Paper “Superpages”

• Small pages vs. large pages
• TLB coverage (how large should it be?)
• Hardware-imposed constraints
 – Page sizes supported by hardware
 – Contiguous in physical and virtual address space
 – Starting address must be multiple of its size
 – TLB uses single set of reference/dirty/protection bits for page
Paper “Superpages”

• Relocation-based allocation
 – When is relocation needed?
• Reservation-based allocation
 – What is the problem with this approach?
• Fragmentation control: “contiguity as a resource”
• Promotion
 – Challenges: who/when to promote
• Demotion
 – Challenge: how do we know which “sub pages” are used
• Eviction
 – Challenge: dirty bits

Proposed solution: reservation-based approach
• Buddy allocator
• Multi-list reservation scheme
• How to choose superpage size?
 – Dynamically-sized objects
 – Fixed-size objects
Paper “Superpages”

• Preempting reserved (unused) frames
• Coalescing of available memory regions
• Incremental promotions
 – Cascading promotions possible
• Speculative demotions
 – E.g., due to eviction; to next-smaller size
 – Probabilistic demotions

Paper “Superpages”

• Dirty superpages
 – Demote clean superpages when writing occurs
• Population map
 – Keeps track of allocated base pages
• Wired page clustering
Paper “Superpages”