Graduate Operating Systems

Spring 2023

Paper “Ceph”

What are the goals of Ceph?
Object Storage Devices
Metadata Servers

Why does OSD suffer from scalability
problems?

2/12/23



Paper “Ceph”

lien M luster
@ OO Metadata operations
EREREE - UUb

’% II Metadata
% storage
Object Storage Cluster

|
—_—
Il etttz |

Linux kernel myproc

* Clients: near-POSIX system interface
* OSD: data + metadata

* Metadata server cluster: manages namespace,
security, consistency, coherence

Paper “Ceph”

* Decoupled data & metadata
— Metadata ops managed by metadata server cluster
— No alloc lists, instead distribution function

* Dyn. distr. metadata mgt.
— Dynamic subtree partitioning

* Reliable autonomic distr. object storage

— Data migration, replication, failure detection &
recovery done by OSD cluster (high-level: single logical
object store)

2/12/23



Paper “Ceph”

* File: inode + capabilities + striping strategy for
file

* Striping strategies:
— Map file data onto sequence of objects

— Object names combine file inode# and stripe
number; mapping done by CRUSH algorithm

— Locate objects without need for alloc table

Paper “Ceph”

* Client synchronization:

— Multiple clients: revoke caching/buffering
capabilities (synchronous 1/0): SLOW

— Ability to relax consistency in some situations
* O_LAZY flag, lazyio_propagate, lazyio_synchronize
* Namespace operations:

— Optimize certain scenarios (e.g., readdir followed
by stat (Is -| operation)) using caching

2/12/23



Paper “Ceph”

Metadata storage (load balancing)

Root —~

Busy directory hashed a
Figure 2: Ceph dynar
tory hierarchy to metada

y MDS's

s subtrees of the direc-
ervers based on the current
workload. Individual directories are hashed across mul-
tiple nodes only when they become hot spots.

Client Primary OSD ReplicaOSD ~ Replica OSD

* Replication

‘ —— Wiite
Ack

\’\ o
4‘1 et ——* Commit
Lo

— Primary, replicas

<+—— Time

Paper “Google FS”

* Assumptions:

— Component failures are the norm, not the exception
— Files are huge by traditional standards
— Most file updates are append-only
— How does this compare to previous papers?
System is built from many inexpensive
commodity components

System will store a modest number of large files

2/12/23



Paper “Google FS”

* Non-POSIX, “snapshot”, “record append”

File 1
Chunk 1

File 2
Chunk 1
File 1
Chunk 2

Chunk Server

/ ;

I
I
1
Y

CM] m Chunk Server C:y\lail: 1 redundant
| i File 2
Shadow i Chunk 2
Master i
\ i
Chunk Server c:,'f,f,f 1
File 2
Chunk 2
9
o" ”
Paper “Google FS
(file name,chunk index)
GFS Client GFS masterr v [fco/bar
(chunk handle,chunk lecations) File namespace chunk 2670
, , ||
(chunk handle,byte range) 2
| GFschunksenver | GFS chunkserver ‘
chunk data | Linux file system I I Linux file system ]
# Data messages
> C::tvo\mesfages L(L—] LL—] Lt jl_'\j
* Chunk size = 64MB
— Lazy space allocation; throughput; persistent TCP
connection; reduced metadata; hot spots
10

2/12/23



Paper “Google FS”

¢ Metadata:

— File and chunk namespaces; mapping from files to
chunks; locations of chunks (primary, replicas)

— Cached in memory
— Chunk locations requested at startup and periodically

* Keeping things consistent:

— GFS applies mutations to a chunk in the same order
on all replicas; chunk version# used to detect stale
replicas

— Leases to primary, which picks serial order

11
Paper “Google FS”
4—— step 1
Client Master
Secondary
Replica A
cpi.'x 3
Primary 5
Replica .
l Legend:
. — Control
Secondary —_—
Replica B
12

2/12/23



Paper “Google FS”

Snapshot: copy of file
Record Append: append data concurrently

Snapshot /home/user -> /save/user
Create file /home/user/foo

13

Paper “Google FS”

Leases, heartbeat messages, namespace management
Re-replication, rebalancing, garbage collection
Results in Figure 3

How does it compare to Ceph?
Why does Google FS avoid file caching?
What are the pros/cons of large chunk sizes?

Google “Colossus” (2010)
“Single point of failure”
https://cloud.google.com/blog/products/storage-data-

transfer/a-peek-behind-colossus-googles-file-system

14

2/12/23


https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

