10/29/23

COP 4610
Operating System Principles

File System Interface

File-System Structure

* File structure
— Logical storage unit
— Collection of related information

* File system resides on secondary storage (disks)
— User interface to storage, mapping logical to physical
— Efficient and convenient access to disk by allowing

data to be stored, located, retrieved easily

* https://en.wikipedia.org/wiki/List of file system

S

* File system organized into layers

COP 4610 — Operating System Principles 2

https://en.wikipedia.org/wiki/List_of_file_systems
https://en.wikipedia.org/wiki/List_of_file_systems

Layered File System

application programs

logical file system

J

file-organization module

J

basic file system

J

1/0O control

l

devices

COP 4610 - Operating System Principles 3

File System Layers

* Device drivers manage I/0 devices at the I/O
control layer

— Given commands like “read drive 1, cylinder 72,
track 2, sector 10, into memory location 1060”
outputs low-level hardware specific commands to

hardware controller
Application
User Driver User-mode
Kernel-mode
Device Driver

COP 4610 — Operating System Principles 4

10/29/23

File System Layers

* Device Drivers

Application |» -----------------------
A 4
Operating System } rrrrrrrrrrrrrrrrrrrrrrr
‘ Diiverfies:
v IC:\Windows \system32\DRIVERS\NETwsw00.sys
E51C:\Windows \system32\civers\vwdibus sys
Driver ~ S— »| EAIC:\Windows\system32\Netwew00.dil
[5)C:\Windows\system32\Netwrw00.di Drivers for Wifi
Hardware

h WiFi Hardware
Device oo >

COP 4610 - Operating System Principles 5

File System Layers

« Basic file system given command like “retrieve
block 123” translates to device driver

» Also manages memory buffers and caches (allocation,
freeing, replacement)

— Buffers hold data in transit hard disk

block
— Caches hold frequently used data
A] 4
~___sector_
\»\,,\x sector_
mapping from sectors to blocks
COP 4610 — Operating System Principles 6

10/29/23

File System Layers

« File organization module understands files,
logical address, and physical blocks

» Translates logical block # to physical block #
Manages free space, disk allocation

+ Sits above the file system

* “Understands” both sides

COP 4610 - Operating System Principles 7

File System Layers (Cont.)

 Logical file system manages metadata
information

« Translates file name into file number, file
handle, location

* File control blocks (i-nodes)
 Directory management
» Protection

COP 4610 — Operating System Principles 8

10/29/23

File System Layers (Cont.)

* Many file systems, sometimes many within an
operating system
» Each with its own format (CD-ROM is ISO 9660; Unix has
UFS, FFS; Windows has FAT, FAT32, NTFS as well as floppy,
CD, DVD Blu-ray, Linux has more than 40 types, with

extended file system such as ext2/ext3/ext4 leading; plus
distributed file systems, etc.)

* May newer ones designed for performance, data types,
applications, etc.: ZFS, GoogleFS, Oracle ASM, FUSE

COP 4610 — Operating System Principles

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

COP 4610 — Operating System Principles

10

10

10/29/23

10/29/23

In-Memory File System Structures

10
L[]

directory structure

>

open (file name)

directory structure fi

e-control block

user space kernel memory secondary storage
(a)
N]
1 L
F data blocks
read (index) \\l:]
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage
(b) 11

11

Virtual File Systems

* Virtual File Systems (VFS) on Unix provide an object-
oriented way of implementing file systems

* VFS allows the same system call interface (the API) to
be used for different types of file systems

— Separates file-system generic operations from
implementation details

— Implementation can be one of many file systems types, or
network file system
* Implements vnodes which hold inodes or network file details
— Then dispatches operation to appropriate file system
implementation routines
* The APl is to the VFS interface, rather than any specific
type of file system

COP 4610 — Operating System Principles 12

12

10/29/23

Schematic View of Virtual File System

file-system interface

VFS interface

local file system local file system remote file system
type 1 type 2 type 1

A
network

COP 4610 - Operating System Principles 13

13

File Systems Overview

We need to use data structures to organize the data on
disk:

Data Region

Divide disk into fixed-sized blocks (usually 4KB)

Use portion of disk to store

Use another portion to store allocation structures

Use final portion to store filesystem information

COP 4610 — Operating System Principles 14

14

File System Organization

Superblock: Keeps track of file Inodes: Keeps meta-data about individual

system information such as files and directories

number of blocks and inodes

S ib db Inodes Data
[‘ ‘ | ‘
Inode Bitmap: Data Bitmap: Data: Holds data corresponding to
Keeps track of Keeps track of files and directories
status of inode status of data
block block
COP 4610 - Operating System Principles 15
15
Allocation Methods - Contiguous
* An allocation method refers to how disk blocks
are allocated for files:
* Contiguous allocation — each file occupies set of
contiguous blocks
— Best performance in most cases
— Simple — only starting location (block #) and length
(number of blocks) are required
— Problems include finding space for file, knowing file
size, external fragmentation, need for compaction off-
line (downtime) or on-line
COP 4610 — Operating System Principles 16
16

10/29/23

Contiguous Allocation

< directory
ﬁm_‘/ fle start length
o] 1] 21 3] count 0 2
t tr 14 3
401 sl el 701 mail 19 6
8] o[10111 list 28 4
tr f 6 2
12[]13[14[J15[]
16]17[J18[J19[]
mail
20[J21[J22[]23[]
24[]25[126[127[]
list
28[129[130[131[]
COP 4610 — Operating System Principles 17

17

Contiguous Allocation

» Mapping from logical to physical

Q

LA/512

AN
R

COP 4610 — Operating System Principles 18

18

10/29/23

Extent-Based Systems

* Some file systems (i.e., Veritas File System) use a
modified contiguous allocation scheme

* Extent-based file systems allocate disk blocks in
extents

* An extent is a contiguous group of blocks
— Extents are allocated for file allocation
— A file consists of one or more extents

COP 4610 - Operating System Principles 19
19
Allocation Methods - Linked
* Linked allocation — each file a linked list of blocks
— File ends at nil pointer
— No external fragmentation
— Each block contains pointer to next block
— Free space management system called when new block needed
— Improve efficiency by clustering blocks
— Reliability can be a problem
— Locating a block can take many 1/Os and disk seeks
* FAT (File Allocation Table) variation
— Beginning of volume has table, indexed by block number
— Much like a linked list, but faster on disk and cacheable
— New block allocation simple
COP 4610 — Operating System Principles 20
20

10/29/23

10

Linked Allocation

* Each file is a linked list of disk blocks: blocks
may be scattered anywhere on the disk

block = pointer

COP 4610 — Operating System Principles

21

21

Linked Allocation

i directory
e file start end

jeep 9 25

8] phel10p311[]
12 f13[J14f 115
18217 J18[J19]
20D21§2D23D
24[]25[F126[127]
28[]29[130 131[]

—

22

22

10/29/23

11

Linked Allocation

* Mapping (Pointer size = 4 bytes)

e
R

LA/508

Block to be accessed is the Qth block in the linked chain of blocks
representing the file.
Displacement into block = R + 4 (if pointer at beginning of block)

COP 4610 - Operating System Principles 23
23
s directory entry —
[test [eee [217
name start block 0
217 618
339 <
618 339
no. of disk blocks -1
FAT
COP 4610 — Operating System Principles 24
24

10/29/23

12

Allocation Methods - Indexed

* Indexed allocation

— Each file has its own index block(s) of pointers to
its data blocks

* Logical view — U

%D

index table

COP 4610 — Operating System Principles

25

25

Example of Indexed Allocation

< directory
| — file index block

o] 1 207 3] == 19

20 J21[122[A23[]
24 Jos5[26 J27[]

28[29[130[]31[]
v

26

26

10/29/23

13

10/29/23

Indexed Allocation (Cont.)

* Need index table

* Access: index block + data block
* Reliability?
* No external fragmentation
» “Waste” of space? (at least 1 block per file)
* Maximum file size?
— block size of 512 bytes
— each pointer = 1 byte
— size = 256KB
— larger files: linked list or hierarchical index tables

COP 4610 - Operating System Principles 27

27

Indexed Allocation (Hierarchical)

* Two-level index (4K blocks could store 1,024
four-byte pointers in outer index -> 1,048,567
data blocks and file size of up to 4GB)

Q@ = displacement into outer-index

R is used as follows:

Qi

/

LA/ (512 x 512)
\ R1

Q. = displacement into block of index table

R displacement into block of file: - Q2

Ry /512<_
R

COP 4610 — Operating System Principles 28

28

14

Combined Scheme: UNIX UFS
(4K bytes per block, 32-bit addresses)

mode
owners (2)
timestamps (3)
.
size block count
direct blocks 7 :
:
— 5 dat =

single indirect ——-E Ldata] =

double indirect = ’|_: L=—»{ data]

triple indirect |L > @

[=+—>{ data | 29
29
Free-Space Management
* File system maintains free-space list to track
available blocks/clusters
— (Using term “block” for simplicity)
* Bit vector or bit map (n blocks)
01 2 1 Block number calculation
(number of bits per word) *
’ ‘ ‘ ‘ ‘ ‘ l l ‘ (number of 0-value words) +
offset of first 1 bit
bit[i] = 1 = block(i] free CPUs have instructions to
0 = block[i] occupied return offset within
word of first “1” bit
COP 4610 — Operating System Principles 30
30

10/29/23

15

10/29/23

Free-Space Management (Cont.)

* Bit map requires extra space
— Example:
block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 256 MB)
if clusters of 4 blocks -> 64MB of memory

* Easy to get contiguous files

* Linked list (free list)
— Cannot get contiguous space easily
— No waste of space

— No need to traverse the entire list (if # free blocks
recorded)

COP 4610 - Operating System Principles 31

31

Linked Free Space List on Disk

free-space list head —

+ Linked list (free list)

- Cannot get contiguous
space easily

- No waste of space

- No need to traverse the
entire list (if # free blocks
recorded)

20[J21[]22) 128[]

28[29[Jao[J31[]
_z/lg System Principles 32

32

16

Free-Space Management (Cont.)

* Grouping
— Modify linked list to store address of next n-1 free
blocks in first free block, plus a pointer to next block
that contains free-block-pointers (like this one)

* Counting
— Because space is frequently contiguously used and
freed, with contiguous-allocation allocation, extents,
or clustering

* Keep address of first free block and count of following free
blocks

* Free space list then has entries containing addresses and
counts

COP 4610 - Operating System Principles 33

33
Example Part 1
* Consider a multi-indexed file system witha 32-
bit block address, 4KB block size, and an inode
structure with 4 direct pointers and one indirect
pointer:
— What is the largest disk this file system can use?
Largest Disk =
= 232 * 4KB
= 232 % Jl2
- 244
= 16TB
34

10/29/23

17

Example Part 2

* What is the largest file that this file system could store?
largest file = direct blocks + indirect blocks
direct = # of Direct Blocks * Block Size
4 * 4KB
22 * 212
214
= 16KB
indirect = # of Indirect Blocks * # of Addresses per
Block * Block Size

largest file = 4MB + 16KB Data

Inode Data
=1 * 4KB / 4bytes * 4KB
e | pata |

Indirect
35

COP 4610 — Operating System Principles

35

Example Part 3

* Assuming a disk of 128GB, how big is the free block bitmap?
We need an entry (bit) in our free block bitmap for each block

Free Block Bitmap Size = Disk Size / Block Size / 8
Bits

128GB / 4KB / 8

237 / 212 / 23

222

4MB

Free Block Bitmap Size = 237 bytes x block/2%2
bytes x 1 byte/23 blocks

COP 4610 — Operating System Principles 36

36

10/29/23

18

