
2/14/22

1

Graduate Operating Systems

Spring 2022

1

User Threads vs. Kernel Threads

2

2/14/22

2

User Threads vs. Kernel Threads

• “Lightweight” vs. “heavyweight”
• Concurrency vs. parallelism
• Control (or lack thereof)
• (Portability)

• Scheduler activations: combine benefits of
kernel-level threads and user-level threads

3

Kernel/User Level Integration

• “Virtual processors” allocated by kernel
• ULTS controls which threads to run
• Kernel notifies ULTS when changes are made

(number of processors) or blocking occurs
• ULTS notifies kernel when more/fewer

processors are needed

4

2/14/22

3

Scheduler Activations

• Tool for KL & UL communication
– Kernel: “notify UL of events that impact user-level

scheduling”
– UL: “notify KL of events that can affect processor

allocation”
• System calls vs. upcalls
• Scheduler activation: “execution context for

an event vectored from the kernel to an
address space”

5

Scheduler Activations

Processors

Operating
System
Kernel

User-Level
Runtime
system

Scheduler
Activation

User-Level
thread mgmnt

system

User program

Operating
System

1 creates

2 Assigns

3 Upcall

Scheduler
Activation

Scheduler
Activation

Upcall Upcall

7 creates

5 creates

6 more

4 runs

6

2/14/22

4

Scheduler Activations (Upcalls)

7

Example: Blocking

8

2/14/22

5

Scheduler Activations (System Calls)

9

Scheduler Activations

• What if user-level thread is in critical section
when it is blocked or preempted?

• Prevention & recovery

10

2/14/22

6

Paper “DThreads”

• Multithreaded programming hard
• Enforce deterministic execution (but be efficient)
• Heisenbugs
• Same program + same inputs = always same outputs
• Goals of Dthreads: deterministic execution, easy to

deploy, robust to changes in input/architectures/code,
eliminates cache-line false sharing, efficient.

• How: turn multithreaded apps into multiple processes
with private copy-on-write mappings to shared
memory

11

Paper “DThreads”

• Pthread: race conditions (Figure 1)
• DThreads: deterministic output (Figure 2)
• Synchronization points
• Last-writer wins protocol
• Deterministic thread index
• Memory mapped files
• Global token (serialization, locks, condition

variables, barriers)

12

