Graduate Operating Systems

Spring 2022

1

Working Set Model

- How much memory does a process need?
- Virtual memory & memory management
- Paging-in, paging-out
- Page replacement strategies
 - Metric: page traffic
 - Optimal
 - Random
 - FIFO
 - LRU
 - ATLAS Loop Detection
 - Belady: simple + "some" historical data

5

Working Set Model

```
Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
                          7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
                           7 7 7 2
0 0 0
1 1
                                                                                                                        Optimal
                          7 7 7 2
0 0 0
1 1

    2
    2
    4
    4
    4
    0

    3
    3
    3
    2
    2
    2

    1
    0
    0
    0
    3
    3

                                                                                                                        FIFO
                         page frames
                                                      4 4 4 0
0 0 3 3
3 2 2 2
                                                                                                                        LRU
                        page frames
```

Working Set Model

- Working set of information W(t,τ)
- Working set size $\omega(t, \tau)$
- Properties of working set:
 - Size (Figure 3)
 - Prediction
 - Reentry rate
 - $-\tau$ -sensitivity
- τ too small/large

7

Working Set Model

- In-core & use bits (Figure 5)
- if $D > m \Rightarrow$ Thrashing
- Policy if D > m, then suspend or swap out one of the processes

L

Paper "WSCLOCK"

- Local vs. global replacement policies
- Dirty bit
- CLOCK algorithm
- Task isolation: WS vs. CLOCK

