14
14

11/18/22

Access Matrix Example

object
F|lR| R |2 D | 0|0 |o0
domain printer
D, read read switch
D, print switch | switch
D, read |execute
D read read :
4 write write S
COP 4610 — Operating System Principles 15
15
object
F Fy Fy
domain
Dy ei‘ggﬁ; write
read* read™
e owner O‘mzr
Ds execute
(a)
object
£ £ Fy
domain
Dy eivevgﬁg write
owner read”
D, read* owner
write* write
Dy write write
(b)
COP 4610 — Operating System Principles 16

16

11/18/22

Access Matrix Example

object laser
S Foo| R | B |iee| O | B | Do | D,
D, read read switch
D, print switch csg'ittfg
Ds read |execute
D, write write switch
COP 4610 — Operating System Principles 17
17
Use of Access Matrix (Cont.)
* Access matrix design separates mechanism
from policy
— Mechanism
* Operating system provides access-matrix + rules
* If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced
— Policy
* User dictates policy
* Who can access what object and in what mode
COP 4610 — Operating System Principles 18
18

11/18/22

Implementation of Access Matrix

* Generally, a sparse matrix
* Option 1 - Global table
— Store ordered triples < domain, object, rights-set > in table
— %’-})I[e<quested ogeration M on object O; within domain D; -> search table
i» Oj) Re
* with MJE R«
— But table could be very large
— Difficult to group objects (e.g., an object that all domains can read)

* Option 2 — Access lists for objects

— Each column implemented as an access list for a specific object (and
stored with said object)

— Resulting per-object list consists of ordered Pairs < domain, rights-set
>|;1ef|n|ng all domains with non-empty set of access rights for the
object

— Easily extended to contain default set -> If M € default set, also allow
access

COP 4610 — Operating System Principles 19

19

Implementation of Access Matrix

* Option 3 - Capability list for domains
— Instead of object-based, list is domain-based

— Capability list for domain is list of objects together
with operations allowed on them

— Object represented by its name or address, called
a capability

— Execute operation M on object O;, process
requests operation and specifies capability as
parameter

* Possession of capability means access is allowed

COP 4610 — Operating System Principles 20

20

11/18/22

10

Comparison of Implementations

* Many trade-offs to consider

— Global table is simple, but can be large

— Access lists correspond to needs of users
« Determining set of access rights for domain non-localized difficult
« Every access to an object must be checked

— Many objects and access rights -> slow

— Capability lists useful for localizing information for a given process

« But revocation capabilities can be inefficient

* Most systems use combination of access lists and capabilities

— First access to an object -> access list searched
« If allowed, capability created and attached to process
— Additional accesses need not be checked
« After last access, capability destroyed

COP 4610 — Operating System Principles 21

21

Revocation of Access Rights

* Various options to remove the access right of
a domain to an object
— Immediate vs. delayed
— Selective vs. general
— Partial vs. total
— Temporary vs. permanent

COP 4610 — Operating System Principles 22

22

11/18/22

11

