
10/29/23

1

COP 4610
Operating System Principles

File System Interface

1

COP 4610 – Operating System Principles 2

File-System Structure

• File structure
– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks)
– User interface to storage, mapping logical to physical
– Efficient and convenient access to disk by allowing

data to be stored, located, retrieved easily
• https://en.wikipedia.org/wiki/List_of_file_system

s
• File system organized into layers

2

https://en.wikipedia.org/wiki/List_of_file_systems
https://en.wikipedia.org/wiki/List_of_file_systems

10/29/23

2

COP 4610 – Operating System Principles 3

Layered File System

3

COP 4610 – Operating System Principles 4

File System Layers

• Device drivers manage I/O devices at the I/O
control layer
– Given commands like “read drive 1, cylinder 72,

track 2, sector 10, into memory location 1060”
outputs low-level hardware specific commands to
hardware controller

4

10/29/23

3

COP 4610 – Operating System Principles 5

File System Layers

• Device Drivers

5

COP 4610 – Operating System Principles 6

File System Layers

• Basic file system given command like “retrieve
block 123” translates to device driver
• Also manages memory buffers and caches (allocation,

freeing, replacement)
– Buffers hold data in transit
– Caches hold frequently used data

6

10/29/23

4

COP 4610 – Operating System Principles 7

File System Layers

• File organization module understands files,
logical address, and physical blocks
• Translates logical block # to physical block #
• Manages free space, disk allocation
• Sits above the file system
• “Understands” both sides

7

COP 4610 – Operating System Principles 8

File System Layers (Cont.)

• Logical file system manages metadata
information
• Translates file name into file number, file

handle, location
• File control blocks (i-nodes)

• Directory management
• Protection

8

10/29/23

5

COP 4610 – Operating System Principles 9

File System Layers (Cont.)

• Many file systems, sometimes many within an
operating system
• Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as floppy,
CD, DVD Blu-ray, Linux has more than 40 types, with
extended file system such as ext2/ext3/ext4 leading; plus
distributed file systems, etc.)

• May newer ones designed for performance, data types,
applications, etc.: ZFS, GoogleFS, Oracle ASM, FUSE

9

COP 4610 – Operating System Principles 10

A Typical File Control Block

10

10/29/23

6

COP 4610 – Operating System Principles 11

In-Memory File System Structures

11

COP 4610 – Operating System Principles 12

Virtual File Systems
• Virtual File Systems (VFS) on Unix provide an object-

oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– Separates file-system generic operations from

implementation details
– Implementation can be one of many file systems types, or

network file system
• Implements vnodes which hold inodes or network file details

– Then dispatches operation to appropriate file system
implementation routines

• The API is to the VFS interface, rather than any specific
type of file system

12

10/29/23

7

COP 4610 – Operating System Principles 13

Schematic View of Virtual File System

13

COP 4610 – Operating System Principles 14

File Systems Overview
We need to use data structures to organize the data on
disk:

● Divide disk into fixed-sized blocks (usually 4KB)

● Use portion of disk to store metadata

● Use another portion to store allocation structures
● Use final portion to store filesystem information

Data Region

14

10/29/23

8

COP 4610 – Operating System Principles 15

File System Organization

S ib db Inodes Data

Superblock: Keeps track of file
system information such as
number of blocks and inodes

Inode Bitmap:
Keeps track of
status of inode
block

Data Bitmap:
Keeps track of
status of data
block

Inodes: Keeps meta-data about individual
files and directories

Data: Holds data corresponding to
files and directories

15

COP 4610 – Operating System Principles 16

Allocation Methods - Contiguous

• An allocation method refers to how disk blocks
are allocated for files:

• Contiguous allocation – each file occupies set of
contiguous blocks
– Best performance in most cases
– Simple – only starting location (block #) and length

(number of blocks) are required
– Problems include finding space for file, knowing file

size, external fragmentation, need for compaction off-
line (downtime) or on-line

16

10/29/23

9

COP 4610 – Operating System Principles 17

Contiguous Allocation

17

COP 4610 – Operating System Principles 18

Contiguous Allocation

• Mapping from logical to physical

LA/512

Q

R

18

10/29/23

10

COP 4610 – Operating System Principles 19

Extent-Based Systems

• Some file systems (i.e., Veritas File System) use a
modified contiguous allocation scheme

• Extent-based file systems allocate disk blocks in
extents

• An extent is a contiguous group of blocks
– Extents are allocated for file allocation
– A file consists of one or more extents

19

COP 4610 – Operating System Principles 20

Allocation Methods - Linked
• Linked allocation – each file a linked list of blocks

– File ends at nil pointer
– No external fragmentation
– Each block contains pointer to next block
– Free space management system called when new block needed
– Improve efficiency by clustering blocks
– Reliability can be a problem
– Locating a block can take many I/Os and disk seeks

• FAT (File Allocation Table) variation
– Beginning of volume has table, indexed by block number
– Much like a linked list, but faster on disk and cacheable
– New block allocation simple

20

10/29/23

11

COP 4610 – Operating System Principles 21

Linked Allocation

• Each file is a linked list of disk blocks: blocks
may be scattered anywhere on the disk

pointerblock =

21

COP 4610 – Operating System Principles 22

Linked Allocation

22

10/29/23

12

COP 4610 – Operating System Principles 23

Linked Allocation

• Mapping (Pointer size = 4 bytes)

Block to be accessed is the Qth block in the linked chain of blocks
representing the file.
Displacement into block = R + 4 (if pointer at beginning of block)

LA/508
Q

R

23

COP 4610 – Operating System Principles 24

File-Allocation Table

24

10/29/23

13

COP 4610 – Operating System Principles 25

Allocation Methods - Indexed

• Indexed allocation
– Each file has its own index block(s) of pointers to

its data blocks

• Logical view

index table

25

COP 4610 – Operating System Principles 26

Example of Indexed Allocation

26

10/29/23

14

COP 4610 – Operating System Principles 27

Indexed Allocation (Cont.)

• Need index table
• Access: index block + data block
• Reliability?
• No external fragmentation
• “Waste” of space? (at least 1 block per file)
• Maximum file size?
– block size of 512 bytes
– each pointer = 1 byte
– size = 256KB
– larger files: linked list or hierarchical index tables

27

COP 4610 – Operating System Principles 28

Indexed Allocation (Hierarchical)

• Two-level index (4K blocks could store 1,024
four-byte pointers in outer index -> 1,048,567
data blocks and file size of up to 4GB)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

28

10/29/23

15

COP 4610 – Operating System Principles 29

Combined Scheme: UNIX UFS
(4K bytes per block, 32-bit addresses)

29

COP 4610 – Operating System Principles 30

Free-Space Management

• File system maintains free-space list to track
available blocks/clusters
– (Using term “block” for simplicity)

• Bit vector or bit map (n blocks)

…
0 1 2 n-1

bit[i] =



 1 Þ block[i] free

0 Þ block[i] occupied

Block number calculation
(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to
return offset within
word of first “1” bit

30

10/29/23

16

COP 4610 – Operating System Principles 31

Free-Space Management (Cont.)
• Bit map requires extra space
– Example:

 block size = 4KB = 212 bytes
 disk size = 240 bytes (1 terabyte)
 n = 240/212 = 228 bits (or 256 MB)
 if clusters of 4 blocks -> 64MB of memory
• Easy to get contiguous files

• Linked list (free list)
– Cannot get contiguous space easily
– No waste of space
– No need to traverse the entire list (if # free blocks

recorded)

31

COP 4610 – Operating System Principles 32

Linked Free Space List on Disk

• Linked list (free list)
• Cannot get contiguous

space easily
• No waste of space
• No need to traverse the

entire list (if # free blocks
recorded)

32

10/29/23

17

COP 4610 – Operating System Principles 33

Free-Space Management (Cont.)

• Grouping
– Modify linked list to store address of next n-1 free

blocks in first free block, plus a pointer to next block
that contains free-block-pointers (like this one)

• Counting
– Because space is frequently contiguously used and

freed, with contiguous-allocation allocation, extents,
or clustering
• Keep address of first free block and count of following free

blocks
• Free space list then has entries containing addresses and

counts

33

COP 4610 – Operating System Principles 34

Example Part 1

• Consider a multi-indexed file system with a 32-
bit block address, 4KB block size, and an inode
structure with 4 direct pointers and one indirect
pointer:
– What is the largest disk this file system can use?

Largest Disk = # of Blocks * Block Size
= 232 * 4KB
= 232 * 212
= 244
= 16TB

34

10/29/23

18

COP 4610 – Operating System Principles 35

Example Part 2

• What is the largest file that this file system could store?
largest file = direct blocks + indirect blocks
direct = # of Direct Blocks * Block Size

= 4 * 4KB
= 22 * 212
= 214
= 16KB

indirect = # of Indirect Blocks * # of Addresses per
Block * Block Size

= 1 * 4KB / 4bytes * 4KB
= 1 * 212 / 22 * 212
= 222
= 4MB

largest file = 4MB + 16KB

Inode

Direct 0

Direct 1

Direct 2

Direct 3

Indirect

Data

Data

Data

Data

Direct Data

35

COP 4610 – Operating System Principles 36

Example Part 3
• Assuming a disk of 128GB, how big is the free block bitmap?

We need an entry (bit) in our free block bitmap for each block

Free Block Bitmap Size = Disk Size / Block Size / 8
Bits
 = 128GB / 4KB / 8
 = 237 / 212 / 23
 = 222
 = 4MB

Free Block Bitmap Size = 237 bytes x block/212
bytes x 1 byte/23 blocks

36

