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Paper “Ceph”

What are the goals of Ceph?
Object Storage Devices
Metadata Servers

Why does OSD suffer from scalability
problems?
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* Clients: near-POSIX system interface
* OSD: data + metadata

* Metadata server cluster: manages namespace,
security, consistency, coherence

Paper “Ceph”

* Decoupled data & metadata
— Metadata ops managed by metadata server cluster
— No alloc lists, instead distribution function

* Dyn. distr. metadata mgt.
— Dynamic subtree partitioning

* Reliable autonomic distr. object storage

— Data migration, replication, failure detection &
recovery done by OSD cluster (high-level: single logical
object store)
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* File: inode + capabilities + striping strategy for
file

* Striping strategies:
— Map file data onto sequence of objects

— Object names combine file inode# and stripe
number; mapping done by CRUSH algorithm

— Locate objects without need for alloc table

Paper “Ceph”

* Client synchronization:

— Multiple clients: revoke caching/buffering
capabilities (synchronous 1/0): SLOW

— Ability to relax consistency in some situations
* O_LAZY flag, lazyio_propagate, lazyio_synchronize
* Namespace operations:

— Optimize certain scenarios (e.g., readdir followed
by stat (Is -| operation)) using caching
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Metadata storage (load balancing)
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Paper “Google FS”

* Assumptions:

— Component failures are the norm, not the exception
— Files are huge by traditional standards
— Most file updates are append-only
— How does this compare to previous papers?
System is built from many inexpensive
commodity components

System will store a modest number of large files
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Paper “Google FS”

* Non-POSIX, “snapshot”, “record append”
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* Chunk size = 64MB
— Lazy space allocation; throughput; persistent TCP
connection; reduced metadata; hot spots
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¢ Metadata:

— File and chunk namespaces; mapping from files to
chunks; locations of chunks (primary, replicas)

— Cached in memory
— Chunk locations requested at startup and periodically

* Keeping things consistent:

— GFS applies mutations to a chunk in the same order
on all replicas; chunk version# used to detect stale
replicas

— Leases to primary, which picks serial order
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Snapshot: copy of file
Record Append: append data concurrently

Snapshot /home/user -> /save/user
Create file /home/user/foo
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Paper “Google FS”

Leases, heartbeat messages, namespace management
Re-replication, rebalancing, garbage collection
Results in Figure 3

How does it compare to Ceph?
Why does Google FS avoid file caching?
What are the pros/cons of large chunk sizes?

Google “Colossus” (2010)
“Single point of failure”
https://cloud.google.com/blog/products/storage-data-

transfer/a-peek-behind-colossus-googles-file-system
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