COP 4610
Operating System Principles

Scheduling

Objectives

* To introduce CPU scheduling, which is the basis
for multi-programmed and multi-tasking systems

* To describe various CPU-scheduling algorithms

* To discuss evaluation criteria for selecting a CPU-
scheduling algorithm for a particular system

* To examine the scheduling algorithms of several
operating systems

COP 4610 — Operating System Principles

9/9/23

Scheduling: Overview

Whenever we need to decide which process to
run next, we invoke the scheduler:

® A process terminates
® A process

e A timer interrupt (preemptive multitasking)

The decision-making process is called a
scheduling policy or discipline.

COP 4610 - Operating System Principles 3

Burstiness

» Computation and I/0O tend to be bursty

— Read some data

— Compute a bunch
— Write some data
— Repeat

burst duration (milliseconds)

COP 4610 — Operating System Principles 4

9/9/23

“Keep CPU busy”

Process 1 ‘/%
Process 2 ‘/%

EalPs

Process 1 Process 2

CPU

COP 4610 - Operating System Principles 5

Scheduling

Short term

scheduler Running
process

Ready Queue
Jobs are ready for computation
“Need CPU” CPU
When do | choose
the next one to run?
COP 4610 — Operating System Principles 6

9/9/23

Scheduling Choices

* Non-preemptive (voluntarily):
— Process yields
— Process goes from running to waiting state
— Process terminates
* Preemptive (forced, can happen any time):

— OS forces process from running to ready state

COP 4610 — Operating System Principles

Dispatcher

* Mechanism that gives control of the CPU to
selected process; includes:
— Context switch
° Save/restore stack, registers,

— Switch back to user mode
— Resume PC for process

Dispatch Latency: Time it takes to stop one process
and swap to another

COP 4610 — Operating System Principles

9/9/23

9/9/23

Scheduling Criteria

* CPU utilization — keep the CPU as busy as possible (“how busy is
the CPU")

* Throughput — # of processes that complete their execution per time
unit (“how much work is getting done”)

* Turnaround time — amount of time to execute a particular process
(“how long does it take to execute a process”)

* Waiting time — amount of time a process has been waiting in the
READY QUEUE (RUNQUEUE)

* Response time — amount of time it takes from when a request was
submitted until the first response is produced

COP 4610 - Operating System Principles 9
9
First-Come, First-Served (FCFS) Scheduling
Process Burst Time-_
Computation
P1 24 Time
P, 3
Ps 3
* Suppose that the processes arrive in the order
P,, P,, P; and ready for execution at time 0
Waiting Time
P1 P2 P3 P; =0; P, =24; P3=27
Average Waiting Time
0 2427 30 (0+24+27)/3=17
COP 4610 — Operating System Principles 10
10

Different Order

* Suppose that the processes arrive in the order
P, , P3, P; (ready for execution at time 0)

P2 | P3 P1

0 3 6 30

Waiting Time
P; =6;Pz =0;P3=3

Convoy Effect

Average Waiting Time
(6+0+3)/3=3

COP 4610 — Operating System Principles

11

FCFS (FIFO)

* Very simple (add processes to end of
runqueue, take processes from beginning of
queue)

* Note: processes returning from waitqueues
always go to the back of the runqueue!

* NON-PREEMPTIVE (time-sharing/interactive?)

COP 4610 — Operating System Principles 12

12

9/9/23

Shortest-Job-First (SJF) Scheduling

* Associate with each process the length of its
next CPU burst

— Use these lengths to schedule the process with
the shortest time

* SJF is optimal — gives minimum average
waiting time for a given set of processes

— The difficulty is knowing the length of the next
CPU request

COP 4610 - Operating System Principles 13

13
Revisiting with SJF
Process Burst Time-_
Computation
P1 24 Time
P, 3
Ps 3
* Suppose that the processes arrive in the order
P,, P,, Ps;(all in queue at time 0)
Waiting Time
P1 =6;P2 =O;P3=3
P2 | P3 P1
Average Waiting Time
0 3 6 30 (6+0+3)/3=3
COP 4610 — Operating System Principles 14
14

9/9/23

9/9/23

Shortest-Job First

Process Burst Time

Waiting Time
P; =3;P2 = 16; P3=9

Average Waiting Time
(3+16+9+0)/4=7

2
W N 0 O

P4 P1 P3 P2

COP 4610 - Operating System Principles 15

15

Determining Length of Next CPU Burst

* Can only estimate the length — should be similar to the previous one
— Then pick process with shortest predicted next CPU burst

* Can be done by using the length of previous CPU bursts, using exponential

averaging
1. t, =actual length of n" CPU burst
r =at + (1 _0‘)7"- 2. 7, =predicted value for the next CPU burst
ntl 3. 2,0 <1 Al lled
o so calle
4. Define: EWMA
Exponential
* Commonly, & set to % We'ghtEd
Moving
Average
COP 4610 — Operating System Principles 16

16

Exponential Averaging

cx=0?2a0x=17

Tne1 = Oty + (1-&) ¥ty ; + (1-o)? ot
c+ (1-a) oty + .
.+ (1—0()n+1T0

COP 4610 - Operating System Principles 17
17
Prediction of the Length of the Next CPU Burst
12
5 10
8 -
L 6
4 -
2 -
1
time ——
CPU burst (t) 6 4 6 4 13 13 13
“guess” (r) 10 8 6 6 5 9 1 12
Figure 5.4 Prediction of the length of the next CPU burst.
COP 4610 — Operating System Principles 18
18

9/9/23

Shortest Job First (SJF)

* Non-preemptive!
* Preemptive version called shortest-remaining-time-first
Process - Arrival / Burst Time

P, 0/8
P, 1/4
P; 2/9
P, 3/5
P1 P2 P4 P1 P3
0 1 5 10 17

COP 4610 — Operating System Principles

19

26

19

Priority Scheduling

* A priority number (integer) is associated with each process
* The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)
— Preemptive
— Non-preemptive
* SJFis priority scheduling where priority is the inverse of predicted
next CPU burst time
* Fixed priorities: do not change over time
* Dynamic priorities: can change over time

* Problem: Starvation — low priority processes may never execute

* Solution: Aging — as time progresses increase the priority of the
process

COP 4610 — Operating System Principles

20

20

9/9/23

10

Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
Ps 2 4
P, 1 5
Ps 5 2

* Low number = high priority
* Dynamic versus static/fixed priority

COP 4610 - Operating System Principles 21

21

Round Robin (RR)

* Switch between processes at a time interval
— Time quantum, q
— 10-100 ms
— Preemptive
* What does it mean?
— N tasks?
— Maximum wait time
* Performance

— g large = FIFO

— g small = g must be large with respect to context
switch, otherwise overhead is too high

COP 4610 — Operating System Principles 22

22

9/9/23

11

Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

* The Gantt chart is:

Py | Pa| P3| Py | Pi| Py | Pi| Py

0 4 7 10 14 18 22 26 30

* Typically, higher average turnaround than SJF, but better response
* g should be large compared to context switch time
* g usually 10ms to 100ms, context switch < 10 usec

COP 4610 - Operating System Principles 23
23
Time Quantum and Context Switch Time
process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9
0o 1 2 3 4 5 6 7 8 9 10
COP 4610 — Operating System Principles 24
24

9/9/23

12

Multilevel Queue

* Ready queue is partitioned into separate queues, e.g.:
— foreground (interactive)
— background (batch)

* Process permanently in a given queue

* Each queue has its own scheduling algorithm:
— foreground —RR
— background — FCFS

* Scheduling must be done between the queues:

— Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation!

— Time slice — each queue gets a certain amount of CPU time which it
can schedule amongst its processes; i.e., 80% to foreground in RR &
20% to background in FCFS

COP 4610 — Operating System Principles

25

25
Multilevel Queue Scheduling
highest priority
:ﬂ system processes ’:’
t:iﬂ interactive processes }:P
:ﬂ interactive editing processes ’E
:‘ﬂ batch processes }:ﬂb
Z}{ student processes ?’
lowest priority
COP 4610 — Operating System Principles 26
26

9/9/23

13

Multilevel Feedback Queue

* A process can move between the various queues;
aging can be implemented this way

* Multilevel-feedback-queue scheduler defined by
the following parameters:
— number of queues
— scheduling algorithms for each queue
— method used to determine when to upgrade a process
— method used to determine when to demote a process

method used to determine which queue a process will
enter when that process needs service

COP 4610 - Operating System Principles 27

27

Example of Multilevel Feedback Queue

* Three queues:

— Qo — RR with time quantum 8 milliseconds —
— Q; — RR time quantum 16 milliseconds ﬁ
- QZ - FCFS 4 quantum = 16

* Scheduling [ﬁ

— A new job enters queue Q, which is served FCFS
* When it gains CPU, job receives 8 milliseconds
* If it does not finish in 8 milliseconds, job is moved to queue Q;

— At Q, job is again served FCFS and receives 16 additional
milliseconds

* If it still does not complete, it is preempted and moved to queue
Q,

COP 4610 — Operating System Principles 28

28

9/9/23

14

Thread Scheduling

* Distinction between user-level and kernel-level threads

* Kernel-level: threads scheduled, not processes

— system-contention scope (SCS) — competition among all
threads in system

* User-level: thread library schedules user-level threads
to run on “LWP” (“lightweight process”)

— called process-contention scope (PCS) since scheduling
competition is within the process

— typically done via priority set by programmer

COP 4610 — Operating System Principles

29

29

Pthread Scheduling

* API allows specifying either PCS or SCS during
thread creation
— PTHREAD_SCOPE_PROCESS schedules threads
using PCS scheduling
— PTHREAD_SCOPE_SYSTEM schedules threads
using SCS scheduling
e Can be limited by OS — Linux and Mac OS X
only allow PTHREAD SCOPE_SYSTEM

COP 4610 — Operating System Principles

30

30

9/9/23

15

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[]) {
int i, scope;
pthread t tid[NUM THREADS] ;
pthread attr_ t attr;
/* get the default attributes */
pthread attr_init(&attr);
/* first inquire on the current scope */

if (pthread attr getscope (&attr, &scope) != 0)
fprintf (stderr, "Unable to get scheduling scope\n") ;
else {

if (scope == PTHREAD SCOPE PROCESS)
printf ("PTHREAD SCOPE PROCESS") ;

else if (scope == PTHREAD SCOPE_ SYSTEM)
printf ("PTHREAD SCOPE_SYSTEM") ;

else
fprintf (stderr, "Illegal scope value.\n");

COP 4610 - Operating System Principles 31
31
/* set the scheduling algorithm to PCS or SCS */
pthread attr_ setscope (&attr, PTHREAD SCOPE_SYSTEM) ;
/* create the threads */
for (i = 0; i < NUM _THREADS; i++)
pthread create(&tid[i], &attr,runner,NULL) ;
/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)
pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */
void *runner (void *param)
{
/* do some work ... */
pthread exit(0);
}
COP 4610 — Operating System Principles 32
32

9/9/23

16

Multiple-Processor Scheduling

* CPU scheduling more complex when multiple CPUs are available
* Homogeneous processors within a multiprocessor

* Asymmetric multiprocessing — only one processor accesses the
system data structures, alleviating the need for data sharing

* Symmetric multiprocessing (SMP) — each processor is self-
scheduling, all processes in common ready queue, or each has its
own private queue of ready processes

— Currently, most common

* Processor affinity — process has affinity for processor on which it is
currently running
— soft affinity

— hard affinity
— “migration”: process changes processor

COP 4610 - Operating System Principles 33

33

Load Balancing

* |f SMP, need to keep all CPUs loaded for efficiency

* Load balancing attempts to keep workload evenly
distributed

* Push migration — periodic task checks load on each
processor, and if imbalanced found pushes task from
overloaded CPU to other CPUs

* Pull migration — idle processors pulls waiting task from
busy processor

COP 4610 — Operating System Principles 34

34

9/9/23

17

Multicore Processors

* Recent trend to place multiple processor cores on
same physical chip

* Faster and consumes less power

* Multiple threads per core also growing

— Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

COP 4610 — Operating System Principles

35

35
Multithreaded Multicore System
C compute cycle M memory stall cycle
e M| c | M| c | M| c | M
time
hread, c | m|c|m|c|m | c
thread, c M c M c M c ‘
time
COP 4610 — Operating System Principles 36
36

9/9/23

18

Linux Scheduling Through Version 2.5

* Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm
* Version 2.5 moved to constant order O(1) scheduling time
— Preemptive, priority based
— Two priority ranges: time-sharing and real-time
— Real-time range from 0 to 99 and nice value from 100 to 140
— Map into global priority with numerically lower values indicating
higher priority
— Higher priority gets larger q
— Task run-able as long as time left in time slice (active)
- Ifl_no time left (expired), not run-able until all other tasks use their
slices
— All run-able tasks tracked in per-CPU runqueue data structure
» Two priority arrays (active, expired)
* Tasks indexed by priority
* When no more active, arrays are exchanged
— Worked well, but poor response times for interactive processes

COP 4610 - Operating System Principles 37

37

Linux Scheduling in Version 2.6.23 +

Completely Fair Scheduler (CFS)

* Scheduling classes
— Each has specific priority
— Scheduler picks highest priority task in highest scheduling class
— Rather than quantum based on fixed time allotments, based on proportion of CPU time
— 2 scheduling classes included, others can be added
1. default
2. real-time
* Quantum calculated based on nice value from -20 to +19
— Lower value is higher priority
— Calculates target latency — interval of time during which task should run at least once
— Target latency can increase if say number of active tasks increases
e CFS scheduler maintains per task virtual run time in variable vruntime
— Associated with decay factor based on priority of task — lower priority is higher decay rate
— Normal default priority yields virtual run time = actual run time
* To decide next task to run, scheduler picks task with lowest virtual run time

COP 4610 — Operating System Principles 38

38

9/9/23

19

The Linux CFS scheduler provides an efficient algorithm for selecting which
task to run next. Each runnable task is placed in a red-black tree—a balanced
binary search tree whose key is based on the value of vruntime. This tree is
shown below:

Task with the smallest
value of vruntime

smaller) larger
Value of vruntime 9

When a task becomes runnable, it is added to the tree. If a task on the
tree is not runnable (for example, if it is blocked while waiting for 1/0), it is
removed. Generally speaking, tasks that have been given less processing time
(smaller values of vruntime) are toward the left side of the tree, and tasks
that have been given more processing time are on the right side. According
to the properties of a binary search tree, the leftmost node has the smallest
key value, which for the sake of the CFS scheduler means that it is the task
with the highest priority. Because the red-black tree is balanced, navigating
it to discover the leftmost node will require O(/gN) operations (where N
is the number of nodes in the tree). However, for efficiency reasons, the
Linux scheduler caches this value in the variable rb_leftmost, and thus
determining which task to run next reauires onlv retrieving the cached value.

COP 4610 — Operating System Principles

39

39

9/9/23

20

