2/12/23

Graduate Operating Systems

Spring 2023

Today’s Papers

* [13] D. Stein and D. Shah, "Implementing
Lightweight Threads", Proc. of USENIX, San
Antonio, TX, June 1992.

* [14] John Ousterhout, "Why Threads are a Bad
Idea (for most purposes)", talk given at
USENIX Annual Conference, September 1995.

Concurrency vs. Parallelism
$232%% 2\

222827

Concurrent: 2 queues, 1 vending machine

3333333~
2232433~

Parallel: 2 queues, 2 vending machines

Concurrency P

arallelism

Tasks start, run and
complete in
an interleaved fashion

Tasks run
simultaneously

Microprocessor Trends

42 Years of Microprocessor Trend Data

7 ! T T -
o r “ 7 Transistors
10° | AL | (thousands)
VS Yaua .
10° s aatn .o Single-Thread
it "™ Performance
10* | " ‘:&“ 00d3 | (specINT x 10%)
103 il A ;‘w Ie*lﬂ.ﬂ gu | Frequency (MHz)
o x)
o
- L . Typical Power
102 | A . %lv- v,v'";v"v‘;‘v’“";% :,: 1 (Watts)
10’ § - - v - M o::o'i Number of
- b * .
L g Y vy ey JRZ Logical Cores
10° *‘ * e B eee we cmmn menenn oo i
! ! ;
1970 1980 1990 2010 2020

Year

Original data up 1o the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

2/12/23

2/12/23

Processes vs. Threads

Single Thread Multi Threaded
(regmers|[smec] [regsers [sk] | [regsers [s)

= —T—

Thread
coThread L
..Thread ...

PC PC; PC;

Events

EventEmitters Events m Event Handlers
O~ =1 }

Types of Threads

(a) Pure user-level

A (7
'\\: D @
@

(b) Pure kemel-level

2
§ <«——user thread
)

—— opiweight process

d) «——kermnel thread

Figure 4.13 Lightweight process (LWP).

Thread Models

QWN
°'J\N\/\i
A 5

AW

user

S0
OO ©

space
space
ik m 1 m
Many-to-one One-to-one many-to-many Two-level

@User-level thread ® Kernel -level thread

Paper Discussion

Why are threads cheaper than processes?
How is IPC performed using threads?
Why is synchronization between threads needed?

Two creation approaches: create ALL threads or
create only CALLING thread; difference?

What is “thread-local storage”?

What are bound threads and why are they
useful?

Why is signaling challenging?

Pthreads (POSIX 1003.1c)

#include <stdio.h>
#include <pthread.h>

void printMsg(char* msg) {
int status = 0;
printf(“%s\n”, msg);
pthread_exit(&status);

}

int main(int argc, char** argv) {
pthread_t thrdID;
int* status = (int*)malloc(sizeof(int));

printf(“creating a new thread\n”);

pthread_create(&thrdID, NULL, (void*)printMsg, argv([1]);
printf(“created thread %d\n”. thrdID);

pthread_join(thrdID, &status);

printf(“Thread %d exited with status %d\n”, thrdID, *status);

return O;

10

2/12/23

Common Programming Models

Multi-threaded programs tend to be structured as:

— Producer/consumer
Multiple producer threads create data (or work) that
is handled by one of the multiple consumer threads
— Pipeline
Task is divided into series of subtasks, each of which
is handled in series by a different thread

— Defer work with background thread
One thread performs non-critical work in the
background (when CPU idle)

11

Threads vs. Events

* What is biggest problem with threads (in reading
assignment)?
* Threads:
— Independent execution streams
— Preemptive scheduling
— Synchronization
— Deadlocks
— Debugging
— “Threads break abstraction”
— Getting good performance
— OS support of threads

12

2/12/23

Threads vs. Events

* Events:
— No CPU concurrency
— Callbacks; event handlers
— No preemption
— Long-running handlers
— State across handler invocations
— Debugging
— Overheads
— Portability

13

2/12/23

