
8/30/23

1

COP 4610
Operating System Principles

Lecture 5 – Processes / Threads

1

COP 4610 – Operating System Principles 2

Recap

• Processes
– What is a process?
– What is in a process control block?
– Contrast stack, heap, data, text.
– What are process states?
– Which queues are used in an OS?
– What does the scheduler do?
– What is a context switch?
– What is the producer/consumer problem?
– What is IPC?

2

8/30/23

2

COP 4610 – Operating System Principles 3

Lecture Overview: Threads

• Overview
• Multicore Programming
• Multithreading Models
• Thread Libraries
• Implicit Threading
• Threading Issues
• Operating System Examples

3

COP 4610 – Operating System Principles 4

Definition

• Process: group resources together
• Thread: entity scheduled for execution in a

process
• “Single sequential stream of instructions

within a process”
• “Lightweight process”

4

8/30/23

3

COP 4610 – Operating System Principles 5

Thread of Execution

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

5

COP 4610 – Operating System Principles 6

Thread vs. Process

• Threads have their own:
– Thread ID (TID) (compare to PID)
– Program counter (PC)
– Register set
– Stack

• Threads commonly share:
– Code section (text)
– Data section
– Resources (files, signals, etc.)

6

8/30/23

4

COP 4610 – Operating System Principles 7

Why Threads?
• Enable multi-tasking within an app
– Update display
– Fetch data
– Spell checking
– Answer a network request

• Reduced cost (“lightweight” process)
– Processes are heavy to create
– IPC for threads cheaper/easier than processes

• Can “simplify” code & increase efficiency
• Kernels are generally multithreaded (different threads

provide different OS services)

7

COP 4610 – Operating System Principles 8

Multi-Threaded Server

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

(thread pool)

8

8/30/23

5

COP 4610 – Operating System Principles 9

Benefits

• Responsiveness – may allow continued execution if part of
process is blocked, especially important for user interfaces

• Resource Sharing – threads share resources of process,
easier than shared memory or message passing

• Economy – cheaper than process creation, thread switching
lower overhead than context switching

• Scalability – process can take advantage of multiprocessor
architectures

9

COP 4610 – Operating System Principles 10

Multicore Systems

10

8/30/23

6

COP 4610 – Operating System Principles 11

Multicore Programming

• Multicore systems putting pressure on programmers;
challenges include:
– Dividing activities (which tasks to parallelize)
– Balance (if/how to parallelize tasks)
– Data splitting (how to divide data)
– Data dependency (thread synchronization)
– Testing and debugging (how to test different execution paths)

• Parallelism implies a system can perform more than one task
simultaneously

• Concurrency supports more than one task making progress
– Single processor/core, scheduler providing concurrency

11

COP 4610 – Operating System Principles 12

Concurrency vs. Parallelism

 Concurrent execution on single-core system

 Parallelism on a multi-core system

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

12

8/30/23

7

COP 4610 – Operating System Principles 13

Multicore Programming

• Types of parallelism
– Data parallelism – distributes subsets of the same

data across multiple cores, same operation on
each

– Task parallelism – distributing threads across
cores, each thread performing unique operation

• As # of threads grows, so does architectural
support for threading (“hyperthreading”)
– CPUs have cores as well as hardware threads
– Consider Oracle SPARC T4 with 8 cores and 8

hardware threads per core

13

COP 4610 – Operating System Principles 14

Data vs. Task Parallelism

• Count number of times each
character in alphabet occurs

• Data Parallelism
– Thread 1 does page 1-100
– Thread 2 does page 100-200

• Task Parallelism
– Thread 1 does letters A-M, all pages
– Thread 2 does letters N-Z, all pages

14

8/30/23

8

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

15

COP 4610 – Operating System Principles 16

User Threads and Kernel Threads
• User threads - management done by user-level threads library
• Three primary thread libraries:

– POSIX Pthreads
– Win32 threads
– Java threads

• Kernel threads - Supported by the Kernel, “schedulable entity”
• Examples – virtually all general-purpose operating systems,

including:
– Windows
– Solaris
– Linux
– Tru64 UNIX
– Mac OS X

16

8/30/23

9

COP 4610 – Operating System Principles 17

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

17

COP 4610 – Operating System Principles 18

Many-to-One

• Many user-level threads mapped to
single kernel thread

• One thread blocking causes all to
block

• Multiple threads may not run in
parallel on multicore system because
only one may be in kernel at a time

• Few systems currently use this model

• Examples:
– Solaris Green Threads
– GNU Portable Threads

user thread

kernel threadk

18

8/30/23

10

COP 4610 – Operating System Principles 19

One-to-One

• Each user-level thread maps to kernel thread
• Creating a user-level thread creates a kernel thread
• More concurrency than many-to-one
• Number of threads per process sometimes restricted

due to overhead

• Examples
– Windows NT/XP/2000
– Linux
– Solaris 9 and later

user thread

kernel threadkkkk

19

COP 4610 – Operating System Principles 20

Many-to-Many Model
• Allows many user level

threads to be mapped to
many kernel threads

• Allows the operating system
to create a sufficient number
of kernel threads

• Solaris prior to version 9

• Windows NT/2000 with the
ThreadFiber package

user thread

kernel threadkkk

20

8/30/23

11

COP 4610 – Operating System Principles 21

Two-level Model

• Similar to M:M, except that it allows a
user thread to be bound to kernel thread

• Examples
– IRIX
– HP-UX
– Tru64 UNIX
– Solaris 8 and earlier

user thread

kernel threadkkk k

21

COP 4610 – Operating System Principles 22

Thread Libraries

• Thread library provides programmer with
API for creating and managing threads

• Two primary ways of implementing
– Library entirely in user space
– Kernel-level library supported by the OS

22

8/30/23

12

COP 4610 – Operating System Principles 23

Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• Specification, not implementation

• API specifies behavior of the thread library,
implementation is up to development of the library

• Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

23

COP 4610 – Operating System Principles 24

Pthreads Example

24

8/30/23

13

COP 4610 – Operating System Principles 25

Pthreads Example (Cont.)

25

COP 4610 – Operating System Principles 26

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the
parent task (process)
 Flags control behavior

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.

26

8/30/23

14

COP 4610 – Operating System Principles 27

Recap

• What is a thread? Why would one use a
thread?

• How does a thread differ from a process?
• What are pthreads?
• What is a kernel thread?
• How does task parallelism differ from data

parallelism?

27

