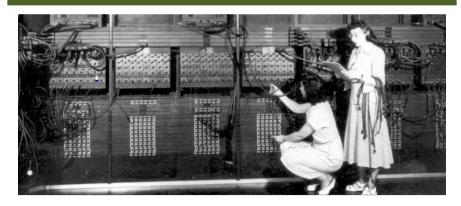
COP 4610

Operating System Principles

Lecture 2 – Introduction – Continued


1

Recap – Last Lecture

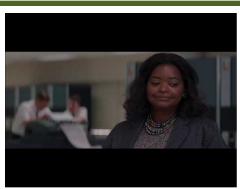
- What is an operating system & kernel?
- What is an interrupt?

COP 4610 – Operating System Principles

1st Gen (1945-55): Vacuum Tubes

• Operating systems did not exist yet...

COP 4610 – Operating System Principles


3

3

2nd Gen (1955-65): Batch Systems

Brought to you by the transistor!

• Operating systems (usually some sort of library) were charged with processing batches of tasks (compile, load, run, output).

COP 4610 – Operating System Principles

4

Δ

3rd Gen (1965-80): Multiprogramming

- Multiprogramming
 Enable multiple jobs to run concurrently
- Memory Protection
 Disallow one program
 from manipulating data
 of another program
- Timesharing
 Split processing time with multiple users

Brought to you by the integrated circuit!

COP 4610 – Operating System Principles

5

5

4th Gen (1980-Now): Personal Computers Minix Linux Android Multics Unix BSD osx Apple DOS **MacOS** Alto MS DOS Basic Windows Windows 7 Win NT VMS COP 4610 – Operating System Principles 6

By Purpose: Mainframes & Servers

Mainframe

Process many jobs at once (timesharing, transaction processing, batch)

Server

Provide services to multiple users (print, file, web, etc.)

COP 4610 – Operating System Principles

7

7

By Purpose: Personal & Handhel

Personal

Support a single user (like your laptop or desktop)

Handheld

Usually found in PDAs or mobile phones

COP 4610 – Operating System Principles

8

By Purpose: Embedded & Real-Time

Embedded

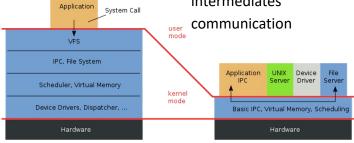
Run on devices usually not considered general purpose computers (TVs, cars, microwaves, etc.)

Real-Time

Provide absolute guarantees that a certain action will occur by a certain time.

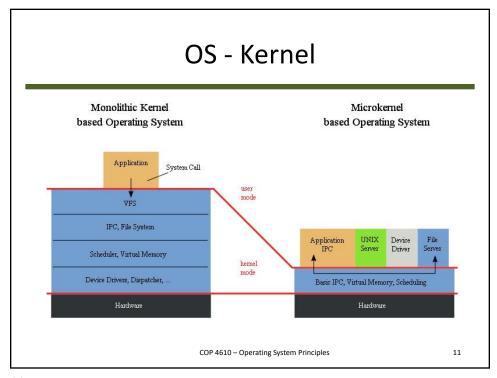
COP 4610 – Operating System Principles

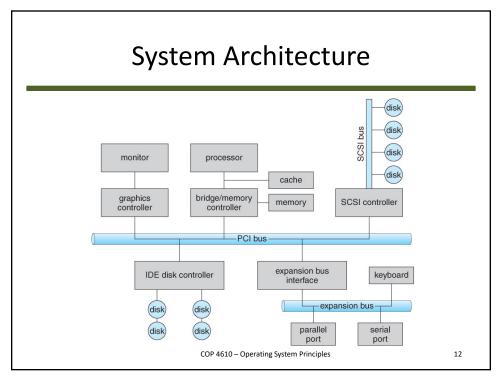
Q

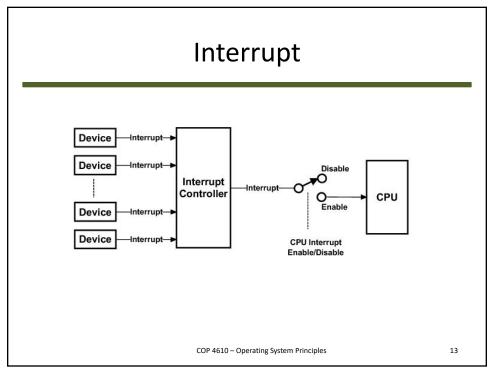

By Structure

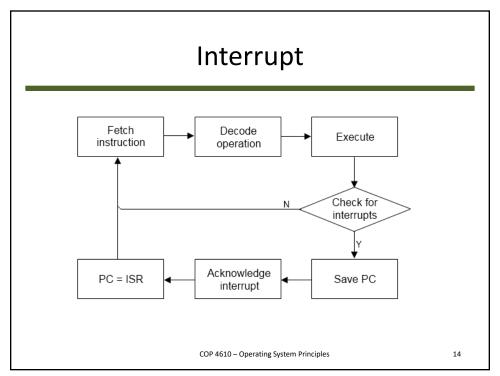
Monolithic

A single program (or collection of procedures linked together) ran in kernel mode.

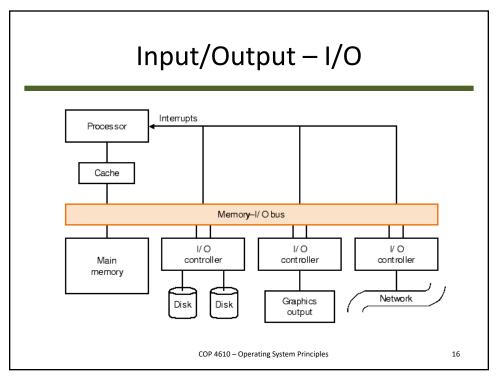

Microkernel


Split the OS into small, welldefined modules, one of which runs in kernel mode and intermediates




COP 4610 – Operating System Principles

10


Input/Output – I/O

- Communication between CPU and "outside world":
 - Storage
 - Network
 - Keyboard/mouse
 - Display
 - Printer
 - **—** ...

COP 4610 – Operating System Principles

15

15

Interacting with I/O

- System-controlled:
 - "Write this chunk of data to block 8,783,486"
 - "Please give me the data from blocks 7,345,286 7,345,289"
- External events (system reacts):
 - The user is pressing the shift key
 - Block 3,285,001 appears to be bad
 - Data arrived over a network connection

COP 4610 – Operating System Principles

17

17

Interacting with I/O

- Responsibilities of OS:
 - Hide peculiarities of hardware devices from the user
 - Manage hardware devices ("resources") efficiently
 - Prevent intentional/unintentional misuse

COP 4610 – Operating System Principles

Interacting with I/O

- Application requests I/O from OS
 - Uses specific interface: system calls
 - Blocking: application will wait until I/O complete
 - Non-blocking: application will do something else in the meantime (and receive notification from OS when I/O complete)

COP 4610 - Operating System Principles

19

19

Direct Memory Access (DMA)

- CPU responsible for data moving to/from I/O devices
- Alternative: let a separate controller do it (DMA)

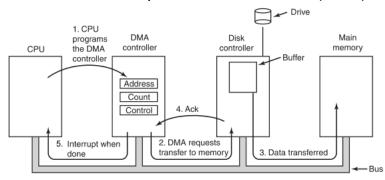
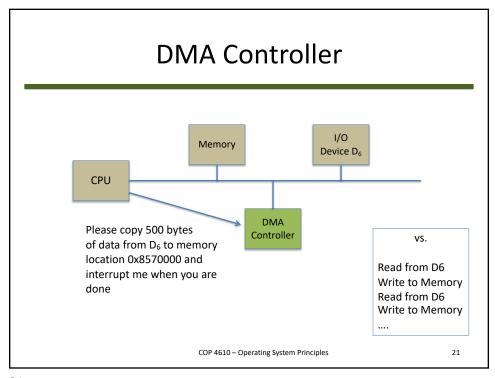
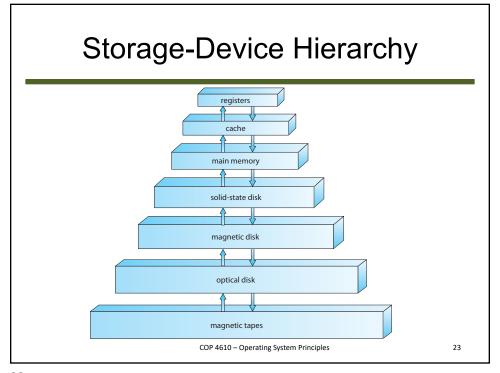



Figure 5-4. Operation of a DMA transfer.

COP 4610 – Operating System Principles

20



Storage Structure

- Main memory only large storage media that the CPU can access directly
 - Random access memory
 - Volatile
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
 - Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface tracks, subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer
 - Solid-state disks faster than magnetic disks, nonvolatile
 - Various technologies
 - · Becoming more popular

COP 4610 – Operating System Principles

22

Storage Hierarchy

- Storage systems organized in hierarchy
 - Size
 - Speed
 - Cost
 - Volatility
- Caching leverage faster storage system; higher layer can be cache for lower layer

COP 4610 – Operating System Principles

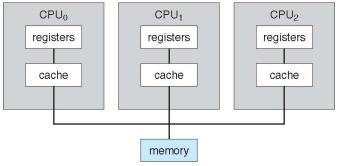
24

Caching

- One of the most important principles in systems
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

COP 4610 - Operating System Principles

25


25

Computer-System Architecture

- General-purpose processors (CPU) versus special-purpose processors (controllers)
- Multiprocessor systems are now typical
 - Parallel systems, tightly-coupled systems
 - Advantages include:
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance

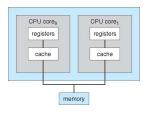
COP 4610 - Operating System Principles

UMA – Uniform Memory Access

- All share the same memory on the same machine, same cost to access.
- May have a private cache

NUMA – Non-uniform Memory Access

· Each processor has its own memory


COP 4610 – Operating System Principles

27

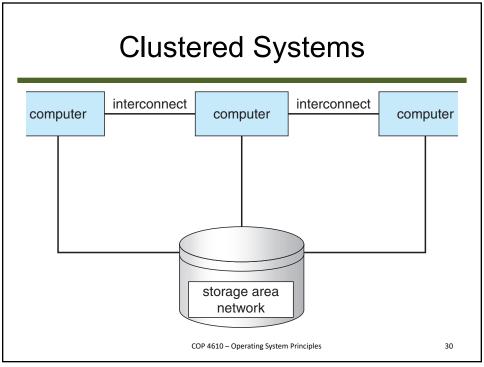
27

Multi-Core Design

- Multiple "cores" on same chip
 - On-chip communication is fast
 - Power consumption can be reduced

COP 4610 – Operating System Principles

28


Clustered Systems

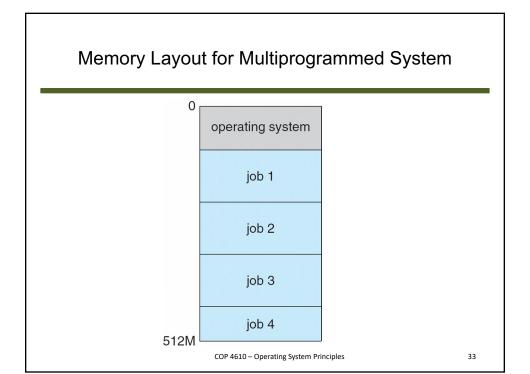
- Like multiprocessor systems, but multiple systems working together
 - Connected via LAN (local-area network)
 - Storage often shared via SAN (storage-area network)
 - Main reasons:
 - High availability
 - Asymmetric clustering (one machine in hot-standby mode)
 - Symmetric clustering (multiple machines running and monitoring each other)
 - High performance (HPC)
 - Applications must be written to exploit parallelization

COP 4610 - Operating System Principles

29

29

Operating Systems Concepts thread of execution data movement memory A von Neumann architecture COP 4610 - Operating System Principles 31


31

Operating Systems Concepts

- Multiprogramming (efficiency)
 - Single user cannot keep CPU and I/O devices busy at all times
 - Jobs (code & data) organized s.t. CPU always has at least one to execute
 - Subset of jobs kept in memory
 - When a job has to wait (e.g., for I/O), the OS switches to another job

COP 4610 – Operating System Principles

32

Operating Systems Concepts

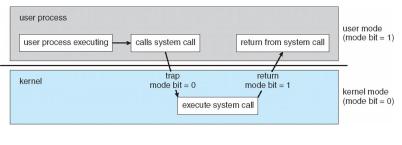
- Timesharing (multitasking):
 - Switching between jobs happens so frequently that users can interact with each job while it is running: interactive computing
 - Response time (e.g., < 1 second)</p>
 - Each user has at least 1 program executing in memory (process)
 - If several jobs ready to run at the same time: CPU scheduling
 - If processes don't fit into memory: swapping
 - Virtual memory allows of execution of partially loaded processes

COP 4610 – Operating System Principles

34

Operating Systems Concepts

- Access to resources needs to be controlled:
 - Simultaneous access
 - Unauthorized access
 - "Improper" access (e.g., too long)
- Dual-mode operating systems
 - User mode (application)
 - Kernel mode (OS and privileged instructions)
 - Mode bit indicates current mode (0 = kernel)
 - Transition via system calls


COP 4610 - Operating System Principles

35

35

From User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Set interrupt after specific period
 - Operating system decrements counter
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

COP 4610 – Operating System Principles

36

Process Management

- Process = program in execution!
 - Program = passive
 - Process = active
- Process needs resources (CPU, memory, I/O, initialization data, files, etc.)
- Single-threaded process: one program counter (PC)
- Multi-threaded process: one program counter per thread

COP 4610 - Operating System Principles

37

37

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- · Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

COP 4610 - Operating System Principles

Memory Management

- All data in memory before and after processing
- All instructions in memory in order to execute
- Memory management determines what is in memory and when
 - Optimizing CPU utilization and computer response to users
- Memory management activities
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and de-allocating memory space as needed

COP 4610 - Operating System Principles

39

39

Storage Management

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive) Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random)
- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access
 - OS activities include
 - · Creating and deleting files and directories
 - Primitives to manipulate files and directories
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

COP 4610 - Operating System Principles

Mass-Storage Management

- Usually disks used to store data that does not fit in main memory or data that must be kept for a "long" period of time
- Proper management is of central importance
- Entire speed of computer operation hinges on disk subsystem and its algorithms
- · OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling
- · Some storage need not be fast
 - Tertiary storage includes optical storage, magnetic tape
 - Still must be managed by OS or applications
 - Varies between WORM (write-once, read-many-times) and RW (read-write)

COP 4610 - Operating System Principles

41

41

Performance of Various Levels of Storage

Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

COP 4610 – Operating System Principles

Protection and Security

- Protection any mechanism for controlling access of processes or users to resources defined by the OS
- Security defense of the system against internal and external attacks

COP 4610 - Operating System Principles

43

43

Recap

- Key Points
 - What is DMA?
 - What is the memory hierarchy?
 - What is caching?
 - What is virtual memory?
 - What is a SAN?
 - What is the difference between kernel and user mode?

COP 4610 – Operating System Principles