Graduate Operating Systems

Spring 2022

Paper “DVS”

• Real-Time Systems
• Dynamic Voltage Scaling (DVS, DFS)
• Over-designed systems (peak performance)
• Periodic task model
• Earliest Deadline First (EDF)
• Rate Monotonic Scheduling (RM)
• Schedulability test
Peak vs. Average Performance

- Peak computing rate is needed
- Average rate would suffice

DVS Fundamentals

- Processors are based on CMOS technology where dynamic power is the bottleneck
- Dynamic power (due to switching activity)
 - Power depends on V^2 and f
 - Achievable f depends on V
- Energy = $P \times t_{\text{execution}}$
DVS Fundamentals

Periodic Task Model

\[
\text{Task} = \{T, C, D\}
\]

jobs \((j_1, j_2, j_3, \ldots)\)
RMS (Rate Monotonic Scheduling)

Process P_1: service time = 20, period = 50, deadline = 50
Process P_2: service time = 35, period = 100, deadline = 100

Missed Deadlines with RMS

Process P_1: service time = 25, period = 50, deadline = 50
Process P_2: service time = 35, period = 80, deadline = 80

RMS is guaranteed to work if

$N = \text{number of processes}

\sum_{i=1}^{N} \frac{t_i}{p_i} \leq N \left(\sqrt{2} - 1 \right);

\lim_{N \to \infty} N \left(\sqrt{2} - 1 \right) = \ln 2 \approx 0.693147$

<table>
<thead>
<tr>
<th>N</th>
<th>$N \left(\sqrt{2} - 1 \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.828427</td>
</tr>
<tr>
<td>3</td>
<td>0.779763</td>
</tr>
<tr>
<td>4</td>
<td>0.756828</td>
</tr>
<tr>
<td>5</td>
<td>0.743491</td>
</tr>
<tr>
<td>10</td>
<td>0.717734</td>
</tr>
<tr>
<td>20</td>
<td>0.705298</td>
</tr>
</tbody>
</table>
EDF (Earliest Deadline First)

Process P₁: service time = 25, period = 50, deadline = 50
Process P₂: service time = 35, period = 80, deadline = 80

Static Voltage Scaling EDF: Motivation

\[\text{WC}_i = \text{worst case computation time @ } F_{\text{max}} \]

Holes in the schedule imply:

EDF Test: \(\sum \left(\frac{\text{WC}_i}{p_i} \right) < 1 \) at frequency = \(F_{\text{max}} \)
Static Voltage Scaling EDF

EDF Test:
\[\sum \left(\frac{wc_i}{p_i} \right) < 1 \] at maximum frequency = \(F_{\text{max}} \)

Static-VS EDF Test:
\[K \cdot \sum \left(\frac{wc_i}{p_i} \right) = 1 \] at frequency = \(F_{\text{max}} / K \)

Static EDF: Example

<table>
<thead>
<tr>
<th>Task</th>
<th>Computing Time</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 ms</td>
<td>8 ms</td>
</tr>
<tr>
<td>2</td>
<td>3 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>3</td>
<td>1 ms</td>
<td>14 ms</td>
</tr>
</tbody>
</table>

Available frequencies: 1.00, 0.75

Scheduleability test for \(\alpha = 1.00 \):
\[\frac{3}{8} + \frac{3}{10} + \frac{3}{14} \leq 1 \quad \rightarrow \text{Return true} \]

Scheduleability test for \(\alpha = 0.75 \):
\[\frac{3}{8} + \frac{3}{10} + \frac{1}{14} \leq 0.75 \quad \rightarrow \text{Return true} \]
What if $C_i < WC_i$?

More holes left unexploited

Next arrival of T1

Hole of size $= (wc1 - c1)$

Slow down all these tasks proportionally

Task T1 completes

Next arrival of T1
What if $C_i < WC_i$?

<table>
<thead>
<tr>
<th>$K'c1$</th>
<th>$K'wc2$</th>
<th>$K'wc3$</th>
<th>$K'wc4$</th>
</tr>
</thead>
</table>

CPU Cycles are conserved by slowing down the remaining tasks.

Next arrival of T1

Cycle Conserving RT-DVS

- When a task set completes its first release, compare real execution time with worst case specified initially.

- Any idle time in that period can be used to conserve energy.

- Rescale frequency that avoid idle cycles, surplus time is used to run other remaining tasks at lower frequency.
Cycle Conserving EDF: Example

Task set @ (Fmax): T1 = (3,6) and T2 = (6,12)

\[U = \frac{3}{6} + \frac{6}{12} = 1 \] @ (Fmax)

\[\text{New utilization} = \frac{1}{6} + \frac{6}{12} = 0.67 \]

Finding the right "k"

\[\frac{(1 \cdot k)}{6} + \frac{(6 \cdot k)}{12} = 1 \]

\[K = \frac{1}{0.67} \]

\[\text{New freq} = (0.67) \cdot F_{\text{max}} \]

Look-Ahead EDF

- Defer as much works as possible and set initially to the minimum possible frequency.

- Hence at later stage if a task uses much less than it worst case, deferred work may never be needed.

- It ensures that there are sufficient cycles available for each task to meet its deadline after reserving cycles for higher priority jobs.

- Best saving of energy.
(a) Plan to defer T3’s execution time until after D1 but by D3

(b) Find u so as to finish T1 by D1 and T2 by D2
(c) $u = 0.75$, T_1 finishes earlier, find new u for T_2 to finish by D_2

(d) $\alpha = 0.5$, T_2 finishes earlier, enough time until D_1, but EDF is work conserving, launch T_3 at $u = 0.5$
Look-ahead EDF Step 5 of 6

(e) Guess for T1 again

Look-ahead EDF Step 6 of 6

(f) u= 0.5, every task is dynamically scheduled successfully
Relative Performance

Energy savings

- Look Ahead EDF
- Cycle Conserving EDF
- Static Voltage Scaling EDF

Schemes

Implementation

- Scheduler hooking in the kernel

Figure 14: Software architecture for RT-DVS implementation