
11/16/23

1

COP 4610
Operating System Principles

Embedded (Real-Time) Systems

1

COP 4610 – Operating System Principles 2

Implementation Types

General purpose processors

Application specific instruction set processors
(ASIPs)

Application specific integrated circuits (ASICs)

Microcontroller
Network processor

 DSP (digital signal processor)

Programmable hardware

FPGA (field programmable gate array)

Performance Flexibility

2

11/16/23

2

COP 4610 – Operating System Principles 3

Implementation Types

3

COP 4610 – Operating System Principles 4

Processor Spectrum
• General purpose microprocessor

Workstations, PCs, high-performance applications, …

• Microcontroller (MCU)
Embedded systems, control systems, …

• Digital signal processors
Signal processing applications, …

• Special purpose (co-)processor
Security or image processing applications, ...

• FPGA/ASIC-based processors
Very dedicated scenarios (engine control, cell phones, cryptocurrency mining, …)

4

11/16/23

3

COP 4610 – Operating System Principles 5

Cross Compilation

5

COP 4610 – Operating System Principles 6

Example

6

11/16/23

4

COP 4610 – Operating System Principles 7

Generic Real-Time Control System

A/D

Technical
ProcessSensor Actuator

A/D
D/AControl-Law

Computation

Input

7

COP 4610 – Operating System Principles 8

Real-Time Systems

• A real-time system (RTS) is a system that must satisfy
explicit (bounded) response-time constraints or risk
severe consequences, including failure.
– Soft RTS: Miss deadline(s)-> performance degraded
– Hard RTS: Miss deadline(s)-> system failure
– Firm RTS: Miss deadline(s)-> some tolerance

Who decides deadlines?

8

11/16/23

5

COP 4610 – Operating System Principles 9

Real-Time Systems
System Real-Time

Classification
Explanation

Avionics weapons
delivery system in
which pressing a
button launches an air-
to-air missile

Hard Missing the deadline to launch the
missile within a specified time after
pressing the button may cause the
target to be missed, which will result
in a catastrophe

Navigation controller
for an autonomous
weed-killer robot

Firm Missing a few navigation deadlines
causes the robot to veer out from a
planned path and damage some
crops

Console hockey game Soft Missing even several deadlines will
only degrade performance

9

COP 4610 – Operating System Principles 10

Schedule
• Given a set of tasks J = {J1, J2,...} :
– A schedule is an assignment of tasks to the processor, such

that each task is executed until completion.
– A schedule can be defined as an integer step function σ : R

→ {0,1,2,..,n} where σ(t) is the task executed at time t; if
σ(t) = 0 then the processor is called idle.

– If σ(t) changes its value at some time, then the processor
performs a context switch.

– Each interval, where σ (t) is constant, is called a time slice.
– A preemptive schedule is a schedule where the running

task can be arbitrarily suspended at any time, to assign the
CPU to another task according to a predefined scheduling
policy.

10

11/16/23

6

COP 4610 – Operating System Principles 11

Schedule & Timing
• A schedule is said to be feasible, if all tasks can be

completed according to a set of specified constraints.
• A set of tasks is said to be schedulable with algorithm A, if A

can produce a feasible schedule.
• Arrival time ai or request or release time ri is the time at

which a task becomes ready for execution.
• Computation time Ci is the time necessary to the processor

for executing the task without interruption.
• Deadline di is the time by which a task should be

completed.
• Start time si is the time by which a task starts its execution.
• Finishing time fi is the time by which a task finishes its

execution.

11

COP 4610 – Operating System Principles 12

Schedule & Timing

• Using the above definitions, we have di ≥ ai +Ci

• Lateness Li = fi − di represents the delay of a task
completion with respect to its deadline; note that if a task
completes before the deadline, its lateness is negative.

• Tardiness or exceeding time Ei = max(0, Li) is the time a
task stays active after its deadline.

• Laxity or slack time Xi = di − ai −Ci is the maximum time a
task can be delayed after its activation to still complete by
its deadline.

Ci

ai fi disi

12

11/16/23

7

COP 4610 – Operating System Principles 13

Schedule & Timing

• Periodic task τi: infinite sequence of identical activities, called
instances or jobs, that are regularly activated at a constant
rate with period Ti. The activation time of the first instance is
called phase Φi.

Di

ai1 di1

Di

ai2 di2

Di

Ci Ci

Ci

Ti
Φi Φi + (k-1)Ti

Ji

τi

kth

instance
first
instance periodic

task

aperiodic
task

13

COP 4610 – Operating System Principles 14

Example

• Computation times: C1 = 9, C2 = 12
• Start times: s1 = 0, s2 = 6
• Finishing times: f1 = 18, f2 = 28
• Lateness: L1 = -4, L2 = 1
• Tardiness: E1 = 0, E2 = 1
• Laxity: X1 = 13, X2 = 11

Job J1 Job J2

14

11/16/23

8

COP 4610 – Operating System Principles 15

Worst-Case Execution Time (WCET)
• Analyze and instrument the task
• Analyze the compiler
• Analyze the operating system
• Analyze the hardware

• Analytical Approach: all sub-problems are solved
analytically.

• Pragmatic Approach: investigate and instrument the
source program to generate test cases that are biased
towards the maximum execution time. Execute the test
cases on the target system.

15

COP 4610 – Operating System Principles 16

Priority-Based Scheduling

• Many real-time processes are periodic, i.e., they require CPU
at constant intervals
– Has processing time t, deadline d, period p
– 0 ≤ t ≤ d ≤ p
– Rate of periodic task is 1/p

16

11/16/23

9

COP 4610 – Operating System Principles 17

Rate Montonic Scheduling

• Priority = the inverse of its period

• Shorter periods = higher priority
• P1: period of 50 (c=20); P2: period of 100 (c=35)
• P1 is assigned a higher priority than P2

17

COP 4610 – Operating System Principles 18

Missed Deadlines with
Rate Monotonic Scheduling

(p, c), p=d
P1(50, 25)
P2(80, 35)

18

11/16/23

10

COP 4610 – Operating System Principles 19

Earliest Deadline First Scheduling (EDF)

• Priorities are assigned according to deadlines:
– the earlier the deadline, the higher the priority
– the later the deadline, the lower the priority

19

COP 4610 – Operating System Principles 20

Preemption

Assume all tasks are released at time 0.

20

11/16/23

11

COP 4610 – Operating System Principles 21

Utilization
• Execution time of a task - time it takes for a task to run to

completion
• Period of a task - how often a task is being called to

execute; can generally assume tasks are periodic although
this may not be the case in real-world systems

• CPU utilization - the percentage of time that the processor
is being used to execute a specific scheduled task

– where ei is the execution time of task i, and Pi is its period
• Total CPU utilization - the summation of the utilization of

all tasks to be scheduled

21

COP 4610 – Operating System Principles 22

Utilization: EDF

• EDF: shorter absolute deadline → Higher
priority

• Utilization bound Ub = 1
• Ub is necessary and sufficient

Process P1: service time = 25, period = 50, deadline = 50

Process P2: service time = 35, period = 80, deadline = 80

22

11/16/23

12

COP 4610 – Operating System Principles 23

Utilization: RMS

Process P1: service time = 25, period = 50, deadline = 50
Process P2: service time = 35, period = 80, deadline = 80

RMS is guaranteed
to work if

N = number of processes
sufficient condition

failure

0,70529820
0,71773410
0,7434915
0,7568284
0,7797633
0,8284272

N ()12 -NN

u = ti
pii=1

N

∑ ≤ N 2N −1() ;

lim
N→∞

N 2N −1() = ln 2 ≈ 0.693147

23

COP 4610 – Operating System Principles 24

EDF vs RMS

• RMS
– RMS may not guarantee schedulability even when U < 1
– Low overhead: priorities do not change for a fixed task set

• EDF
– EDF guarantees schedulability as long as U <= 1
– High overhead: task priorities may change dynamically

24

11/16/23

13

COP 4610 – Operating System Principles 25

Priority Inversion Problem

• w(A): lock semaphore (wait); s(A): unlock semaphore (signal)
• Mars Pathfinder mission

t0 10 20
τ3

t
τ2

t
τ1

: resource A

w(A) s(A)

s(A)w(A)

τ2 blocks τ1!

25

COP 4610 – Operating System Principles 26

Basic Priority Inheritance
• Works for fixed-priority scheduling (e.g., RM)
• While τi blocks higher priority task τj, τi inherits the priority of τj.
• Inheritance is transitive

t0 10 20
τ3

t
τ2

t
τ1

: resource A

w(A) s(A)

s(A)w(A)

τ3 inherits
 τ1 priority

26

11/16/23

14

COP 4610 – Operating System Principles 27

Basic Priority Inheritance

t0 10 20
τ3

t
τ2

t
τ1

: resource A

w(A) s(A)

s(A)w(A)

τ2 suffers indirect blocking here
– blocked by τ3 because of a
resource shared with τ1

27

COP 4610 – Operating System Principles 28

Nested Resources

t0 20
τ4

t

τ2

t
τ3

w
(A

)

τ1

w
(B

)

s(
B)

s(
A)

τ 1
 p

rio
τ 1

 p
rio

τ 3
 p

rio

τ 4
 p

rio
w

(A
)

s(
A)

s(
B)

w
(B

)

Note τ4 gets
 τ1 priority through transitive inheritance!

28

11/16/23

15

COP 4610 – Operating System Principles 29

Commercial RTOS

• Real-Time Operating Systems (RTOS)
• Different from traditional OS: more predictability
• Used in the following areas such as:
– Embedded Systems or Industrial Control

Systems
– Parallel and Distributed Systems

• E.g., LynxOS, VxWorks, pSoS, QNX , bluecat
• Traditionally these systems can be classified into

a Uniprocessor, Multiprocessor, or Distributed
Real-Time OS

29

COP 4610 – Operating System Principles 30

Lynx OS

• Microkernel design
– Means the kernel footprint is small
– Only 28 KB in size

• The small kernel provides essential services in
scheduling, interrupt dispatching, and synchronization

• The other services are provided by kernel lightweight
service modules, called Kernel Plug-Ins (KPIs)

• New KPIs can be added to the microkernel and can be
configured to support I/O, file systems, TCP/IP, streams
and sockets

• Can function as a multipurpose UNIX OS

30

11/16/23

16

COP 4610 – Operating System Principles 31

Lynx OS

• Here KPIs are multi-threaded, which means each KPI can
create as many threads as it want

• There is no context switch when sending a message to a
KPI
– For example, when a RFS (Request for Service) message is sent

to a File System KPI, this does not request a context switch
– Hence run-time overhead is minimum
– Further, inter KPI communication incurs minimal overhead with

it consuming only very few instructions
• Lynx OS is a self hosted system – wherein development

can be done in the same system

31

COP 4610 – Operating System Principles 32

VxWorks

• Created by Wind River.
• Current Version: VxWorks 7
• VxWorks is the most established and most widely

deployed device software operating system
• Currently there are more than 300 million devices

that are VxWorks enabled
• The core attributes of VxWorks, include high

performance, reliability, determinism, low latency
and scalability

32

11/16/23

17

COP 4610 – Operating System Principles 33

VxWorks
• Enhanced error management
• Backward compatibility to previous version features
• Extensive POSIX 1003.1, .1b, .1c compatibility (including

Pthreads)
• Scheduling: preemptive priority with round robin (supports

both real-time and non-real-time tasks)
• Multi-processor support
• Shell for user interface
• Extensive debugging and performance monitoring capabilities
• Mars Exploration Rovers Spirit and Opportunity and the Mars

Reconnaissance Orbiter use the VxWorks operating system

33

COP 4610 – Operating System Principles 34

RTLinux

• Available as a patch to the regular Linux kernel
• Provides a real-time API for developers
• RTLinux is a hybrid OS that runs a Linux kernel as an idle

thread (lowest priority) of the real-time kernel
• Predictable delays (small size, limited operations)
• Finer timer resolution.
• RT kernel and RT applications are kept as simple as

possible and non-time critical applications (GUIs, file
systems) are handled by the standard Linux

34

11/16/23

18

COP 4610 – Operating System Principles 35

RTLinux
• Real time threads and interrupt handlers never delayed by

non-real-time operations
• Preemptible kernel
– Its routines are very small and fast; limit delays
– Interrupts from Linux are disabled

§ RT-Linux has many kinds of schedulers
– FIFO

• Used to pass information between real-time process and ordinary
Linux process

• Designed to never block the real-time task
– EDF
– RMS

35

COP 4610 – Operating System Principles 36

RTLinux

36

11/16/23

19

COP 4610 – Operating System Principles 37

RTLinux Kernel

37

