Graduate Operating Systems

Spring 2023

User Threads vs. Kernel Threads

Process Threaa Process Thread
\ \
u
pac
Kernel | emnel =
space | Kernel E\ ernel c
7/ 1 N\ / |
Runtime Thread Process Prockss Thread
ystem table tabl table table

2/27/23

User Threads vs. Kernel Threads

“Lightweight” vs. “heavyweight”
Concurrency vs. parallelism
Control (or lack thereof)
(Portability)

Scheduler activations: combine benefits of
kernel-level threads and user-level threads

Kernel/User Level Integration

“Virtual processors” allocated by kernel

ULTS controls which threads to run

Kernel notifies ULTS when changes are made
(number of processors) or blocking occurs
ULTS notifies kernel when more/fewer
processors are needed

2/27/23

Scheduler Activations

* Tool for KL & UL communication

— Kernel: “notify UL of events that impact user-level
scheduling”

— UL: “notify KL of events that can affect processor
allocation”
* System calls vs. upcalls

* Scheduler activation: “execution context for
an event vectored from the kernel to an
address space”

Scheduler Activations

User-Level
Runtime
system

5 creates

3 Upcall

Operating
System
Kernel

gt | |

1 creates

Processors

2/27/23

Scheduler Activations (Upcalls)

Add this processor (processor #)
Execute a runnable user-level thread.

Processor has been preempted (preempted activation # and its machine state)
Return to the ready list the user-level thread that was executing in the context

of the preempted scheduler activation.

Scheduler activation has blocked (blocked activation #)
The blocked scheduler activation is no longer using its processor.

Scheduler activation has unblocked (unblocked activation # and its machine state)
Return to the ready list the user-level thread that was executing in the context

of the blocked scheduler activation.

Example: Blocking

Time Time
i S User Program User Program i
(3)(4) (4)]
User-Level f” 52)’\1 1 S(’:y fs)',\
Runtime |)) A
sysem |y i & .
®) 1C)
Operaiing | | ® (&) i
System Add Add A’s thread
Kemel Processor | Processor has blocked
Processors ' J
Time User Program User Program Time
evel (2)(@)]
Uit O G
o o -
© ©)
Operating
Sysiem
Kemel
continue
e (L@@ X)

Fig. 1

Example: /0 request/completion

2/27/23

Scheduler Activations (System Calls)

Add more processors (additional # of processors needed)
Allocate more processors to this address space and start them running
scheduler activations.

This processor is idle ()
Preempt this processor if another address space needs it.

9
Scheduler Activations
* What if user-level thread is in critical section
when it is blocked or preempted?
* Prevention & recovery
10

2/27/23

Paper “DThreads”

Multithreaded programming hard

Enforce deterministic execution (but be efficient)
Heisenbugs

Same program + same inputs = always same outputs

Goals of Dthreads: deterministic execution, easy to
deploy, robust to changes in input/architectures/code,
eliminates cache-line false sharing, efficient.

How: turn multithreaded apps into multiple processes
with private copy-on-write mappings to shared
memory

11

Paper “DThreads”

Pthread: race conditions (Figure 1)
DThreads: deterministic output (Figure 2)
Synchronization points

Last-writer wins protocol

Deterministic thread index

Memory mapped files

Global token (serialization, locks, condition
variables, barriers)

12

2/27/23

