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User Threads vs. Kernel Threads
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User Threads vs. Kernel Threads

• “Lightweight” vs. “heavyweight”
• Concurrency vs. parallelism
• Control (or lack thereof)
• (Portability)

• Scheduler activations: combine benefits of 
kernel-level threads and user-level threads
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Kernel/User Level Integration

• “Virtual processors” allocated by kernel
• ULTS controls which threads to run
• Kernel notifies ULTS when changes are made 

(number of processors) or blocking occurs
• ULTS notifies kernel when more/fewer 

processors are needed
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Scheduler Activations

• Tool for KL & UL communication
– Kernel: “notify UL of events that impact user-level 

scheduling”
– UL: “notify KL of events that can affect processor 

allocation”
• System calls vs. upcalls
• Scheduler activation: “execution context for 

an event vectored from the kernel to an 
address space”
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Scheduler Activations
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Scheduler Activations (Upcalls)
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Example: Blocking
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Scheduler Activations (System Calls)
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Scheduler Activations

• What if user-level thread is in critical section 
when it is blocked or preempted?

• Prevention & recovery
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Paper “DThreads”

• Multithreaded programming hard
• Enforce deterministic execution (but be efficient)
• Heisenbugs
• Same program + same inputs = always same outputs
• Goals of Dthreads: deterministic execution, easy to 

deploy, robust to changes in  input/architectures/code, 
eliminates cache-line false sharing, efficient.

• How: turn multithreaded apps into multiple processes 
with private copy-on-write mappings to shared 
memory
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Paper “DThreads”

• Pthread: race conditions (Figure 1)
• DThreads: deterministic output (Figure 2)
• Synchronization points
• Last-writer wins protocol
• Deterministic thread index
• Memory mapped files
• Global token (serialization, locks, condition 

variables, barriers)
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