
10/6/23

1

COP 4610
Operating System Principles

Virtual Memory

1

COP 4610 – Operating System Principles 2

Memory Pages

• Why do we have pages?
• What are advantages & disadvantages of using

“page model”?

2

10/6/23

2

COP 4610 – Operating System Principles 3

Background

• Is all of your code used?
– Error code
– Unusual routines, certain options/features
– Large data structures, lists, arrays, ...

• Entire program code not
needed at same time!

What if we could only partially load what we need?

3

COP 4610 – Operating System Principles 4

Virtual Memory

Separation of user logical memory
from physical memory

• Can be implemented via demand paging &
demand segmentation

4

10/6/23

3

COP 4610 – Operating System Principles 5

Benefits

• Huge accessible space
– Map virtual to physical

• Can easily share things
• Efficient process creation
– Only load partial process

• More programs running
• Less I/O needed to load or swap processes
– Some parts of process will never be needed

5

COP 4610 – Operating System Principles 6

Virtual Memory >> Physical Memory

6

10/6/23

4

COP 4610 – Operating System Principles 7

Virtual Address Space

• Enables sparse address spaces
• System libraries shared via mapping into

virtual address space
• Shared memory by mapping pages read-write

into virtual address space
• Pages can be shared during fork(),

speeding process creation

7

COP 4610 – Operating System Principles 8

Shared Library Using Virtual Memory

Real memory is the
 same, point to the
 same thing

8

10/6/23

5

COP 4610 – Operating System Principles 9

Demand Paging

• Load page ONLY WHEN NEEDED:
– Less I/O needed
– Less memory needed
– Faster response
– More users

• Lazy swapper – never swaps a page into memory
unless page will be needed
– Swapper that deals with pages is a pager

9

COP 4610 – Operating System Principles 10

Demand Paging

10

10/6/23

6

COP 4610 – Operating System Principles 11

Valid-Invalid Bit

• With each page table entry, a
valid–invalid bit is associated
– v Þ in-memory (memory

resident)
– i Þ not-in-memory

• Initial valid–invalid bit
– Set to i on all entries

• During address translation, if
valid–invalid bit in page table
entry is i Þ page fault

11

COP 4610 – Operating System Principles 12

Page Table When Some Pages Are Not in Main Memory

Virtual
Memory

Memory
Map

Actual
Memory

Storage

12

10/6/23

7

COP 4610 – Operating System Principles 13

Page Fault
• If there is a reference to a page, first reference to

that page will trap to operating system (page
fault)

1. Operating system checks if it was an invalid

reference (if so, abort)
2. Get empty frame
3. Swap page into frame
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

13

COP 4610 – Operating System Principles 14

14

10/6/23

8

COP 4610 – Operating System Principles 15

Stages in Demand Paging
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

15

COP 4610 – Operating System Principles 16

Performance of Demand Paging

• Page Fault Rate 0 £ p £ 1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
 EAT = (1-p)*m + p*PFST
– m = memory access time
– PFST = Page Fault Service Time (swapping in/out,

restarting, etc.)

16

10/6/23

9

COP 4610 – Operating System Principles 17

Demand Paging Example
• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)
 = (1 – p) x 200 + p x 8,000,000
 = 200 + p x 7,999,800
• If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

17

COP 4610 – Operating System Principles 18

Process Creation: Copy-on-Write
• Copy-on-Write (COW) allows both parent and child processes to initially

share the same pages in memory
– If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages are
copied

• In general, free pages are allocated from a pool of zero-fill-on-demand
pages
– Why zero-out a page before allocating it?

• vfork() variation on fork()system call has parent suspend and child
using copy-on-write address space of parent
– Designed to have child call exec()
– Very efficient

18

10/6/23

10

COP 4610 – Operating System Principles 19

Before Process 1 Modifies Page C

19

COP 4610 – Operating System Principles 20

After Process 1 Modifies Page C

20

10/6/23

11

COP 4610 – Operating System Principles 21

What Happens if There is no Free Frame?

• Page replacement – find some page in
memory, but not really in use, page it out
– Algorithm – terminate? swap out? replace the

page?
– Performance – want an algorithm which will result

in minimum number of page faults

• Same page may be brought into memory
several times

21

COP 4610 – Operating System Principles 22

Page Replacement

22

10/6/23

12

COP 4610 – Operating System Principles 23

Page Replacement

• Prevent over-allocation of memory by
modifying page-fault service routine to
include page replacement

• Use modify (dirty) bit to reduce overhead of
page transfers – only modified pages are
written to disk

23

COP 4610 – Operating System Principles 24

Basic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use page replacement

algorithm to select the victim frame
• Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Continue the process by restarting the instruction that
caused the trap

24

10/6/23

13

COP 4610 – Operating System Principles 25

Page Replacement Dilemma

• Raw Performance
– If it is dirty, need to write it to disk (swap space)
– Need to write the whole page

• Future Page Faults
– The one swapped out could be needed soon again

25

COP 4610 – Operating System Principles 26

Page Faults vs Number of Frames

26

10/6/23

14

COP 4610 – Operating System Principles 27

Page and Frame Replacement Algorithms

• Frame-allocation algorithm determines
– How many frames to give each process
– Which frames to replace

• Page-replacement algorithm
– Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string
– String is just page numbers, not full addresses
– Repeated access to the same page does not cause a page fault

• In all our examples, the reference string is
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

27

COP 4610 – Operating System Principles 28

FIFO Page Replacement

3 pages available 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Do more available pages always improve performance?

Possible to make things worse – Belady’s Anomaly

28

10/6/23

15

COP 4610 – Operating System Principles 29

Belady’s Anomaly

• 1,2,3,4,1,2,5,1,2,3,4,5
• 3 frames (9 page faults) versus 4 frames (10

page faults)

n
u

m
b

e
r

o
f

p
a

g
e

 f
a

u
lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

29

COP 4610 – Operating System Principles 30

Optimal Algorithm (OPT)

• Replace page that will not be used for longest
period of time

• How do you know this?

• Used for measuring how well your algorithm
performs

30

10/6/23

16

COP 4610 – Operating System Principles 31

Optimal Page Replacement

FIFO

31

COP 4610 – Operating System Principles 32

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used
• But how to implement?

32

10/6/23

17

COP 4610 – Operating System Principles 33

LRU Algorithm

• Stack implementation
– Keep a stack of page numbers in a double link

form
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– But each update more expensive
– No search for replacement

• LRU and OPT are cases of stack algorithms
that don’t have Belady’s Anomaly

33

COP 4610 – Operating System Principles 34

Stack Approach

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

34

10/6/23

18

COP 4610 – Operating System Principles 35

LRU Approximation Algorithms
• Reference bit
– With each page associate a bit, initially = 0
– When page is referenced bit set to 1
– Replace any with reference bit = 0 (if one exists)

• We do not know the order, however
• Second-chance algorithm
– Generally FIFO, plus hardware-provided reference bit
– Clock replacement
– If page to be replaced has

• Reference bit = 0 -> replace it
• Reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

35

COP 4610 – Operating System Principles 36

LRU Approximation Algorithms

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

36

10/6/23

19

COP 4610 – Operating System Principles 37

Allocation of Frames
• Each process needs minimum number of frames
• Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
– instruction is 6 bytes, might span 2 pages
– 2 pages to handle from
– 2 pages to handle to

• Maximum of course is total frames in the system
• Two major allocation schemes
– fixed allocation
– priority allocation

• Many variations

37

COP 4610 – Operating System Principles 38

Fixed Allocation

• Equal allocation – For example, if there are
100 frames (after allocating frames for the OS)
and 5 processes, give each process 20 frames
– Keep some as free frame buffer pool

• Proportional allocation – Allocate according
to the size of process
– Dynamic as degree of multiprogramming, process

sizes change

38

10/6/23

20

COP 4610 – Operating System Principles 39

Fixed Allocation

m
S
spa

m
sS

ps

i
ii

i

ii

´==

=
å=

=

 for allocation

frames of number total

 process of size

m = 64
s1 =10
s2 =127

a1 =
10
137

´ 64 » 5

a2 =
127
137

´ 64 » 59

39

COP 4610 – Operating System Principles 40

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,
– select for replacement one of its frames
– select for replacement a frame from a process

with lower priority number

40

10/6/23

21

COP 4610 – Operating System Principles 41

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another
– But then process execution time can vary greatly
– But greater throughput, so more common

• Local replacement – each process selects from
only its own set of allocated frames
– More consistent per-process performance
– But possibly underutilized memory

41

COP 4610 – Operating System Principles 42

Thrashing
• If a process does not have “enough” pages, the page-

fault rate is very high
– Page fault to get page
– Replace existing frame
– But quickly need replaced frame back
– This leads to:

• Low CPU utilization
• Operating system thinking that it needs to increase the degree of

multiprogramming
• Another process added to the system

• Thrashing º a process is busy swapping pages in and
out

42

10/6/23

22

COP 4610 – Operating System Principles 43

Thrashing (Cont.)

43

COP 4610 – Operating System Principles 44

Demand Paging and Thrashing

• Why does demand paging work?
Locality model
– Process migrates from one locality to another
– Localities may overlap

• Why does thrashing occur?
S size of locality > total memory size
– Limit effects by using local or priority page

replacement

44

10/6/23

23

COP 4610 – Operating System Principles 45

Locality In A Memory-Reference Pattern

45

COP 4610 – Operating System Principles 46

Page-Fault Frequency

• If actual rate too low, process may lose frames
• If actual rate too high, process may gain frames

46

10/6/23

24

COP 4610 – Operating System Principles 47

Other Considerations -- Prepaging

• Prepaging
– To reduce the large number of page faults that occurs

at process startup
– Prepage all or some of the pages a process will need,

before they are referenced
– But if prepaged pages are unused, I/O and memory

was wasted
– Assume s pages are prepaged and α of the pages is

used
• Is cost of s * α saved page faults > or < than the cost of

prepaging s * (1- α) unnecessary pages?
• α near zero Þ prepaging loses

47

COP 4610 – Operating System Principles 48

Other Issues – Page Size
• Sometimes OS designers have a choice
– Especially if running on custom-built CPU

• Page size selection must take into consideration:
– Fragmentation
– Page table size
– I/O overhead
– Number of page faults
– Locality
– TLB size and effectiveness

• Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

48

10/6/23

25

COP 4610 – Operating System Principles 49

Other Issues – TLB Reach
• TLB Reach - The amount of memory accessible from the

TLB
• TLB Reach = (TLB Size) X (Page Size)
• Ideally, the working set of each process is stored in the TLB

– Otherwise there is a high degree of page faults

• Increase the Page Size
– This may lead to an increase in fragmentation as not all

applications require a large page size

• Provide Multiple Page Sizes
– This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

49

COP 4610 – Operating System Principles 50

Other Issues – Program Structure
• Program structure

– int[128,128] data;
– Each row is stored in one page
– Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

– Program 2
 for (i = 0; i < 128; i++)
 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

50

