
9/29/23

1

COP 4610
Operating System Principles

Memory Management

1

COP 4610 – Operating System Principles 2

Overview

• Memory Access
• Address Binding
• Memory Protection
• Swapping
• Contiguous Memory Allocation
• Segmentation
• Paging
• Structure of the Page Table

2

9/29/23

2

COP 4610 – Operating System Principles 3

Memory Access

a.out

<heap>

<stack>

<dynamic libraries>
(e.g., glibc.so)

Main Memory

fetch decode

execute

mov %eax, 0x4(%esp)

Instruction
Pointer

%eax

%esp

3

COP 4610 – Operating System Principles 4

Program Execution & Memory

• Program (code & data) must be loaded into
memory (from where?)

• Main memory & registers are the only storage
the CPU can access

• Access to register: <= 1 clock cycle
• Access to memory: multiple cycles (“memory

stall”)
• Cache sits between main memory & CPU
• Protection of memory needed

4

9/29/23

3

COP 4610 – Operating System Principles 5

Variables & Storage Locations

a.out (text + data)

<heap>

<stack>

<dynamic libraries>
(e.g., glibc.so)

Main Memory

int global_variable;
const int constant_variable = 5;

int main(int argc, char *argv[]) {
 int *dynamic_variable = malloc(sizeof(int));
 int local_variable;
 printf(“Hello world!\n”);
 return 0;
}

5

COP 4610 – Operating System Principles 6

Base and Limit Registers

• Base: start address
• Limit: size

• CPU must check every
memory access to be sure it
is between base and limit for
that user

• Processes cannot be moved!
• Processes cannot share

memory!

6

9/29/23

4

COP 4610 – Operating System Principles 7

Hardware Address Protection

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <

All memory addressing requires two comparisons and an add!

7

COP 4610 – Operating System Principles 8

Address Binding

• Compile time: If memory location known a priori,
absolute code can be generated; must recompile
code if starting location changes

• Load time: Must generate relocatable code if
memory location is not known at compile time

• Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another
– Need hardware support for address maps (e.g., base

and limit registers)

8

9/29/23

5

COP 4610 – Operating System Principles 9

Address Binding

9

COP 4610 – Operating System Principles 10

Logical & Physical Address

• Physical address – address seen by the
memory unit

• Logical address – generated by the CPU; also
referred to as virtual address

• Compile-time & Load-time: same!
• Execution-time: differ!
• Logical address space is the set of all logical

addresses generated by a program
• Physical address space is the set of all

physical addresses generated by a program

10

9/29/23

6

COP 4610 – Operating System Principles 11

Memory Management Unit - MMU

• Hardware device that at run time maps
virtual to physical address

• Simplest MMU: add value in relocation
register to logical address before accessing
memory

11

COP 4610 – Operating System Principles 12

Dynamic Linking
• Static linking – system libraries and program code combined

by the loader into the binary program image
• Dynamic linking – linking postponed until execution time
• Small piece of code, stub, used to locate the appropriate

memory-resident library routine
• Stub replaces itself with the address of the routine and

executes the routine
• Operating system checks if routine is in processes’ memory

address
– If not in address space, add to address space

• Dynamic linking is particularly useful for libraries
• System also known as shared libraries

12

9/29/23

7

COP 4610 – Operating System Principles 13

Swapping

• Process temporarily moved to backing store.
• Backing store: disk space containing process

images.
• Roll-out roll-in: type of swapping where lower-

priority process gets swapped out to make room
for higher-priority process.

• Swapping typically very costly!
– Typically disabled; starts when used memory goes

above certain threshold and disabled again when it
falls below threshold

– Impacts context switch time

13

COP 4610 – Operating System Principles 14

Swapping

14

9/29/23

8

COP 4610 – Operating System Principles 15

Swapping

• Constraints:
– Don’t swap memory with pending I/O (or always transfer

I/O to kernel space and then user space – double
buffering)

• Mobile:
– Not typically supported; small amount of flash memory;

large delays for writing/reading to/from flash
– iOS asks apps to give up memory (read-only data thrown

out and restored from flash when needed; iOS can force
termination if needed)

– Android terminates apps if low on memory (write
application state to flash for quick restart)

15

COP 4610 – Operating System Principles 16

Contiguous Allocation

• OS & processes share
memory

• Each process in single
contiguous section of
memory

16

9/29/23

9

COP 4610 – Operating System Principles 17

Contiguous Allocation
• Base (relocation) register contains value of smallest physical address
• Limit register contains range of logical addresses – each logical address

must be less than the limit register
• MMU maps logical address dynamically

17

COP 4610 – Operating System Principles 18

Multiple/Variable-Partition Allocation

• Degree of multiprogramming limited by number of partitions
• Variable-partition sizes for efficiency
• Hole: block of available memory
• New process: allocate memory from a hole large enough to accommodate it
• Terminating process: free partition (adjacent free partitions combined)
• Operating system maintains information about: allocated partitions and

free partitions (holes)

18

9/29/23

10

COP 4610 – Operating System Principles 19

Dynamic Storage-Allocation Problem

• First-fit: allocate the first hole that is big
enough

• Best-fit: allocate the smallest hole that is big
enough; must search entire list, unless
ordered by size
– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must
also search entire list
– Produces the largest leftover hole

19

COP 4610 – Operating System Principles 20

Fragmentation

• External Fragmentation – total memory
space exists to satisfy a request, but it is
not contiguous

• Internal Fragmentation – allocated
memory may be slightly larger than
requested memory; this size difference is
memory internal to a partition, but not
being used

20

9/29/23

11

COP 4610 – Operating System Principles 21

Fragmentation

• Reduce external fragmentation by
compaction
– Shuffle memory contents to place all free memory

together in one large block
– Compaction is possible only if relocation is

dynamic, and is done at execution time
– I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store has same
fragmentation problems

21

COP 4610 – Operating System Principles 22

Segmentation
• Memory-management scheme that supports user view of

memory
• A program is a collection of segments; logical units such

as:

 main program
 procedure
 function
 method
 object
 local variables, global variables
 common block & shared memory
 stack
 symbol table
 arrays

22

9/29/23

12

COP 4610 – Operating System Principles 23

User’s View of Program

23

COP 4610 – Operating System Principles 24

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

24

9/29/23

13

COP 4610 – Operating System Principles 25

Segmentation Architecture
• Logical address consists of a two tuple:
 <segment-number, offset>,
• Segment table:
– base – contains the starting physical address where

the segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to
the segment table’s location in memory

• Segment-table length register (STLR) indicates
number of segments used by a program;

 segment number s is legal if s < STLR

25

COP 4610 – Operating System Principles 26

Segmentation Architecture

• Protection
– With each entry in segment table associate:

• validation bit = 0 Þ illegal segment
• read/write/execute privileges

• Protection bits associated with segments;
code sharing occurs at segment level

• Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem

• A segmentation example is shown in the
following diagram

26

9/29/23

14

COP 4610 – Operating System Principles 27

Segmentation Hardware

27

COP 4610 – Operating System Principles 28

Paging
• Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is
available
– Avoids external fragmentation
– Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
– Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages
• Keep track of all free frames
• To run a program of size N pages, need to find N free frames

and load program
• Set up a page table to translate logical to physical addresses
• Backing store likewise split into pages
• Still have internal fragmentation

28

9/29/23

15

COP 4610 – Operating System Principles 29

Paging
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15

Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15

Logical
Address
Space

Physical
Memory

29

COP 4610 – Operating System Principles 30

Paging
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15

Page Table

4
10
0
2
3
5
9

13

Index

0
1
2
3
4
5
6
7

30

9/29/23

16

COP 4610 – Operating System Principles 31

Address Translation Scheme
• Address generated by CPU is divided into:
– Page number (p) – used as an index into a page

table which contains base address of each page in
physical memory

– Page offset (d) – combined with base address to
define the physical memory address that is sent to the
memory unit

– For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

31

COP 4610 – Operating System Principles 32

Paging Hardware

32

9/29/23

17

COP 4610 – Operating System Principles 33

Paging

33

COP 4610 – Operating System Principles 34

Paging Example

n=2 and m=5 32-byte memory and 4-byte pages

34

9/29/23

18

COP 4610 – Operating System Principles 35

Free Frames

Before allocation After allocation

35

COP 4610 – Operating System Principles 36

Page Table Implementation
• Page table is kept in main memory
• Page-table base register (PTBR) points to the page

table
• Page-table length register (PTLR) indicates size of

the page table
• In this scheme every data/instruction access requires

two memory accesses
– One for the page table and one for the data / instruction

• The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside
buffers (TLBs)

36

9/29/23

19

COP 4610 – Operating System Principles 37

Associative Memory

• Associative memory – parallel search

• Address translation (p, d)
– If p is in associative register, get frame # out
– Otherwise get frame # from page table in memory

Page # Frame #

37

COP 4610 – Operating System Principles 38

Page Table Implementation

• Some TLBs store address-space identifiers
(ASIDs) in each TLB entry – uniquely
identifies each process to provide address-
space protection for that process
– Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)
• On a TLB miss, value is loaded into the TLB

for faster access next time
– Replacement policies must be considered
– Some entries can be wired down for permanent

fast access

38

9/29/23

20

COP 4610 – Operating System Principles 39

Paging Hardware with TLB

39

COP 4610 – Operating System Principles 40

Memory Protection
• Memory protection implemented by associating

protection bit with each frame to indicate if read-only
or read-write access is allowed
– Can also add more bits to indicate page execute-only, and

so on
• Valid-invalid bit attached to each entry in the page

table:
– “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page
– “invalid” indicates that the page is not in the process’

logical address space
– Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel

40

9/29/23

21

COP 4610 – Operating System Principles 41

Valid/Invalid Bit

41

COP 4610 – Operating System Principles 42

Shared Pages
• Shared code
– One copy of read-only (reentrant) code shared

among processes (i.e., text editors, compilers,
window systems)

– Similar to multiple threads sharing the same process
space

– Also useful for interprocess communication if sharing
of read-write pages is allowed

• Private code and data
– Each process keeps a separate copy of the code and

data
– The pages for the private code and data can appear

anywhere in the logical address space

42

9/29/23

22

COP 4610 – Operating System Principles 43

Shared Pages Example

43

COP 4610 – Operating System Principles 44

Structure of Page Table
• Memory structures for paging can get huge using

straight-forward methods
– Consider a 32-bit logical address space as on modern

computers
– Page size of 4 KB (212)
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address space

/ memory for page table alone
• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
• Inverted Page Tables

44

9/29/23

23

COP 4610 – Operating System Principles 45

Hierarchical Page Tables

• Break up the logical address space into
multiple page tables

• A simple technique is a two-level page
table

• We then page the page table

45

COP 4610 – Operating System Principles 46

Two-Level Page-Table Scheme

46

9/29/23

24

COP 4610 – Operating System Principles 47

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is

divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is further
divided into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

• Known as forward-mapped page table

47

COP 4610 – Operating System Principles 48

Address Translation Scheme

48

9/29/23

25

COP 4610 – Operating System Principles 49

64-bit Logical Address Space
• Even two-level paging scheme not sufficient
• If page size is 4 KB (212)

– Then page table has 252 entries
– If two level scheme, inner page tables could be 210 4-byte entries
– Address would look like

– Outer page table has 242 entries or 244 bytes
– One solution is to add a 2nd outer page table
– But in the following example the 2nd outer page table is still 234 bytes

in size
• And possibly 4 memory access to get to one physical memory location

49

COP 4610 – Operating System Principles 50

Three-Level Paging Scheme

50

9/29/23

26

COP 4610 – Operating System Principles 51

Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to
the same location

• Each element contains:
– the virtual page number
– the value of the mapped page frame
– a pointer to the next element

• Virtual page numbers are compared in this chain
searching for a match
– If a match is found, the corresponding physical frame is

extracted

51

COP 4610 – Operating System Principles 52

Hashed Page Tables

52

9/29/23

27

COP 4610 – Operating System Principles 53

Inverted Page Tables
• Rather than each process having a page table and

keeping track of all possible logical pages, track all
physical pages

• One entry for each real page of memory
• Entry consists of the virtual address of the page stored

in that real memory location, with information about
the process that owns that page

• Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs

• Use hash table to limit the search to one — or at most
a few — page-table entries
– TLB can accelerate access

53

COP 4610 – Operating System Principles 54

Inverted Page Tables

54

9/29/23

28

COP 4610 – Operating System Principles 55

Oracle SPARC Solaris
• Consider modern, 64-bit operating system example

with tightly integrated HW
– Goals are efficiency, low overhead

• Based on hashing, but more complex
• Two hash tables

– One kernel and one for all user processes
– Each maps memory addresses from virtual to physical

memory
– Each entry represents a contiguous area of mapped virtual

memory,
• More efficient than having a separate hash-table entry for each

page
– Each entry has base address and span (indicating the

number of pages the entry represents)

55

COP 4610 – Operating System Principles 56

Intel 32-bit & 64-bit

• Dominant industry chips

• Pentium CPUs are 32-bit and called IA-32
architecture

• Current Intel CPUs are 64-bit and called IA-
64 architecture

• Many variations in the chips, cover the main
ideas here

56

9/29/23

29

COP 4610 – Operating System Principles 57

Intel IA-32 Architecture

• Supports both segmentation and
segmentation with paging
– Each segment can be 4 GB
– Up to 16 K segments per process
– Divided into two partitions
• First partition of up to 8K segments are private to

process (kept in local descriptor table (LDT))
• Second partition of up to 8K segments shared

among all processes (kept in global descriptor
table (GDT))

57

COP 4610 – Operating System Principles 58

Intel IA-32 Architecture

• CPU generates logical address
– Selector given to segmentation unit
• Which produces linear addresses

– Linear address given to paging unit
• Which generates physical address in main memory
• Paging units form equivalent of MMU
• Pages sizes can be 4 KB or 4 MB

58

9/29/23

30

COP 4610 – Operating System Principles 59

Intel IA-32 Segmentation

59

COP 4610 – Operating System Principles 60

Logical to Physical in IA-32

60

9/29/23

31

COP 4610 – Operating System Principles 61

Intel IA-32 Paging

61

COP 4610 – Operating System Principles 62

Intel x86-64
• Current generation Intel x86 architecture
• 64 bits is ginormous (> 16 exabytes)
• In practice only implement 48 bit addressing

– Page sizes of 4 KB, 2 MB, 1 GB
– Four levels of paging hierarchy

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0

62

9/29/23

32

COP 4610 – Operating System Principles 63

ARM Architecture
• Dominant mobile platform chip (Apple iOS and

Google Android devices for example)
• Modern, energy efficient, 32-bit CPU
• 4 KB and 16 KB pages
• 1 MB and 16 MB pages (termed sections)
• One-level paging for sections, two-level for smaller

pages
• Two levels of TLBs

– Outer level has two micro TLBs (one data, one
instruction)

– Inner is single main TLB
– First inner is checked, on miss outers are

checked, and on miss page table walk
performed by CPU

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

63

