
9/17/23

1

COP 4610
Operating System Principles

Synchronization

1

COP 4610 – Operating System Principles 2

Overview

• Background
• The Critical-Section Problem
• Peterson’s Solution
• Synchronization Hardware
• Mutex Locks
• Semaphores
• Classic Problems of Synchronization
• Monitors
• Synchronization Examples
• Alternative Approaches

2

9/17/23

2

COP 4610 – Operating System Principles 3

Objectives

• To introduce the critical-section problem, whose solutions
can be used to ensure the consistency of shared data

• To present both software and hardware solutions of the
critical-section problem

• To examine several classical process-synchronization
problems

• To explore several tools that are used to solve process
synchronization problems

3

COP 4610 – Operating System Principles 4

Background

• Processes can execute concurrently
– May be interrupted at any time, partially completing

execution

• Concurrent access to shared data may result in
data inconsistency

• Maintaining data consistency requires
mechanisms to ensure the orderly execution of
cooperating processes

4

9/17/23

3

COP 4610 – Operating System Principles 5

Example

Suppose that we wanted to provide a solution to
the consumer-producer problem.

We can do so by having an integer count
that keeps track of the slots taken. As we
add things, count grows. As we consume
things, count shrinks.

5

COP 4610 – Operating System Principles 6

Illustration

Main Thread

Producer Thread (TP) Consumer Thread (TC)

Global Variable
count

Data gets
produced

Data gets
consumed

count = 0 No data, buffer empty

count = 5 Full of data, no room

6

9/17/23

4

COP 4610 – Operating System Principles 7

Code
int count = 0;
int in = 0;
int out = 0;

int main (int argc, char * argv[])
{
 pthread_t tC, tP;

 pthread_create(&tP, NULL, thread_Producer, NULL, NULL);
 pthread_create(&tC, NULL, thread_Consumer, NULL, NULL);

 /* Hang around for them to be done (never) */
 pthread_join(tP);
 pthread_join(tC);

 return 1;
}

Address of functions

We get two threads that will be executing
 in addition to our main thread

7

COP 4610 – Operating System Principles 8

Producer
void thread_Producer (void * pData)
{
 while (1)
 {
 /* produce an item in next produced */

 while (count == BUFFER SIZE) ;
 /* do nothing */

 /* Space in the buffer! */
 buffer[in] = next_produced;
 in = (in+1)%BUFFER_SIZE;
 count++;
 }
}

If the buffer is full,
 hold up

8

9/17/23

5

COP 4610 – Operating System Principles 9

Consumer
void thread_Consumer (void * pData)
{

 while (1)
 {
 while (count == 0)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out+1)%BUFFER_SIZE;
 count--;
 /* consume the item in next consumed */

 }
}

If the buffer is empty,
 hold up

9

COP 4610 – Operating System Principles 10

Race Condition

• count++:
register1 = count
register1 = register1 + 1
count = register1

• count--:
register1 = count
register1 = register1 - 1
count = register1

10

9/17/23

6

COP 4610 – Operating System Principles 11

Race Condition

• Assume count=5
Step 1: Producer: register1 = count (register1 = ?)
Step 2: Producer: register1 = register1 + 1 (?)
Step 3: Consumer: register2 = count (register2 = ?)
Step 4: Consumer: register2 = register2 – 1 (?)
Step 5: Producer: count = register1 (count = ?)
Step 6: Consumer: count = register2 (count = ?)

11

COP 4610 – Operating System Principles 12

Critical Section Problem
• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code
– Process may be changing common variables, updating table, writing file, etc.
– When one process in critical section, no other may be in its critical section

• Critical section: section in code where race conditions can occur!
• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in entry section,
may follow critical section with exit section, then remainder section

12

9/17/23

7

COP 4610 – Operating System Principles 13

Critical Section

• General structure of process pi is

13

COP 4610 – Operating System Principles 14

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then
the selection of the processes that will enter the critical section
next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted

14

9/17/23

8

COP 4610 – Operating System Principles 15

Peterson’s Solution

• Good algorithmic description of solving the problem

• Two process solution

• Assume that the load and store instructions are atomic; that is, they
cannot be interrupted

• The two processes share two variables:
– int turn;
– Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section

• The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process Pi is ready!

15

COP 4610 – Operating System Principles 16

Algorithm for Process Pi

do {
 flag[i] = true;
 turn = j;
 while (flag[j] && turn == j);
 critical section
 flag[i] = false;
 remainder section
 } while (true);

1. Mutual exclusion is preserved
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

16

9/17/23

9

COP 4610 – Operating System Principles 17

Synchronization Hardware

• Many systems provide hardware support for critical section code

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Uniprocessors – could disable interrupts
– Currently running code would execute without preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptible

– Either test memory word and set value (TestAndSet())
– Or swap contents of two memory words (Swap())

17

COP 4610 – Operating System Principles 18

Solution to Critical-section Problem Using Locks

do {
 acquire lock

 critical section
 release lock
 remainder section

 } while (TRUE);

18

9/17/23

10

COP 4610 – Operating System Principles 19

TestAndSet Instruction

• Definition:

 boolean TestAndSet (boolean *target)
 {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }

19

COP 4610 – Operating System Principles 20

Solution using test_and_set()
• Shared boolean variable lock, initialized to FALSE
• Solution:
do {
 while (TestAndSet(&lock))
 ; /* do nothing */
 /* critical section */
 lock = FALSE;
 /* remainder section */
} while (TRUE);

20

9/17/23

11

COP 4610 – Operating System Principles 21

Swap Instruction

• Definition:

void Swap(boolean *a, boolean *b) {
 boolean temp = *a;

 *a = *b
 *b = temp;
}

21

COP 4610 – Operating System Principles 22

Solution using Swap
• Shared Boolean variable lock initialized to FALSE; each

process has a local Boolean variable key
• Solution:

do {
 key = TRUE;
 while (key == TRUE)
 Swap(&lock, &key);
 /* critical section */
 lock = FALSE;
 /* remainder section */
} while (TRUE);

22

9/17/23

12

COP 4610 – Operating System Principles 23

Bounded-waiting Mutual Exclusion with TestAndSet

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = false;
 /* critical section */
 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j + 1) % n;
 if (j == i)
 lock = false;
 else
 waiting[j] = false;
 /* remainder section */
} while (true);

23

COP 4610 – Operating System Principles 24

Mutex Locks
• Previous solutions are complicated and generally inaccessible to application

programmers!
• OS designers build software tools to solve critical section problem
• Simplest is mutex lock
• Protect critical regions with it by first acquire() a lock then release() it

– Boolean variable indicating if lock is available or not

• Calls to acquire() and release() must be atomic
– Usually implemented via hardware atomic instructions

• But this solution requires busy waiting
• This lock therefore called a spinlock

24

9/17/23

13

COP 4610 – Operating System Principles 25

acquire() and release()
acquire() {
 while (!available)
 ; /* busy wait */
 available = false;;
}
release() {
 available = true;
}

do {
 acquire lock
 critical section
 release lock

 remainder section
} while (true);

25

COP 4610 – Operating System Principles 26

Semaphore
• Synchronization tool that does not require busy waiting
• Semaphore S – integer variable
• Two standard operations modify S: wait() and signal()

– Originally called P() and V()
• Less complicated
• Can only be accessed via two indivisible (atomic) operations

wait (S) {
 while (S <= 0)
 ; // busy wait
 S--;
}
signal (S) {
 S++;
}

26

9/17/23

14

COP 4610 – Operating System Principles 27

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1
– Then a mutex lock

• Consider P1 and P2 that require S1 to happen before S2
P1:

 S1;
 signal(synch);

P2:
 wait(synch);

 S2;

27

COP 4610 – Operating System Principles 28

Semaphore Implementation

• Must guarantee that no two processes can
execute wait() and signal() on the same
semaphore at the same time
– Internally implemented using atomic instructions,

disabled interrupts, …

• Implementation uses busy waiting:
– Ok if waiting time is rare or short (e.g., critical section

is rarely occupied and/or short)
– If applications spend a lot of time in critical sections,

this is not a good solution

28

9/17/23

15

COP 4610 – Operating System Principles 29

Semaphore Implementation
with no Busy Waiting

• With each semaphore there is an associated waiting
queue

• Each entry in a waiting queue has two data items:
– value (identifying waiting process)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue

and place it in the ready queue

29

COP 4610 – Operating System Principles 30

Semaphore Implementation
wait(semaphore *S) {
 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
}

signal(semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a process from S->list;
 wakeup(P);
 }
}

30

9/17/23

16

COP 4610 – Operating System Principles 31

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes
• Let S and Q be two semaphores initialized to 1
 P0 P1
 wait(S); wait(Q);
 wait(Q); wait(S);
 . .
 signal(S); signal(Q);
 signal(Q); signal(S);

• Starvation – indefinite blocking
– A process may never be removed from the semaphore queue in which

it is suspended

• Priority Inversion – Scheduling problem when lower-priority
process holds a lock needed by higher-priority process

31

COP 4610 – Operating System Principles 32

Classical Problems of Synchronization

• Classical problems used to test newly-
proposed synchronization schemes

– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

32

9/17/23

17

COP 4610 – Operating System Principles 33

Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value n

33

COP 4610 – Operating System Principles 34

Bounded Buffer Problem (Cont.)
• The structure of the producer process

do {
 ...
 /* produce an item in next_produced */
 ...
 wait(empty);
 wait(mutex);
 ...
 /* add next produced to the buffer */
 ...
 signal(mutex);
 signal(full);
} while (true);

34

9/17/23

18

COP 4610 – Operating System Principles 35

Bounded Buffer Problem (Cont.)
• The structure of the consumer process

do {
 wait(full);
 wait(mutex);
 ...
 /* remove an item from buffer to next_consumed */
 ...
 signal(mutex);
 signal(empty);
 ...
 /* consume the item in next consumed */
 ...
} while (true);

35

COP 4610 – Operating System Principles 36

Readers-Writers Problem
• A data set is shared among a number of concurrent processes

– Readers – only read the data set; they do not perform any updates
– Writers – can both read and write

• Problem – allow multiple readers to read at the same time
– Only one single writer can access the shared data at the same time

• Shared Data
– Data set
– Semaphore wrt initialized to 1
– Semaphore mutex initialized to 1
– Integer read_count initialized to 0

36

9/17/23

19

COP 4610 – Operating System Principles 37

Readers-Writers Problem (Cont.)
• The structure of a writer process

do {

 wait(wrt);
 ...
 /* writing is performed */
 ...
 signal(wrt);
} while (true);

37

COP 4610 – Operating System Principles 38

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {

wait(mutex);
 read_count++;

if (read_count == 1)
 wait(wrt);
 signal(mutex);
 ...

/* reading is performed */
 ...
 wait(mutex);
 read_count--;

if (read_count == 0)
 signal(wrt);
 signal(mutex);
} while (true);

38

9/17/23

20

COP 4610 – Operating System Principles 39

Dining-Philosophers Problem

• Philosophers spend their lives thinking and eating
• Don’t interact with their neighbors, occasionally

try to pick up 2 chopsticks (one at a time) to eat
from bowl
– Need both to eat, then release both when done

• In the case of 5 philosophers
– Shared data

• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1

39

COP 4610 – Operating System Principles 40

Dining-Philosophers Problem
Algorithm

• The structure of Philosopher i:

do {
 wait (chopstick[i]);
 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

• What is the problem with this algorithm?

40

9/17/23

21

COP 4610 – Operating System Principles 41

Monitors
• A high-level abstraction that provides a convenient and effective mechanism for process

synchronization
• Abstract data type, internal variables only accessible by code within the procedure
• Only one process may be active within the monitor at a time
• But not powerful enough to model some synchronization schemes

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }
}

41

COP 4610 – Operating System Principles 42

Schematic View of a Monitor

42

9/17/23

22

COP 4610 – Operating System Principles 43

Condition Variables

• condition x, y;

• Two operations on a condition variable:
– x.wait () – a process that invokes the operation is

suspended until x.signal ()
– x.signal () – resumes one of processes (if any) that

invoked x.wait ()
• If no x.wait () on the variable, then it has no effect on

the variable

43

COP 4610 – Operating System Principles 44

Monitor with Condition Variables

44

9/17/23

23

COP 4610 – Operating System Principles 45

Solution to Dining Philosophers
monitor DiningPhilosophers
 {
 enum { THINKING; HUNGRY, EATING) state [5] ;
 condition self [5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
 }

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

45

COP 4610 – Operating System Principles 46

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

46

9/17/23

24

COP 4610 – Operating System Principles 47

Dining Philosophers

• Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

 DiningPhilosophers.pickup (i);

 EAT

 DiningPhilosophers.putdown (i);

• No deadlock, but starvation is possible!

47

