COP 4610
Operating System Principles

Lecture 4 — Processes

Recap — Last Lecture

* Operating System Services

System Calls and Interrupts

System Programs

Operating System Design and Implementation

System Layering

Virtual Machines

COP 4610 - Operating System Principles 2

8/27/23

Overview

* Process Concepts

* Process Scheduling

* Operations on Processes

* Inter-process Communication

Process Concept

» Job/Process/Task used interchangeably

* A process is an instance of a program
(“program in execution”)

* Program: “piece of code”

* Process: code + data + more data + control
structures + ...

8/27/23

Process Memory Layout

max
 Stack: Temporary Data stack
* Function parameters, local
variables, function call l
frames.
* Heap: Dynamically allocated 4
memory. -
* Data: Global variables &
constant strings. data
* Text: Program code.
text
0

Process “Life Cycle”

TERMINATED

admitted exit

Interrupt

RUNNING

1/0 or event wait
I/0 or event completion /

WAITING

8/27/23

8/27/23

Process State

* A process changes state constantly:
— New: being created.
— Running: running on a processor core.
— Waiting: waiting for an event.
— Ready: (or runnable) waiting for a core.
— Terminated: finished/dead.

OS Information about Processes

* Memory (Stack, Heap, Code, Static Data)
Current State (e.g., program counter)
Process ID

Saved Registers

Open Files
e Other bookkeeping data

This is called the process control block (PCB) or
task control block (TCB).

Process Control Block

process state

process number

program counter

registers

memory limits

list of open files

void *

ytomic_t usag
unsigned int flags
unsigned int ptrace

#ifdef CON MF
struct 1list_node wake_ent
int on_cpu

endif
int on_rq;

int pri
unsigned int
const str
struct s
struct s

#ifdef CON

struct hlics
#endif

10

8/27/23

struct t
struct

struct
struct

struct

cu *real

cu *parent

11

struct thread_st

struct fs_struct

struct file
struct

struct s
struct

struct s
unsigned long s

size_t
int

unsigned in

tenalt

{domp_t

idit

context;

12

8/27/23

Process Switching (“Context Switch”)

process P, operating system process P,
interrupt or system call
executing J-L
T | save state into PCB, |
idle
|reload state from PCB;|
ridle interrupt or system call executing
Vv
| save state into PCB; |
idle
J |re|oad state from PCBol
executing l[\—l

13

Process “Wait” Queues

* Job Queue is all processes on the system.

* Ready Queue (Run Queue) contains processes
waiting to run, or waiting for the CPU!

* Device Queue processes waiting for a device
event (“blocked” devices).

* “Other” Queues contain processes waiting for
other processes to finish, sleeping for time,

etc.

14

14

Process “Wait” Queues

queue header PCB, PCB,

ready head —

queue tail N registers registers

unit 0 tail =

mag head —+——=

ant 1 el +— PO ot At

disk head ’/
unit O tail 4
PCB;
terminal head —=
unit 0 tail 11—
15
Schedulers
* Long-term scheduler which processes should
be run in the future?
— Degree of multiprogramming!
* Short-term scheduler which process should
be run next?
— Manages queues and quickly decides next process
to run.
16

8/27/23

Scheduling Concerns

* Is enough RAM available to satisfy running
processes?

* |Is device throughput able to support more IO-
bound processes?

* |Is there enough CPU time available to satisfy
all processes? (long) How do | schedule fairly?
(short)

* Are there benefits for sleeping (swapping) a
process for an extended time? (long)

17

17

Schedulers

* Short-term: invoked frequently (milliseconds);
must be fast
* Long-term: infrequently (seconds)

* 1/0-bound process: spends more time doing
I/O than processing (CPU bursts can be
frequent, but are short)

e CPU-bound: spends more time doing
computations (very long CPU bursts)

18

18

8/27/23

“Medium” Scheduling

swap in partially executed swap out
swapped-out processes

ready queue end
1/0O waiting
queues

Yy

19

19

Process Creation

* A process is always created via a parent,
except for process 1, /sbin/init.

* A parent can have multiple children. Entire
structure is a tree.

* Each process has a unique identifier, the
process identifier, or pid (get the pid of a
process using the getpid() system call).

20

20

8/27/23

10

pstree display
SYNOPSIS
light-all|-Hpid|
-1|--1long] [-n|
pstree -V|

DESCRIPTION

pstree show
her pid

all pr

are

pstree visuall

square brac

Child threads
Manual page pstree(1)

User Commands

3t

pstree [-a|--arguments] [-c|--compact] [-h|--high

highli pid pid] [-g]--show-pgids
--numeric-sort] [-p|--show-pids

-s|--show-parents] [-u| id-changes] [-Z|--security-context
-A|--ascii|-G|--vt100|-U nicode] [pid|us

merg ntical branct
efixing

cess are found under the

press h for help or g to

quit)

3 | O
line 1

21

NetworkManager

abrt-dump-o
abrtd
acpid

atd

uditd

22

8/27/23

11

neverwinter ~$ pstree | head -n30

agett

chromium-+-2*[chromium]

\romium 2%[{chromium}]
romium-sandb chromium-+

1*%[{chromium}

scim-he
scim-im
4 SC1m
scim-par
s1im-+

neverwinter ~$ []

23
Process Creation
* Resource sharing
1. Parent and children share all resources
2. Children share subset of parent’s resources
3. Parent and child share no resources
* Execution
1. Parent and children execute concurrently
2. Parent waits until children terminate
* Address space
1. Child is duplicate of parent
2. Child has a program loaded into it
24

8/27/23

12

Process: Life Cycle

Parent process running program
A

1. Parent forks to

create a new Child process running program
process A

Memory of parent copied to child
. fork() A
2. Child performs L] '\

actions, possibly e .
P. t it /ld may perform
exec to run another f:,;(;';,'a";},-,o’,’,i ;;,me further actions here

rogram
prog exec()
3. Parent waits for wait() |~

child process

: "*-.._ Child status passed
: ‘*... toparent
. . : B
4. Child exits :)
. Parent execution .

suspended

X : e) Child process running
5. Psrlfi?t repelves Kernel restarts parent and program "8
child’s exit status [— optionally delivers SIGCHLD 1~,-..|:e,i,(5,:|a,,,s,
25
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main ()
{
pid t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;
}
else if (pid == 0) { /* child process */
execlp ("/bin/1ls", "1s", NULL);
}
else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");
}
return O;
} 26
26

8/27/23

13

Process Termination

+ Process executes last statement and then asks the operating
system to delete it using the exit() system call
— Returns status data from child to parent (via wait())
— Process’ resources are deallocated by operating system
+ Terminate with abort(): SIGABRT signal, can be caught; core dump
« Terminate a process from another process: kill(): SIGKILL (also “kill
-9 pid” from terminal)
+ Parent may terminate the execution of children for various reasons:
— Child has exceeded allocated resources
— Task assigned to child is no longer required

— The parent is exiting and the operating systems does not allow
a child to continue if its parent terminates

27

27

Signals

are a means of asynchronously notifying a
process of an event.

e Each delivers a small integer that represents a
particular event

e To deliver the event, the kernel will interrupt the
normal execution of the process

e Processes register to catch certain events

e After the are executed, the process will
continue executing where it was interrupted

28

28

8/27/23

14

Kill

Send a to a process

kill(pid, SIGTERM);

Signal: “Kill”

Signal

Register a callback function for
particular event

void handler(int signum) {
puts("Handler");

}

signal (SIGTERM, handler);

29

29

SIGCHLD

When a child process exits,
the parent is notified with the
SIGCHLD event

signal (SIGCHLD, handler);

SIGCHLD / SIGALRM

SIGALRM

An alarm or timer can be set
by first using alarm, and then
handling the SIGALRM event
when it is triggered

signal (SIGALRM, handler);
alarm(5);

30

30

8/27/23

15

8/27/23

Process Termination

* What happens if a process “dies”?

— The parent process may wait for termination of a child
process by using the wait () system call. The call returns
status information and the pid of the terminated process:
pid = wait(&status);

— Parent “collects” child’s resources

— If no parent waiting (did not invoke wait ()) process is a
zombie

* What happens if parent “dies”?
— If parent terminated without invoking wait, process is an
orphan
— May receive “new parent” (grandparent, init process, etc.)
— Cascading termination: no orphans allowed; if a process
terminates, all its children must also be terminated

31

31

Interprocess Communication

* Processes communicate by sharing data.

* Why do processes communicate?
— Computation speedup
— Modularity
— Information sharing

* Mechanism: interprocess communication
(IPC)

* Two standard models: Shared Memory and
Message Passing

32

32

16

Communication Models

process A — process A
| process B |——> shared memory :|
process B

message queue
—>{mg|my|ma[ma| ... [mp

kernel

kernel

a b
@ Shared l(\/llmory

33

33
Producer-Consumer Problem
* One process produces data. The second
process consumes the data.
* Data stored in a buffer:
— Unbounded-Buffer has no limit on size. Grows to
size of memory.
— Bounded-Buffer has fixed size. Creates a new
problem:
* How do we handle the producer creating data too
fast?
34

8/27/23

17

Shared Memory Solution

Circular buffer

NUL | NUL | NUL | NUL | NUL | NUL | NUL | NUL | NUL

TINTOUT IN = OUT -> EMPTY

A NUL | NUL | NUL | NUL | NUL | NUL | NUL | NUL

TOUT TIN

NUL | NUL | C D E F NUL | NUL | NUL

Tour Tin

35

35

Shared Memory Solution

Shared data
#define BUFFER_SIZE 10
typedef struct {

}item;

item buffer[BUFFER_SIZE];
intin=0;
intout=0;

Solution is correct, but can only use BUFFER_SIZE-1 elements

36

36

8/27/23

18

Bounded Buffer - Producer

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced;
in=(in+ 1) % BUFFER_SIZE;

37

37
Bounded Buffer - Consumer
item next_consumed,;
while (true) {
while (in == out)
; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
/* consume the item in next consumed */
}
38

8/27/23

19

Message Passing

* Two primitives:
— send (C, message) — messages have maximum size
— receive (P, message)

* Think mailboxes.

* Kernel usually manages the message passing
and “mailboxes”.

39

39

Message Passing Considerations

* How is the link established?
— Automatically on send?
* Can the link be asymmetric?
— Receiving a message: who is the sender?
* Is there a limit to the capacity of the link?
* Is the message size fixed or variable?
* Is a link unidirectional or bidirectional?

* Can there be multiple links between a pair of
communication processes?

40

40

8/27/23

20

Message Passing

* Direct Communication
— send (P, message) -> receiver process P
— receive (Q, message) -> sender process Q
* Indirect Communication (“mailboxes”)
—send (M1, message) -> put in mailbox M1
— receive (M1, message) -> take from mailbox M1

41

41
IPC Synchronization
* Blocking?
— Consumer is put in a waiting scheduler queue if
“mailbox” is empty.
— Producer is put in a waiting scheduler queue if
“mailbox” is full.
* Non-blocking?
— Neither Producer nor Consumer blocks; failure is
returned from message passing primitive instead.
42

8/27/23

21

Buffering

* Queue of messages attached to the link;
implemented in one of three ways:

— Zero capacity — no messages are queued on
a link. Sender must wait for receiver
(rendezvous).

— Bounded capacity — finite length of n
messages. Sender must wait if link full.

— Unbounded capacity — infinite length.
Sender never waits.

43
IPC - POSIX
* POSIX Shared Memory

shm id = shm open(name, O CREAT | O RDWR, 0666) ;

ftruncate(shm_id, 4096);

shared memory = (char *) shmat(shm_id, NULL, 0);

sprintf (shared memory, "Writing to shared

memory") ;

Also: shmdt (remove), shmctl (destroy)

a4

44

8/27/23

22

IPC - Mach

* Mach communication is message based
— Even system calls are messages

— Each task gets two mailboxes at creation- Kernel
and Notify

— Only three system calls needed for message
transfer

msg_send() , msg_receive (), msg_rpc()
— Mailboxes needed for communication, created via
port_allocate()

45

Recap

* Key Points:
— System Layering
— Concept of a Process
— Scheduling
— Process Creation and Termination
— Interprocess Communication

46

46

8/27/23

23

