
9/13/22

1

COP 4610
Operating System Principles

Scheduling

1

COP 4610 – Operating System Principles 2

Objectives

• To introduce CPU scheduling, which is the basis
for multi-programmed and multi-tasking systems

• To describe various CPU-scheduling algorithms

• To discuss evaluation criteria for selecting a CPU-
scheduling algorithm for a particular system

• To examine the scheduling algorithms of several
operating systems

2

9/13/22

2

COP 4610 – Operating System Principles 3

Scheduling: Overview

Whenever we need to decide which process to
run next, we invoke the scheduler:

● A process terminates

● A process blocks

● A timer interrupt (preemptive multitasking)

The decision-making process is called a
scheduling policy or discipline.

3

COP 4610 – Operating System Principles 4

Burstiness

• Computation and I/O tend to be bursty
– Read some data
– Compute a bunch
– Write some data
– Repeat

4

9/13/22

3

COP 4610 – Operating System Principles 5

“Keep CPU busy”

Process 1

Process 2

CPU
Process 1 Process 2

5

COP 4610 – Operating System Principles 6

Scheduling

Scheduler

Ready Queue

Jobs are ready for computation
“Need CPU”

Short term
scheduler

CPU

Running
process

When do I choose
the next one to run?

6

9/13/22

4

COP 4610 – Operating System Principles 7

Scheduling Choices

• Non-preemptive (voluntarily):
– Process yields
– Process goes from running to waiting state
– Process terminates

• Preemptive (forced, can happen any time):
– OS forces process from running to ready state

7

COP 4610 – Operating System Principles 8

Dispatcher

• Mechanism that gives control of the CPU to
selected process; includes:
– Context switch
• Save/restore stack, registers, …

– Switch back to user mode
– Resume PC for process

Dispatch Latency: Time it takes to stop one process
and swap to another

8

9/13/22

5

COP 4610 – Operating System Principles 9

Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible (“how busy is

the CPU”)

• Throughput – # of processes that complete their execution per time
unit (“how much work is getting done”)

• Turnaround time – amount of time to execute a particular process
(“how long does it take to execute a process”)

• Waiting time – amount of time a process has been waiting in the
READY QUEUE (RUNQUEUE)

• Response time – amount of time it takes from when a request was
submitted until the first response is produced

9

COP 4610 – Operating System Principles 10

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order
P1 , P2 , P3 and ready for execution at time 0

Waiting Time
P1 = 0; P2 = 24; P3 = 27

Average Waiting Time
(0 + 24 + 27)/3 = 17

Computation
Time

P1 P2 P3

0 24 27 30

10

9/13/22

6

COP 4610 – Operating System Principles 11

Different Order

• Suppose that the processes arrive in the order
P2 , P3 , P1 (ready for execution at time 0)

Waiting Time
P1 = 6; P2 = 0; P3 = 3

Average Waiting Time
(6 + 0 + 3)/3 = 3

Convoy Effect

P1P3P2

0 3 6 30

11

COP 4610 – Operating System Principles 12

FCFS (FIFO)

• Very simple (add processes to end of
runqueue, take processes from beginning of
queue)

• Note: processes returning from waitqueues
always go to the back of the runqueue!

• NON-PREEMPTIVE (time-sharing/interactive?)

12

9/13/22

7

COP 4610 – Operating System Principles 13

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its
next CPU burst
– Use these lengths to schedule the process with

the shortest time

• SJF is optimal – gives minimum average
waiting time for a given set of processes
– The difficulty is knowing the length of the next

CPU request

13

COP 4610 – Operating System Principles 14

Revisiting with SJF

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order
P1 , P2 , P3 (all in queue at time 0)

Waiting Time
P1 = 6; P2 = 0; P3 = 3

Average Waiting Time
(6 + 0 + 3)/3 = 3

Computation
Time

P1P3P2

0 3 6 30

14

9/13/22

8

COP 4610 – Operating System Principles 15

Shortest-Job First

Process Burst Time
P1 6
P2 8
P3 7
P4 3

P3P1P4

0 3 9 24

P2

16

Waiting Time
P1 = 3; P2 = 16; P3 = 9

Average Waiting Time
(3 + 16 + 9 + 0)/4 = 7

15

COP 4610 – Operating System Principles 16

Determining Length of Next CPU Burst
• Can only estimate the length – should be similar to the previous one

– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using exponential
averaging

• Commonly, α set to ½

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

££

=

=

+

aa
t 1n

th
n nt

() .1 1 nnn t taat -+==

Also called
EWMA

Exponential
Weighted
Moving
Average

16

9/13/22

9

COP 4610 – Operating System Principles 17

Exponential Averaging

• α = 0? α = 1?

τn+1 = α*tn + (1-α) α*tn-1 + (1-α)2*αtn-2
… + (1-α)j αtn-j + …
… + (1-α)n+1τ0

17

COP 4610 – Operating System Principles 18

Prediction of the Length of the Next CPU Burst

18

9/13/22

10

COP 4610 – Operating System Principles 19

Shortest Job First (SJF)

• Non-preemptive!
• Preemptive version called shortest-remaining-time-first
Process - Arrival / Burst Time
P1 0 / 8
P2 1 / 4
P3 2 / 9
P4 3 / 5

P4P2P1

0 10 26

P1

171 5

P3

19

COP 4610 – Operating System Principles 20

Priority Scheduling
• A priority number (integer) is associated with each process
• The CPU is allocated to the process with the highest priority

(smallest integer º highest priority)
– Preemptive
– Non-preemptive

• SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

• Fixed priorities: do not change over time
• Dynamic priorities: can change over time
• Problem: Starvation – low priority processes may never execute
• Solution: Aging – as time progresses increase the priority of the

process

20

9/13/22

11

COP 4610 – Operating System Principles 21

Example of Priority Scheduling

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Low number = high priority
• Dynamic versus static/fixed priority

21

COP 4610 – Operating System Principles 22

Round Robin (RR)

• Switch between processes at a time interval
– Time quantum, q
– 10-100 ms
– Preemptive

• What does it mean?
– N tasks?
– Maximum wait time

• Performance
– q large Þ FIFO
– q small Þ q must be large with respect to context

switch, otherwise overhead is too high

22

9/13/22

12

COP 4610 – Operating System Principles 23

Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response
• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 usec

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

23

COP 4610 – Operating System Principles 24

Time Quantum and Context Switch Time

24

9/13/22

13

COP 4610 – Operating System Principles 25

Multilevel Queue
• Ready queue is partitioned into separate queues, e.g.:

– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation!
– Time slice – each queue gets a certain amount of CPU time which it

can schedule amongst its processes; i.e., 80% to foreground in RR &
20% to background in FCFS

25

COP 4610 – Operating System Principles 26

Multilevel Queue Scheduling

26

9/13/22

14

COP 4610 – Operating System Principles 27

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will

enter when that process needs service

27

COP 4610 – Operating System Principles 28

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS

• When it gains CPU, job receives 8 milliseconds
• If it does not finish in 8 milliseconds, job is moved to queue Q1

– At Q1 job is again served FCFS and receives 16 additional
milliseconds
• If it still does not complete, it is preempted and moved to queue
Q2

28

9/13/22

15

COP 4610 – Operating System Principles 29

Thread Scheduling

• Distinction between user-level and kernel-level threads

• Kernel-level: threads scheduled, not processes
– system-contention scope (SCS) – competition among all

threads in system

• User-level: thread library schedules user-level threads
to run on “LWP” (“lightweight process”)
– called process-contention scope (PCS) since scheduling

competition is within the process
– typically done via priority set by programmer

29

COP 4610 – Operating System Principles 30

Pthread Scheduling

• API allows specifying either PCS or SCS during
thread creation
– PTHREAD_SCOPE_PROCESS schedules threads

using PCS scheduling
– PTHREAD_SCOPE_SYSTEM schedules threads

using SCS scheduling
• Can be limited by OS – Linux and Mac OS X

only allow PTHREAD_SCOPE_SYSTEM

30

9/13/22

16

COP 4610 – Operating System Principles 31

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[]) {

int i, scope;
pthread_t tid[NUM_THREADS];
pthread_attr_t attr;
/* get the default attributes */
pthread_attr_init(&attr);
/* first inquire on the current scope */
if (pthread_attr_getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope\n");
else {

if (scope == PTHREAD_SCOPE_PROCESS)
printf("PTHREAD_SCOPE_PROCESS");

else if (scope == PTHREAD_SCOPE_SYSTEM)
printf("PTHREAD_SCOPE_SYSTEM");

else
fprintf(stderr, "Illegal scope value.\n");

}

31

COP 4610 – Operating System Principles 32

Pthread Scheduling API
/* set the scheduling algorithm to PCS or SCS */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);
/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread_join(tid[i], NULL);
}
/* Each thread will begin control in this function */
void *runner(void *param)
{

/* do some work ... */
pthread_exit(0);

}

32

9/13/22

17

COP 4610 – Operating System Principles 33

Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are available
• Homogeneous processors within a multiprocessor
• Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing
• Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has its
own private queue of ready processes
– Currently, most common

• Processor affinity – process has affinity for processor on which it is
currently running
– soft affinity
– hard affinity
– “migration”: process changes processor

33

COP 4610 – Operating System Principles 34

Load Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• Load balancing attempts to keep workload evenly
distributed

• Push migration – periodic task checks load on each
processor, and if imbalanced found pushes task from
overloaded CPU to other CPUs

• Pull migration – idle processors pulls waiting task from
busy processor

34

9/13/22

18

COP 4610 – Operating System Principles 35

Multicore Processors

• Recent trend to place multiple processor cores on
same physical chip

• Faster and consumes less power

• Multiple threads per core also growing
– Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

35

COP 4610 – Operating System Principles 36

Multithreaded Multicore System

36

9/13/22

19

COP 4610 – Operating System Principles 37

Linux Scheduling Through Version 2.5
• Prior to kernel version 2.5, ran variation of standard UNIX

scheduling algorithm
• Version 2.5 moved to constant order O(1) scheduling time

– Preemptive, priority based
– Two priority ranges: time-sharing and real-time
– Real-time range from 0 to 99 and nice value from 100 to 140
– Map into global priority with numerically lower values indicating

higher priority
– Higher priority gets larger q
– Task run-able as long as time left in time slice (active)
– If no time left (expired), not run-able until all other tasks use their

slices
– All run-able tasks tracked in per-CPU runqueue data structure

• Two priority arrays (active, expired)
• Tasks indexed by priority
• When no more active, arrays are exchanged

– Worked well, but poor response times for interactive processes

37

COP 4610 – Operating System Principles 38

Linux Scheduling in Version 2.6.23 +

Completely Fair Scheduler (CFS)

• Scheduling classes
– Each has specific priority
– Scheduler picks highest priority task in highest scheduling class
– Rather than quantum based on fixed time allotments, based on proportion of CPU time
– 2 scheduling classes included, others can be added

1. default
2. real-time

• Quantum calculated based on nice value from -20 to +19
– Lower value is higher priority
– Calculates target latency – interval of time during which task should run at least once
– Target latency can increase if say number of active tasks increases

• CFS scheduler maintains per task virtual run time in variable vruntime
– Associated with decay factor based on priority of task – lower priority is higher decay rate
– Normal default priority yields virtual run time = actual run time

• To decide next task to run, scheduler picks task with lowest virtual run time

38

9/13/22

20

COP 4610 – Operating System Principles 39

39

