Graduate Operating Systems

Spring 2022

1

Paper "Superpages"

- Small pages vs. large pages
- TLB coverage (how large should it be?)
- Hardware-imposed constraints
 - Page sizes supported by hardware
 - Contiguous in physical and virtual address space
 - Starting address must be multiple of its size
 - TLB uses single set of reference/dirty/protection bits for page

2

Paper "Superpages"

- Relocation-based allocation
 - When is relocation needed?
- Reservation-based allocation
 - What is the problem with this approach?
- Fragmentation control: "contiguity as a resource"
- Promotion
 - Challenges: who/when to promote
- Demotion
 - Challenge: how do we know which "sub pages" are used
- Eviction
 - Challenge: dirty bits

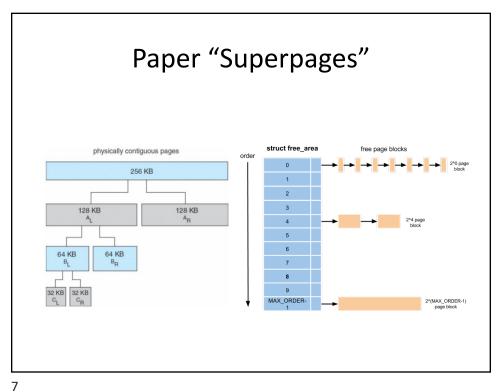
3

Paper "Superpages"

- Proposed solution: reservation-based approach
- Buddy allocator
- Multi-list reservation scheme
- How to choose superpage size?
 - Dynamically-sized objects
 - Fixed-size objects

4

Paper "Superpages"


- Preempting reserved (unused) frames
- · Coalescing of available memory regions
- Incremental promotions
 - Cascading promotions possible
- Speculative demotions
 - E.g., due to eviction; to next-smaller size
 - Probabilistic demotions

5

Paper "Superpages"

- Dirty superpages
 - Demote clean superpages when writing occurs
- Population map
 - Keeps track of allocated base pages
- · Wired page clustering

6

