Graduate Operating Systems

Spring 2022

Paper “RM/EDF”

• The correctness of the system
 – Logical/functional
 – Temporal
• RT computing
 – The objective of “fast computing” is to minimize the average response time
 – The objective of real-time computing is to meet the individual timing requirement of each task
Paper “RM/EDF”

• Hard vs. soft real-time
• Closed-loop control

![Diagram of closed-loop control system]

The system being controlled

Outside effects

Paper “RM/EDF”

• Job
 – Each unit of work that is scheduled and executed by the system
• Task
 – A set of related jobs
 – For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at every period
• Release time
 – Time instant at which a job becomes available for execution
 – It can be executed at any time at or after the release time
• Deadline
 – Time instant by which a job should be finished
 – Relative deadline: Maximum allowable response time
 – Absolute deadline = release time + relative deadline
Paper “RM/EDF”

- Periodic task T_i
 - Period P_i
 - Worst case execution time C_i
 - Relative deadline D_i
- Job J_{ik}
 - Absolute deadline = release time + relative deadline
 - Response time = finish time – release time
- Deadline miss if
 - Finish time > absolute deadline
 - Response time of $J_{ik} > D_i$

Periodic Task Model

$\text{Task} = \{T, C, D\}$

jobs (j_1, j_2, j_3, \ldots)
Paper “RM/EDF”

- Table-driven scheduling
- Jitter
- Hyperperiods

A scheduling algorithm S is optimal if S cannot schedule a real-time task set T, no other scheduling algorithm can schedule T

- E.g., Rate Monotonic & EDF
Common Assumptions

- Single processor
- Every task is periodic
- Deadline = period
- Tasks are independent
- WCET of each task is known
- Zero context switch time

Paper “RM/EDF”

- Fixed priority system
 - Assign the same priority to all the jobs in each task
 - Rate monotonic (RMS)
- Dynamic priority system
 - Assign different priorities to the individual jobs in each task
 - Earliest Deadline First (EDF)
Paper “RM/EDF”

- RMS: optimal \textit{fixed} priority scheduling algorithm
- Shorter period \rightarrow Higher priority
 - Higher rate \rightarrow higher priority
- Utilization bound

\[
U = \sum_{i=1}^{n} \frac{C_i}{T_i} \leq n(\sqrt{2} - 1)
\]

\[
\lim_{n \to \infty} n(\sqrt{2} - 1) = \ln 2 \approx 0.693147\ldots
\]

RMS (Rate Monotonic Scheduling)

Process P_1: service time = 20, period = 50, deadline = 50
Process P_2: service time = 35, period = 100, deadline = 100

\begin{tabular}{|c|c|c|c|c|c|}
\hline
Deadlines & P_1 & P_1, P_2 & P_1 & P_1, P_2 \\
\hline
0 & 10 & 20 & 30 & 40 & 50 \ldots
\hline
10 & 20 & 30 & 40 & 50 & 60 \ldots
\hline
20 & 30 & 40 & 50 & 60 & 70 \ldots
\hline
30 & 40 & 50 & 60 & 70 & 80 \ldots
\hline
40 & 50 & 60 & 70 & 80 & 90 \ldots
\hline
50 & 60 & 70 & 80 & 90 & 100 \ldots
\hline
60 & 70 & 80 & 90 & 100 & 110 \ldots
\hline
70 & 80 & 90 & 100 & 110 & 120 \ldots
\hline
80 & 90 & 100 & 110 & 120 & 130 \ldots
\hline
90 & 100 & 110 & 120 & 130 & 140 \ldots
\hline
100 & 110 & 120 & 130 & 140 & 150 \ldots
\hline
110 & 120 & 130 & 140 & 150 & 160 \ldots
\hline
120 & 130 & 140 & 150 & 160 & 170 \ldots
\hline
130 & 140 & 150 & 160 & 170 & 180 \ldots
\hline
140 & 150 & 160 & 170 & 180 & 190 \ldots
\hline
150 & 160 & 170 & 180 & 190 & 200 \ldots
\hline
\end{tabular}
Missed Deadlines with RMS

Process P_1: service time = 25, period = 50, deadline = 50
Process P_2: service time = 35, period = 80, deadline = 80

RMS is guaranteed to work if

$N = \text{number of processes}$

sufficient condition

$$u = \sum_{i=1}^{N} \frac{f_i}{p_i} \leq N \left(\sqrt{2} - 1 \right);$$

$$\lim_{N \to \infty} N \left(\sqrt{2} - 1 \right) = \ln 2 \approx 0.693147$$

Paper “RM/EDF”

- EDF: shorter absolute deadline \Rightarrow Higher priority
- Utilization bound $U_b = 1$
- U_b is necessary and sufficient
EDF (Earliest Deadline First)

Process P_1: service time = 25, period = 50, deadline = 50
Process P_2: service time = 35, period = 80, deadline = 80

Paper “RM/EDF”

- RMS
 - RMS may not guarantee schedulability even when $U < 1$
 - Low overhead: priorities do not change for a fixed task set
- EDF
 - EDF guarantee schedulability as long as $U \leq 1$
 - High overhead: task priorities may change dynamically
Paper “RM/EDF”

• Implementation complexity
 – Modifying systems vs. from scratch
 – Periods for newly arriving tasks
 – Fixed vs. infinite number of priority levels
 – EDF runtime overheads (priorities change)

 – Winner: RMS

Paper “RM/EDF”

• Run-time overhead
 – Updating deadlines costly
 – EDF: fewer context switches (preemptions)

Figure 1. Preemptions introduced by RM (a) and EDF (b) on a set of two periodic tasks. Adjacent jobs of r1 are depicted with different colours to better distinguish them.
Paper “RM/EDF”

• Run-time overhead

![Graphs showing run-time overhead comparison between RM and EDF]

Winner: EDF
Paper “RM/EDF”

• Schedulability analysis
 – EDF (d=p): simple
 – RMS: U <= 0.69; simple, but resources wasted
 • Hyperbolic bound (higher acceptance ratio for large n)
 – Exact for EDF:
 • Processor Demand Criterion (PDC) for d<p
 – Exact for RMS:
 • Response Time Analysis (RTA)

• Winner: Tie?
Paper “RM/EDF”

• Robustness during overloads
 – Permanent

 – Winner: RMS

![Graph of robustness during permanent overloads]

Figure 8. Schedules produced by EDF (a) and RM (b) for a set of three periodic tasks in a permanent overload condition.

Paper “RM/EDF”

• Robustness during overloads
 – Transient

 – Winner: Tie

![Graph of robustness during transient overloads]

Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for the other tasks.
Paper “RM/EDF”

• Jitter and Latency

• Winner: Tie?

Paper “RM/EDF”

• Resource sharing
 – Solutions for EDF and RMS exist

• Aperiodic tasks
 – Periodic servers (EDF has higher utilization bounds)

• Resource reservations
 – Reservation protocols exist for EDF and RMS