
9/21/23

1

COP 4610
Operating System Principles

Deadlocks

1

COP 4610 – Operating System Principles 2

Examples of Deadlocks

• Semaphores: mixing up wait & signal
• Kansas (early 20th century): “when two trains

approach each other at a crossing, both shall come
to a full stop and neither shall start up again until the
other has gone”

• System with 2 disks: need both for file transfers
• Single-lane bridge:

2

9/21/23

2

COP 4610 – Operating System Principles 3

Livelock

• Similar to deadlock, but states of processes
change constantly with one another without
any of them progressing (special case of
resource starvation)

3

COP 4610 – Operating System Principles 4

System Model

• System consists of resources
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.
• Each process utilizes a resource as follows:
– request
– use
– release

4

9/21/23

3

COP 4610 – Operating System Principles 5

Deadlock Characterization
• Mutual exclusion: only one process at a time can use a

resource
• Hold and wait: a process holding at least one resource

is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is held
by P2, …, Pn–1 is waiting for a resource that is held by Pn,
and Pn is waiting for a resource that is held by P0.

5

COP 4610 – Operating System Principles 6

Resource-Allocation Graph
• A set of vertices V and a set of edges E.

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi ® Rj

• assignment edge – directed edge Rj ® Pi

6

9/21/23

4

COP 4610 – Operating System Principles 7

Resource-Allocation Graph

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi
Rj

Rj

7

COP 4610 – Operating System Principles 8

Example of a Resource Allocation Graph

8

9/21/23

5

COP 4610 – Operating System Principles 9

Example of a Resource Allocation Graph

9

COP 4610 – Operating System Principles 10

Another Example

10

9/21/23

6

COP 4610 – Operating System Principles 11

Summary

• If graph contains no cycles Þ no deadlock
• If graph contains a cycle Þ
– if only one instance per resource type, then

deadlock
– if several instances per resource type,

possibility of deadlock

11

COP 4610 – Operating System Principles 12

Methods for Handling Deadlocks

• Ensure that the system will never enter a
deadlock state:
– Deadlock prevention
– Deadlock avoidence

• Allow the system to enter a deadlock state
and then recover

• Ignore the problem and pretend that
deadlocks never occur in the system; used
by most operating systems, including UNIX

12

9/21/23

7

COP 4610 – Operating System Principles 13

Deadlock Prevention
• Restrain the ways request can be made

• Mutual Exclusion – not required for sharable
resources (e.g., read-only files); must hold for non-
sharable resources

• Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources
– Require process to request and be allocated all its

resources before it begins execution, or allow process
to request resources only when the process has none
allocated to it

– Low resource utilization; starvation possible

13

COP 4610 – Operating System Principles 14

Deadlock Prevention
• No Preemption –

– If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released

– Preempted resources are added to the list of resources for
which the process is waiting

– Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

• Circular Wait – impose a total ordering of all resource
types, and require that each process requests
resources in an increasing order of enumeration

14

9/21/23

8

COP 4610 – Operating System Principles 15

Deadlock Avoidance
• When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state
• System is in safe state if there exists a sequence <P1, P2, …,

Pn> of ALL the processes in the systems such that for each Pi,
the resources that Pi can still request can be satisfied by
currently available resources + resources held by all the Pk, with
k < i

• That is:
– If Pi resource needs are not immediately available, then Pi can wait

until all Pk have finished
– When Pk is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed resources, and so

on

15

COP 4610 – Operating System Principles 16

Safe State

• If a system is in safe state Þ no deadlocks

• If a system is in unsafe state Þ possibility of
deadlock

• Avoidance Þ ensure that a system will
never enter an unsafe state.

16

9/21/23

9

COP 4610 – Operating System Principles 17

Safe State

17

COP 4610 – Operating System Principles 18

Avoidance Algorithms

• Single instance of a resource type
– Use a resource-allocation graph

• Multiple instances of a resource type
– Use the banker’s algorithm

18

9/21/23

10

COP 4610 – Operating System Principles 19

Resource-Allocation Graph Scheme

• Claim edge Pi ® Rj indicated that process Pj may
request resource Rj; represented by a dashed line

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system

19

COP 4610 – Operating System Principles 20

Resource-Allocation Graph

20

9/21/23

11

COP 4610 – Operating System Principles 21

Resource-Allocation Graph

21

COP 4610 – Operating System Principles 22

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a
resource Rj

• The request can be granted only if
converting the request edge to an
assignment edge does not result in the
formation of a cycle in the resource
allocation graph

22

9/21/23

12

COP 4610 – Operating System Principles 23

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

23

COP 4610 – Operating System Principles 24

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes
– Pi ® Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there exists a
deadlock

• An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of
vertices in the graph

24

9/21/23

13

COP 4610 – Operating System Principles 25

Resource-Allocation Graph and
Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

25

COP 4610 – Operating System Principles 26

Recovery from Deadlock:
Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

• In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

26

9/21/23

14

COP 4610 – Operating System Principles 27

Recovery from Deadlock:
Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart
process for that state

• Starvation – same process may always be
picked as victim, include number of rollback
in cost factor

27

