
2/12/23

1

Graduate Operating Systems

Spring 2023

1

Paper “Ceph”

• What are the goals of Ceph?
• Object Storage Devices
• Metadata Servers
• Why does OSD suffer from scalability

problems?

2

2/12/23

2

Paper “Ceph”

• Clients: near-POSIX system interface
• OSD: data + metadata
• Metadata server cluster: manages namespace,

security, consistency, coherence

3

Paper “Ceph”

• Decoupled data & metadata
– Metadata ops managed by metadata server cluster
– No alloc lists, instead distribution function

• Dyn. distr. metadata mgt.
– Dynamic subtree partitioning

• Reliable autonomic distr. object storage
– Data migration, replication, failure detection &

recovery done by OSD cluster (high-level: single logical
object store)

4

2/12/23

3

Paper “Ceph”

• File: inode + capabilities + striping strategy for
file

• Striping strategies:
– Map file data onto sequence of objects
– Object names combine file inode# and stripe

number; mapping done by CRUSH algorithm
– Locate objects without need for alloc table

5

Paper “Ceph”

• Client synchronization:
– Multiple clients: revoke caching/buffering

capabilities (synchronous I/O): SLOW
– Ability to relax consistency in some situations
• O_LAZY flag, lazyio_propagate, lazyio_synchronize

• Namespace operations:
– Optimize certain scenarios (e.g., readdir followed

by stat (ls -l operation)) using caching

6

2/12/23

4

Paper “Ceph”

• Metadata storage (load balancing)

• Replication
– Primary, replicas

7

Paper “Google FS”

• Assumptions:
– Component failures are the norm, not the exception
– Files are huge by traditional standards
– Most file updates are append-only
– How does this compare to previous papers?

• System is built from many inexpensive
commodity components

• System will store a modest number of large files

8

2/12/23

5

Paper “Google FS”

• Non-POSIX, “snapshot”, “record append”

9

Paper “Google FS”

• Chunk size = 64MB
– Lazy space allocation; throughput; persistent TCP

connection; reduced metadata; hot spots

10

2/12/23

6

Paper “Google FS”

• Metadata:
– File and chunk namespaces; mapping from files to

chunks; locations of chunks (primary, replicas)
– Cached in memory
– Chunk locations requested at startup and periodically

• Keeping things consistent:
– GFS applies mutations to a chunk in the same order

on all replicas; chunk version# used to detect stale
replicas

– Leases to primary, which picks serial order

11

Paper “Google FS”

12

2/12/23

7

Paper “Google FS”

• Snapshot: copy of file
• Record Append: append data concurrently

• Snapshot /home/user -> /save/user
• Create file /home/user/foo

13

Paper “Google FS”
• Leases, heartbeat messages, namespace management
• Re-replication, rebalancing, garbage collection
• Results in Figure 3

• How does it compare to Ceph?
• Why does Google FS avoid file caching?
• What are the pros/cons of large chunk sizes?

• Google “Colossus” (2010)
• “Single point of failure”
• https://cloud.google.com/blog/products/storage-data-

transfer/a-peek-behind-colossus-googles-file-system

14

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

