
1/11/22

1

Graduate Operating Systems
COP5614

Spring 2022

1

Operating Systems

• Most operating systems are large & complex systems
– Most people don’t understand every aspect of them –

including sysadmins and computer scientists!
– Simple programs like “Hello, World” can be millions of lines 

of code
– Many research projects study operating systems behavior

• Studying OS is learning how to deal with complexity
– Abstractions (+interfaces)
– Modularity (+structure)
– Iteration (+learning from experience)

2



1/11/22

2

What does an OS do?

• Software layer that sits
between applications
and hardware

• Performs services
– Abstracts hardware
– Provides protection
– Manages resources

Hardware
CPU Memory Network Disk

Operating System

gcc csh X11

3

OS vs Kernel
• Windows, Linux, Mac OS are operating systems

– Includes system programs, system libraries, servers, shells, GUI, etc.
• Linux kernel, Windows executive, etc. – the special piece of 

software that runs with special privileges and actually controls
the machine

• OS often equated with the kernel

4



1/11/22

3

Evolution of OS

• OS as a library
– Abstracts away hardware, provides neat interfaces
• Makes software portable; allows software evolution

– Single user, single program computers
• No need for protection: no malicious users, no 

interactions between programs
• No resource sharing

– Disadvantages of uniprogramming model
• Expensive
• Poor resource utilization
• Doesn’t support complex/large applications

5

Evolution of OS

• Invent multiprogramming
– First multi-programmed batch systems, then time-sharing 

systems 
• Idea: 
– Load multiple programs in memory
– Do something else while one program is waiting, don’t sit 

idle (see next slide)
• Complexity increases:
– What if programs interfere with each other (wild writes)
– What if programs don’t relinquish control (infinite loop)

6



1/11/22

4

Single Program vs Multiprogramming

7

Protection

• Multiprogramming requires isolation
• OS must protect/isolate applications from each 

other, but also OS from applications 
– Applications should not crash OS or other applications!

• Three techniques
– Preemption
– Interposition/mediation
– Privileged mode

8



1/11/22

5

Protection #1: Preemption

• Resource can be given to program and access can be 
revoked
– Example: CPU, Memory, Printer, “abstract” resources: files, 

sockets

• CPU preemption using interrupts
– Hardware timer interrupt invokes OS, OS checks if current 

program should be preempted, done every few 
milliseconds in Linux

– Solves infinite loop problem!
• Does it work with all resources equally?

9

Protection #2: Interposition

• OS hides the hardware
• Application have to go through OS to access 

resources (SYSTEM CALLS!)
• OS can interpose checks:
– Validity (Address Translation)
– Permission (Security Policy)
– Resource Constraints (Quotas)

10



1/11/22

6

Protection #3: Privilege
• Two fundamental modes:
– “kernel mode” – privileged

• aka system, supervisor, or monitor mode 
• Intel calls its PL0, Privilege Level 0 on x86

– “user mode” – non-privileged
• PL3 on x86

• Bit in CPU – controls operation of CPU
– Protection operations can only 

be performed in kernel mode. 
Example: hlt

– Carefully control transitions 
between user & kernel mode

int main()
{

asm(“hlt”);
}

11

OS as a Resource Manager

• OS provides “illusions”; examples:
– Every program is run on its own CPU
– Every program has all the memory of the machine 

(and more)
– Every program has its own I/O terminal

• “Stretches” resources
– Possible because resource usage is typically 

“bursty”
• Increases utilization

12



1/11/22

7

Resource Management
• Multiplexing increases complexity 
• Car analogy:

– Dedicated road inefficient, so sharing is needed
– Abstraction: different lanes per direction
– Synchronization: traffic lights
– Capacity: build more roads/lanes

• More utilization creates contention
– Decrease demand: slow down
– Backoff/retry: use highway during off-peak hours
– Refuse service, quotas: force people into public transportation
– System collapse: traffic jam

13

Resource Management

• OS must decide who gets to use what 
resource

• Approach 1: have admin (boss) tell it
• Approach 2: have user tell it
– What if user lies? What if user doesn’t know?

• Approach 3: figure it out through feedback
– Problem: how to tell power users from resource 

hogs?

14



1/11/22

8

Goals for Resource Management

• Fairness
– Assign resources equitably

• Differential Responsiveness
– Cater to individual applications’ needs

• Efficiency
– Maximize throughput, minimize response time, 

support as many apps as you can
• These goals are often conflicting
– All about trade-offs

15

Summary: Core OS Functions

• Hardware abstraction through interfaces
• Protection:
– Preemption
– Interposition
– Privilege (user/kernel mode)

• Resource Management
– Virtualizing of resources
– Scheduling of resources

16



1/11/22

9

“Entrance Exam”

• What is a multi-threaded process?
• What is the purpose of mutual exclusion?
• What does it mean to say an operation is 

atomic?
• Use a brief example to describe what a 

deadlock is or how it can be caused.
• What is the difference between deadlock and 

starvation?

17

“Entrance Exam”

• What is the purpose of an interrupt?
• What is priority inversion?
• What does a page table do?
• What does thrashing mean?
• What is a symbolic link?
• What is a parity bit?
• What is an i-node (or file control block)?

18



1/11/22

10

“Entrance Exam”

• What does it mean to fork a process?
• What is the danger of caching a write?
• What is a page fault?
• What is the difference between kernel space

and user space?
• What is disk fragmentation?
• What is a critical section?

19

“Entrance Exam”

• What is a runqueue (or ready queue)?
• What is a binary semaphore?
• What is the difference between a direct 

pointer and an indirect pointer in a file system 
such as EXT?

• Can you name and very briefly describe a 
scheduling algorithm that would be fair to all 
tasks awaiting execution?

20



1/11/22

11

“Entrance Exam”

• Can you name and very briefly describe a 
scheduling algorithm that might be a good 
choice in a real-time system?

• What is a system call?
• What does it mean for a system call to block?

21

Next Week

• Next week:
– OS History and Architecture

• [1] P. Brinch Hansen, "The Nucleus of a Multiprogramming 
System", Communications of the ACM, 238-242, April 1970.

• [2] Dennis M. Ritchie and Ken Thompson, "The UNIX Time-
Sharing System", Communications of the ACM, volume 17, 
number 7, July 1974.

• [3] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole 
Jr., "Exokernel: An Operating System Architecture for 
Application-Level Resource Management", Proc. of the 15th 
Symposium on Operating Systems Principles, December 
1996.

22


