Graduate Operating Systems
COP5614

Spring 2022

Operating Systems

* Most operating systems are large & complex systems

— Most people don’t understand every aspect of them —
including sysadmins and computer scientists!

— Simple programs like “Hello, World” can be millions of lines
of code

— Many research projects study operating systems behavior

» Studying OS is learning how to deal with complexity
— Abstractions (+interfaces)
— Modularity (+structure)
— Iteration (+learning from experience)

1/11/22



What does an OS do?

Software layer that sits
between applications

Performs services
— Abstracts hardware

— Manages resources

OS vs Kernel

Windows, Linux, Mac OS are operating systems
— Includes system programs, system libraries, servers, shells, GUI, etc.
Linux kernel, Windows executive, etc. — the special piece of

software that runs with special privileges and actually controls
the machine

OS often equated with the kernel

Kernel i v ¢
Mode Exported Driver
Othe Support Routines
Kemel—:‘lrnde > l¢—p] File System
Drivers Operating Drivers.
I System Kernel
‘ Hardware Abstraction Layer ‘

‘ Hardware ‘

1/11/22



Evolution of OS

e OSasalibrary
— Abstracts away hardware, provides neat interfaces
* Makes software portable; allows software evolution
— Single user, single program computers

* No need for protection: no malicious users, no
interactions between programs

* No resource sharing
— Disadvantages of uniprogramming model
* Expensive
* Poor resource utilization
* Doesn’t support complex/large applications

Evolution of OS

* Invent multiprogramming

— First multi-programmed batch systems, then time-sharing
systems

* |dea:
— Load multiple programs in memory

— Do something else while one program is waiting, don’t sit
idle (see next slide)

* Complexity increases:
— What if programs interfere with each other (wild writes)
— What if programs don’t relinquish control (infinite loop)

1/11/22



1/11/22

Single Program vs Multiprogramming

Program A Run Wait Run Wait

Time >
(a) Uniprogramming

Program A IE\ Wait El Wait
Program B Wait Wait Wait

Combined R:“ R;" Wait R:" Rl';" Wait

Time
(b) Multiprogramming with two programs

Protection

* Multiprogramming requires isolation
* OS must protect/isolate applications from each

other, but also OS from applications
— Applications should not crash OS or other applications!

* Three techniques
— Preemption
— Interposition/mediation
— Privileged mode




Protection #1: Preemption

Resource can be given to program and access can be
revoked

— Example: CPU, Memory, Printer, “abstract” resources: files,
sockets

CPU preemption using interrupts

— Hardware timer interrupt invokes OS, OS checks if current
program should be preempted, done every few
milliseconds in Linux

— Solves infinite loop problem!

Does it work with all resources equally?

Protection #2: Interposition

OS hides the hardware

Application have to go through OS to access
resources (SYSTEM CALLS!)

OS can interpose checks:

— Validity (Address Translation)

— Permission (Security Policy)

— Resource Constraints (Quotas)

10

1/11/22



1/11/22

Protection #3: Privilege

e Two fundamental modes:

— “kernel mode” — privileged
* aka system, supervisor, or monitor mode
* Intel calls its PLO, Privilege Level 0 on x86
— “user mode” — non-privileged
* PL3 on x86

* Bitin CPU - controls operation of CPU
— Protection operations can only

be performed in kernel mode. el
Example: hit {

— Carefully control transitions asm(“hit”);
between user & kernel mode }

OS as a Resource Manager

e OS provides “illusions”; examples:
— Every program is run on its own CPU

— Every program has all the memory of the machine
(and more)

— Every program has its own 1/0 terminal
e “Stretches” resources

— Possible because resource usage is typically
“bursty”

* |ncreases utilization




Resource Management

Multiplexing increases complexity
Car analogy:

— Dedicated road inefficient, so sharing is needed
— Abstraction: different lanes per direction

— Synchronization: traffic lights

— Capacity: build more roads/lanes

More utilization creates contention

Decrease demand: slow down
Backoff/retry: use highway during off-peak hours
Refuse service, quotas: force people into public transportation

System collapse: traffic jam

13

Resource Management

e OS must decide who gets to use what

resource

* Approach 1: have admin (boss) tell it
* Approach 2: have user tell it

— What if user lies? What if user doesn’t know?

* Approach 3: figure it out through feedback

— Problem: how to tell power users from resource
hogs?

14

1/11/22



Goals for Resource Management

* Fairness

— Assign resources equitably
Differential Responsiveness

— Cater to individual applications’ needs
Efficiency

— Maximize throughput, minimize response time,
support as many apps as you can

These goals are often conflicting
— All about trade-offs

15

Summary: Core OS Functions

* Hardware abstraction through interfaces

* Protection:
— Preemption
— Interposition
— Privilege (user/kernel mode)

* Resource Management
— Virtualizing of resources
— Scheduling of resources

16

1/11/22



“Entrance Exam”

What is a multi-threaded process?
What is the purpose of mutual exclusion?

What does it mean to say an operation is
atomic?

Use a brief example to describe what a
deadlock is or how it can be caused.

What is the difference between deadlock and
starvation?

17

“Entrance Exam”

What is the purpose of an interrupt?
What is priority inversion?

What does a page table do?

What does thrashing mean?

What is a symbolic link?

What is a parity bit?

What is an i-node (or file control block)?

18

1/11/22



“Entrance Exam”

What does it mean to fork a process?
What is the danger of caching a write?
What is a page fault?

What is the difference between kernel space
and user space?

What is disk fragmentation?
What is a critical section?

19

“Entrance Exam”

What is a runqueue (or ready queue)?
What is a binary semaphore?

What is the difference between a direct
pointer and an indirect pointer in a file system
such as EXT?

Can you name and very briefly describe a
scheduling algorithm that would be fair to all
tasks awaiting execution?

20

1/11/22

10



“Entrance Exam”

e Can you name and very briefly describe a
scheduling algorithm that might be a good
choice in a real-time system?

* What is a system call?
* What does it mean for a system call to block?

21

Next Week

* Next week:

— OS History and Architecture

* [1] P. Brinch Hansen, "The Nucleus of a Multiprogramming
System", Communications of the ACM, 238-242, April 1970.

* [2] Dennis M. Ritchie and Ken Thompson, "The UNIX Time-
Sharing System", Communications of the ACM, volume 17,
number 7, July 1974.

* [3] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole
Jr., "Exokernel: An Operating System Architecture for
Application-Level Resource Management", Proc. of the 15th
Symposium on Operating Systems Principles, December
1996.

22

1/11/22

11



