
8/27/23

1

COP 4610
Operating System Principles

Lecture 4 – Processes

1

Recap – Last Lecture

• Operating System Services
• System Calls and Interrupts
• System Programs
• Operating System Design and Implementation
• System Layering
• Virtual Machines

COP 4610 - Operating System Principles 2

2

8/27/23

2

Overview

• Process Concepts
• Process Scheduling
• Operations on Processes
• Inter-process Communication

3

3

Process Concept

• Job/Process/Task used interchangeably
• A process is an instance of a program

(“program in execution”)
• Program: “piece of code”
• Process: code + data + more data + control

structures + …

4

4

8/27/23

3

Process Memory Layout

5

• Stack: Temporary Data
• Function parameters, local

variables, function call
frames.

• Heap: Dynamically allocated
memory.

• Data: Global variables &
constant strings.

• Text: Program code.

5

Process “Life Cycle”

6

NEW

READY RUNNING

TERMINATED

WAITING

admitted

Interrupt

exit

Scheduler
dispatch

I/O or event wait
I/O or event completion

6

8/27/23

4

Process State

• A process changes state constantly:
– New: being created.
– Running: running on a processor core.
–Waiting: waiting for an event.
– Ready: (or runnable) waiting for a core.
– Terminated: finished/dead.

7

7

OS Information about Processes

• Memory (Stack, Heap, Code, Static Data)
• Current State (e.g., program counter)
• Process ID
• Saved Registers
• Open Files
• Other bookkeeping data
This is called the process control block (PCB) or

task control block (TCB).

8

8

8/27/23

5

Process Control Block

9

9

PCB on Linux

10

10

8/27/23

6

11

11

12

12

8/27/23

7

Process Switching (“Context Switch”)

13

13

Process “Wait” Queues

• Job Queue is all processes on the system.
• Ready Queue (Run Queue) contains processes

waiting to run, or waiting for the CPU!
• Device Queue processes waiting for a device

event (“blocked” devices).
• “Other” Queues contain processes waiting for

other processes to finish, sleeping for time,
etc.

14

14

8/27/23

8

Process “Wait” Queues

15

Schedulers

• Long-term scheduler which processes should
be run in the future?
– Degree of multiprogramming!

• Short-term scheduler which process should
be run next?
– Manages queues and quickly decides next process

to run.

16

16

8/27/23

9

Scheduling Concerns

• Is enough RAM available to satisfy running
processes?

• Is device throughput able to support more IO-
bound processes?

• Is there enough CPU time available to satisfy
all processes? (long) How do I schedule fairly?
(short)

• Are there benefits for sleeping (swapping) a
process for an extended time? (long)

17

17

Schedulers

• Short-term: invoked frequently (milliseconds);
must be fast

• Long-term: infrequently (seconds)
• I/O-bound process: spends more time doing

I/O than processing (CPU bursts can be
frequent, but are short)

• CPU-bound: spends more time doing
computations (very long CPU bursts)

18

18

8/27/23

10

“Medium” Scheduling

19

19

Process Creation

• A process is always created via a parent,
except for process 1, /sbin/init.

• A parent can have multiple children. Entire
structure is a tree.

• Each process has a unique identifier, the
process identifier, or pid (get the pid of a
process using the getpid() system call).

20

20

8/27/23

11

21

21

22

22

8/27/23

12

23

23

Process Creation

• Resource sharing
1. Parent and children share all resources
2. Children share subset of parent’s resources
3. Parent and child share no resources

• Execution
1. Parent and children execute concurrently
2. Parent waits until children terminate

• Address space
1. Child is duplicate of parent
2. Child has a program loaded into it

24

24

8/27/23

13

Process: Life Cycle

1. Parent forks to
create a new
process

2. Child performs
actions, possibly
exec to run another
program

3. Parent waits for
child process

4. Child exits

5. Parent receives
child's exit status

25

Example Code
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()
{

pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

}
return 0;

} 26

26

8/27/23

14

Process Termination
• Process executes last statement and then asks the operating

system to delete it using the exit() system call
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating system

• Terminate with abort(): SIGABRT signal, can be caught; core dump
• Terminate a process from another process: kill(): SIGKILL (also “kill

-9 pid” from terminal)
• Parent may terminate the execution of children for various reasons:

– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does not allow

a child to continue if its parent terminates

27

27

Signals
Signals are a means of asynchronously notifying a
process of an event.

● Each signal delivers a small integer that represents a
particular event

● To deliver the event, the kernel will interrupt the
normal execution of the process

● Processes register handlers to catch certain events
● After the handlers are executed, the process will

continue executing where it was interrupted

28

28

8/27/23

15

Signal: “Kill”

29

Kill

Send a signal to a process

kill(pid, SIGTERM);

Signal

Register a callback function for
particular event

void handler(int signum) {
puts("Handler");

}

signal(SIGTERM, handler);

29

SIGCHLD / SIGALRM

30

SIGCHLD

When a child process exits,
the parent is notified with the
SIGCHLD event

signal(SIGCHLD, handler);

SIGALRM

An alarm or timer can be set
by first using alarm, and then
handling the SIGALRM event
when it is triggered

signal(SIGALRM, handler);
alarm(5);

30

8/27/23

16

Process Termination
• What happens if a process “dies”?

– The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process:
pid = wait(&status);

– Parent “collects” child’s resources
– If no parent waiting (did not invoke wait()) process is a

zombie
• What happens if parent “dies”?

– If parent terminated without invoking wait, process is an
orphan

– May receive “new parent” (grandparent, init process, etc.)
– Cascading termination: no orphans allowed; if a process

terminates, all its children must also be terminated

31

31

Interprocess Communication

• Processes communicate by sharing data.
• Why do processes communicate?
– Computation speedup
– Modularity
– Information sharing

• Mechanism: interprocess communication
(IPC)

• Two standard models: Shared Memory and
Message Passing

32

32

8/27/23

17

Communication Models

33

Shared Memory

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

33

Producer-Consumer Problem

• One process produces data. The second
process consumes the data.

• Data stored in a buffer:
– Unbounded-Buffer has no limit on size. Grows to

size of memory.
– Bounded-Buffer has fixed size. Creates a new

problem:
• How do we handle the producer creating data too

fast?

34

34

8/27/23

18

Shared Memory Solution

Circular buffer

35

OUTIN

NUL NUL NUL NUL NUL NUL NUL NUL NUL

IN = OUT -> EMPTY

OUT IN

A NUL NUL NUL NUL NUL NUL NUL NUL

OUT IN

NUL NUL C D E F NUL NUL NUL

35

Shared Memory Solution
• Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

• Solution is correct, but can only use BUFFER_SIZE-1 elements

36

36

8/27/23

19

Bounded Buffer - Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

37

37

Bounded Buffer - Consumer

item next_consumed;
while (true) {

while (in == out)
; /* do nothing */

next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */
}

38

38

8/27/23

20

Message Passing

• Two primitives:
– send (C, message) – messages have maximum size
– receive (P, message)

• Think mailboxes.
• Kernel usually manages the message passing

and “mailboxes”.

39

39

Message Passing Considerations

• How is the link established?
– Automatically on send?

• Can the link be asymmetric?
– Receiving a message: who is the sender?

• Is there a limit to the capacity of the link?
• Is the message size fixed or variable?
• Is a link unidirectional or bidirectional?
• Can there be multiple links between a pair of

communication processes?

40

40

8/27/23

21

Message Passing

• Direct Communication
– send (P, message) -> receiver process P
– receive (Q, message) -> sender process Q

• Indirect Communication (“mailboxes”)
– send (M1, message) -> put in mailbox M1
– receive (M1, message) -> take from mailbox M1

41

41

IPC Synchronization

• Blocking?
– Consumer is put in a waiting scheduler queue if

“mailbox” is empty.
– Producer is put in a waiting scheduler queue if

“mailbox” is full.

• Non-blocking?
– Neither Producer nor Consumer blocks; failure is

returned from message passing primitive instead.

42

42

8/27/23

22

Buffering

• Queue of messages attached to the link;
implemented in one of three ways:
– Zero capacity – no messages are queued on

a link. Sender must wait for receiver
(rendezvous).

– Bounded capacity – finite length of n
messages. Sender must wait if link full.

– Unbounded capacity – infinite length.
Sender never waits.

43

43

IPC - POSIX

• POSIX Shared Memory
shm_id = shm_open(name, O CREAT | O RDWR, 0666);

ftruncate(shm_id, 4096);

shared_memory = (char *) shmat(shm_id, NULL, 0);

sprintf(shared_memory, "Writing to shared
memory");

Also: shmdt (remove), shmctl (destroy)

44

44

8/27/23

23

IPC - Mach

• Mach communication is message based
– Even system calls are messages
– Each task gets two mailboxes at creation- Kernel

and Notify
– Only three system calls needed for message

transfer
msg_send(), msg_receive(), msg_rpc()

– Mailboxes needed for communication, created via
port_allocate()

45

45

Recap

• Key Points:
– System Layering
– Concept of a Process
– Scheduling
– Process Creation and Termination
– Interprocess Communication

46

46

