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* The correctness of the system
— Logical/functional
— Temporal

* RT computing

— The objective of “fast computing” is to minimize
the average response time

— The objective of real-time computing is to meet
the individual timing requirement of each task
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e Hard vs. soft real-time

* Closed-loop control

reference : e Mk :
input r(t) 1 control-law Uk 1
1 Yk | computation D/A !
! A/D !
I 1
| I
A L 1
y(t) u(t)
sensor pIant |<, | actuator
Outside effects—J The\system
being controlled
o ”
Paper “RM/EDF
* Job

— Each unit of work that is scheduled and executed by the system
e Task
— Aset of related jobs

— For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at
every period

* Release time
— Time instant at which a job becomes available for execution
— It can be executed at any time at or after the release time

* Deadline
— Time instant by which a job should be finished

— Relative deadline: Maximum allowable response time
— Absolute deadline = release time + relative deadline
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* Periodic task T;
— Period P;
— Worst case execution time G
— Relative deadline D;
* Job Jj
— Absolute deadline = release time + relative deadline
— Response time = finish time — release time
* Deadline miss if
— Finish time > absolute deadline
— Response time of Jic > D;

Periodic Task Model

Task = {T, C, D}
jobs (i1, j2, js, ---)
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* Table-driven scheduling
* Jitter
* Hyperperiods

Paper “RM/EDF”

* A scheduling algorithm S is optimal if S cannot
schedule a real-time task set T, no other
scheduling algorithm can schedule T

* E.g., Rate Monotonic & EDF




Common Assumptions

* Single processor

* Every task is periodic

* Deadline = period

* Tasks are independent

* WCET of each task is known
» Zero context switch time

Paper “RM/EDF”

* Fixed priority system
— Assign the same priority to all the jobs in each task
— Rate monotonic (RMS)

* Dynamic priority system

— Assign different priorities to the individual jobs in
each task

— Earliest Deadline First (EDF)
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* RMS: optimal fixed priority scheduling
algorithm

* Shorter period = Higher priority
— Higher rate - higher priority

* Utilization bound
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RMS (Rate Monotonic Scheduling)

Process P;: service time = 20, period = 50, deadline = 50

Process P;: service time = 35, period = 100, deadline = 100
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Missed Deadlines with RMS

failure
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Paper “RM/EDF”

* EDF: shorter absolute deadline - Higher
priority

* Utilization bound U, =1

* U, is necessary and sufficient




EDF (Earliest Deadline First)

Process P;: service time = 25, period = 50, deadline = 50

Process P;: service time = 35, period = 80, deadline = 80
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* RMS

* EDF

Paper “RM/EDF”

— RMS may not guarantee schedulability even when U < 1
— Low overhead: priorities do not change for a fixed task set

— EDF guarantees schedulability as long as U <=1
— High overhead: task priorities may change dynamically
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* Implementation complexity
— Modifying systems vs. from scratch
— Periods for newly arriving tasks
— Fixed vs. infinite number of priority levels
— EDF runtime overheads (priorities change)

— Winner: RMS
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* Run-time overhead
— Updating deadlines costly
— EDF: fewer context switches (preemptions)
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ed by RM (a) and EDF: (b) on a set of two periodic tasks. Adjacent jobs of 77 are
tier distinguish them.
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e Run-time overhead
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* Run-time overhead

* Winner: EDF
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* Schedulability analysis
— EDF (d=p): simple
— RMS: U <=0.69; simple, but resources wasted
* Hyperbolic bound (higher acceptance ratio for large n)

— Exact for EDF:
* Processor Demand Criterion (PDC) for d<p

— Exact for RMS:
* Response Time Analysis (RTA)
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* Schedulability analysis

.....

* Winner: Tie?
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* Robustness during overloads
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Figure 8. Schedules produced by EDF (s) and RM (b) for a et of three periodic tasks in a permanent overload
condition.

— Winner: RMS
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* Robustness during overloads

— Transient
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Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for
the other tasks

— Winner: Tie
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* Jitter and Latency

* Winner: Tie?
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* Resource sharing
— Solutions for EDF and RMS exist
* Aperiodic tasks

— Periodic servers (EDF has higher utilization
bounds)

* Resource reservations

— Reservation protocols exist for EDF and RMS

26

3/7/23

13



