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Concurrency vs. Parallelism
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Concurrent: 2 queues, 1 vending machine
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Parallel: 2 queues, 2 vending machines
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Tasks start, run and
complete in
an interleaved fashion

Tasks run
simultaneously

Microprocessor Trends

42 Years of Microprocessor Trend Data
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Original data up 1o the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp
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Processes vs. Threads
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Types of Threads

(a) Pure user-level
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(b) Pure kemel-level
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Figure 4.13 Lightweight process (LWP).

Thread Models
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Paper Discussion

Why are threads cheaper than processes?
How is IPC performed using threads?
Why is synchronization between threads needed?

Two creation approaches: create ALL threads or
create only CALLING thread; difference?

What is “thread-local storage”?

What are bound threads and why are they
useful?

Why is signaling challenging?

Pthreads (POSIX 1003.1c)

#include <stdio.h>
#include <pthread.h>

void printMsg(char* msg) {
int status = 0;
printf(“%s\n”, msg);
pthread_exit(&status);

}

int main(int argc, char** argv) {
pthread_t thrdID;
int* status = (int*)malloc(sizeof(int));

printf(“creating a new thread\n”);

pthread_create(&thrdID, NULL, (void*)printMsg, argv([1]);
printf(“created thread %d\n”. thrdID);

pthread_join(thrdID, &status);

printf(“Thread %d exited with status %d\n”, thrdID, *status);

return O;
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Common Programming Models

Multi-threaded programs tend to be structured as:

— Producer/consumer
Multiple producer threads create data (or work) that
is handled by one of the multiple consumer threads
— Pipeline
Task is divided into series of subtasks, each of which
is handled in series by a different thread

— Defer work with background thread
One thread performs non-critical work in the
background (when CPU idle)
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Threads vs. Events

* What is biggest problem with threads (in reading
assignment)?
* Threads:
— Independent execution streams
— Preemptive scheduling
— Synchronization
— Deadlocks
— Debugging
— “Threads break abstraction”
— Getting good performance
— OS support of threads
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Threads vs. Events

* Events:
— No CPU concurrency
— Callbacks; event handlers
— No preemption
— Long-running handlers
— State across handler invocations
— Debugging
— Overheads
— Portability
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