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Operating Systems

* Most operating systems are large & complex systems

— Most people don’t understand every aspect of them —
including sysadmins and computer scientists!

— Simple programs like “Hello, World” can be millions of lines
of code

— Many research projects study operating systems behavior

» Studying OS is learning how to deal with complexity
— Abstractions (+interfaces)
— Modularity (+structure)
— Iteration (+learning from experience)
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What does an OS do?

Software layer that sits
between applications

Performs services
— Abstracts hardware

— Manages resources

OS vs Kernel

Windows, Linux, Mac OS are operating systems
— Includes system programs, system libraries, servers, shells, GUI, etc.
Linux kernel, Windows executive, etc. — the special piece of

software that runs with special privileges and actually controls
the machine

OS often equated with the kernel

Kernel i v ¢
Mode Exported Driver
Othe Support Routines
Kemel—:‘lrnde > l¢—p] File System
Drivers Operating Drivers.
I System Kernel
‘ Hardware Abstraction Layer ‘

‘ Hardware ‘
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Evolution of OS

e OSasalibrary
— Abstracts away hardware, provides neat interfaces
* Makes software portable; allows software evolution
— Single user, single program computers

* No need for protection: no malicious users, no
interactions between programs

* No resource sharing
— Disadvantages of uniprogramming model
* Expensive
* Poor resource utilization
* Doesn’t support complex/large applications

Evolution of OS

* Invent multiprogramming

— First multi-programmed batch systems, then time-sharing
systems

* |dea:
— Load multiple programs in memory

— Do something else while one program is waiting, don’t sit
idle (see next slide)

* Complexity increases:
— What if programs interfere with each other (wild writes)
— What if programs don’t relinquish control (infinite loop)
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Single Program vs Multiprogramming

Program A Run Wait Run Wait

Time >
(a) Uniprogramming

Program A IE\ Wait El Wait
Program B Wait Wait Wait

Combined R:“ R;" Wait R:" Rl';" Wait

Time
(b) Multiprogramming with two programs

Protection

* Multiprogramming requires isolation
* OS must protect/isolate applications from each

other, but also OS from applications
— Applications should not crash OS or other applications!

* Three techniques
— Preemption
— Interposition/mediation
— Privileged mode




Protection #1: Preemption

Resource can be given to program and access can be
revoked

— Example: CPU, Memory, Printer, “abstract” resources: files,
sockets

CPU preemption using interrupts

— Hardware timer interrupt invokes OS, OS checks if current
program should be preempted, done every few
milliseconds in Linux

— Solves infinite loop problem!

Does it work with all resources equally?

Protection #2: Interposition

OS hides the hardware

Application have to go through OS to access
resources (SYSTEM CALLS!)

OS can interpose checks:

— Validity (Address Translation)

— Permission (Security Policy)

— Resource Constraints (Quotas)
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Protection #3: Privilege

e Two fundamental modes:

— “kernel mode” — privileged
* aka system, supervisor, or monitor mode
* Intel calls its PLO, Privilege Level 0 on x86
— “user mode” — non-privileged
* PL3 on x86

* Bitin CPU - controls operation of CPU
— Protection operations can only

be performed in kernel mode. el
Example: hit {

— Carefully control transitions asm(“hit”);
between user & kernel mode }

OS as a Resource Manager

e OS provides “illusions”; examples:
— Every program is run on its own CPU

— Every program has all the memory of the machine
(and more)

— Every program has its own 1/0 terminal
e “Stretches” resources

— Possible because resource usage is typically
“bursty”

* |ncreases utilization




Resource Management

Multiplexing increases complexity
Car analogy:

— Dedicated road inefficient, so sharing is needed
— Abstraction: different lanes per direction

— Synchronization: traffic lights

— Capacity: build more roads/lanes

More utilization creates contention

Decrease demand: slow down
Backoff/retry: use highway during off-peak hours
Refuse service, quotas: force people into public transportation

System collapse: traffic jam
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Resource Management

e OS must decide who gets to use what

resource

* Approach 1: have admin (boss) tell it
* Approach 2: have user tell it

— What if user lies? What if user doesn’t know?

* Approach 3: figure it out through feedback

— Problem: how to tell power users from resource
hogs?
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Goals for Resource Management

* Fairness

— Assign resources equitably
Differential Responsiveness

— Cater to individual applications’ needs
Efficiency

— Maximize throughput, minimize response time,
support as many apps as you can

These goals are often conflicting
— All about trade-offs
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Summary: Core OS Functions

* Hardware abstraction through interfaces

* Protection:
— Preemption
— Interposition
— Privilege (user/kernel mode)

* Resource Management
— Virtualizing of resources
— Scheduling of resources
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“Entrance Exam”

What is a multi-threaded process?
What is the purpose of mutual exclusion?

What does it mean to say an operation is
atomic?

Use a brief example to describe what a
deadlock is or how it can be caused.

What is the difference between deadlock and
starvation?
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“Entrance Exam”

What is the purpose of an interrupt?
What is priority inversion?

What does a page table do?

What does thrashing mean?

What is a symbolic link?

What is a parity bit?

What is an i-node (or file control block)?

18

1/11/22



“Entrance Exam”

What does it mean to fork a process?
What is the danger of caching a write?
What is a page fault?

What is the difference between kernel space
and user space?

What is disk fragmentation?
What is a critical section?
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“Entrance Exam”

What is a runqueue (or ready queue)?
What is a binary semaphore?

What is the difference between a direct
pointer and an indirect pointer in a file system
such as EXT?

Can you name and very briefly describe a
scheduling algorithm that would be fair to all
tasks awaiting execution?
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“Entrance Exam”

e Can you name and very briefly describe a
scheduling algorithm that might be a good
choice in a real-time system?

* What is a system call?
* What does it mean for a system call to block?
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Next Week

* Next week:

— OS History and Architecture

* [1] P. Brinch Hansen, "The Nucleus of a Multiprogramming
System", Communications of the ACM, 238-242, April 1970.

* [2] Dennis M. Ritchie and Ken Thompson, "The UNIX Time-
Sharing System", Communications of the ACM, volume 17,
number 7, July 1974.

* [3] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole
Jr., "Exokernel: An Operating System Architecture for
Application-Level Resource Management", Proc. of the 15th
Symposium on Operating Systems Principles, December
1996.
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