3/7/23

Graduate Operating Systems

Spring 2023

Paper “RM/EDF”

* The correctness of the system
— Logical/functional
— Temporal

* RT computing

— The objective of “fast computing” is to minimize
the average response time

— The objective of real-time computing is to meet
the individual timing requirement of each task

Paper “RM/EDF”

elness

e Hard vs. soft real-time

* Closed-loop control

reference : e Mk :
input r(t) 1 control-law Uk 1
1 Yk | computation D/A !
! A/D !
I 1
| I
A L 1
y(t) u(t)
sensor pIant |<, | actuator
Outside effects—J The\system
being controlled
o ”
Paper “RM/EDF
* Job

— Each unit of work that is scheduled and executed by the system
e Task
— Aset of related jobs

— For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at
every period

* Release time
— Time instant at which a job becomes available for execution
— It can be executed at any time at or after the release time

* Deadline
— Time instant by which a job should be finished

— Relative deadline: Maximum allowable response time
— Absolute deadline = release time + relative deadline

3/7/23

3/7/23

Paper “RM/EDF”

* Periodic task T;
— Period P;
— Worst case execution time G
— Relative deadline D;
* Job Jj
— Absolute deadline = release time + relative deadline
— Response time = finish time — release time
* Deadline miss if
— Finish time > absolute deadline
— Response time of Jic > D;

Periodic Task Model

Task = {T, C, D}
jobs (i1, j2, js, ---)

Deadline =D

7 g B g |\ P
H_J LV_’

Period =T Computation time
WCET=C

time

Release Time

3/7/23

Paper “RM/EDF”

* Table-driven scheduling
* Jitter
* Hyperperiods

Paper “RM/EDF”

* A scheduling algorithm S is optimal if S cannot
schedule a real-time task set T, no other
scheduling algorithm can schedule T

* E.g., Rate Monotonic & EDF

Common Assumptions

* Single processor

* Every task is periodic

* Deadline = period

* Tasks are independent

* WCET of each task is known
» Zero context switch time

Paper “RM/EDF”

* Fixed priority system
— Assign the same priority to all the jobs in each task
— Rate monotonic (RMS)

* Dynamic priority system

— Assign different priorities to the individual jobs in
each task

— Earliest Deadline First (EDF)

10

3/7/23

Paper “RM/EDF”

* RMS: optimal fixed priority scheduling
algorithm

* Shorter period = Higher priority
— Higher rate - higher priority

* Utilization bound

U=Y G/T; <n(¥2-1)
i=1

lim n(V2 -1)=1n2 ~ 0.693147. ..

n—oo

11

RMS (Rate Monotonic Scheduling)

Process P;: service time = 20, period = 50, deadline = 50

Process P;: service time = 35, period = 100, deadline = 100

Deadlines P, P, P, Py Py, Py
| | | |

‘ Fh l \PZJ ‘ Fﬁ |P2‘\ | ‘ P|1 | \PZ\ ‘ Fh |P2|\ | J

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

12

3/7/23

3/7/23

Missed Deadlines with RMS

failure
Deadlines Py Py Py Py P2
| R |

‘ \P1\‘\P2I | JP1\‘P\2‘\ I] | I I I]
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Process P: service time = 25, period = 50, deadline = 50
Process P,: service time = 35, period = 80, deadline = 80

NNz)

2 0,828427
. N
:?MS |skg_t;aranteed u= EL, < N(%— 1); 3 0,779763
o work i < p, 4 0,756828
N = number of processes 5 0,743491
. . . ¥ _ 10 0,717734
sufficient condition klgguN(\/E - l) =In2~0.693147

20 0,705298

Paper “RM/EDF”

* EDF: shorter absolute deadline - Higher
priority

* Utilization bound U, =1

* U, is necessary and sufficient

EDF (Earliest Deadline First)

Process P;: service time = 25, period = 50, deadline = 50

Process P;: service time = 35, period = 80, deadline = 80

Deadlines P4 Py = P, P,
[P1 P2 | P1_ [P2 ‘ P ‘ P2 | |])
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

15

* RMS

* EDF

Paper “RM/EDF”

— RMS may not guarantee schedulability even when U < 1
— Low overhead: priorities do not change for a fixed task set

— EDF guarantees schedulability as long as U <=1
— High overhead: task priorities may change dynamically

16

3/7/23

Paper “RM/EDF”

* Implementation complexity
— Modifying systems vs. from scratch
— Periods for newly arriving tasks
— Fixed vs. infinite number of priority levels
— EDF runtime overheads (priorities change)

— Winner: RMS

17

Paper “RM/EDF”

* Run-time overhead
— Updating deadlines costly
— EDF: fewer context switches (preemptions)

@ g |

3

s 10 20 25 0 3

I ! | i !

o e i | [— o |

0 77 14 21 28 35
Deadline mi

0 14 1 8

ed by RM (a) and EDF: (b) on a set of two periodic tasks. Adjacent jobs of 77 are
tier distinguish them.

18

3/7/23

Paper “RM/EDF”

e Run-time overhead

19

Paper “RM/EDF”

* Run-time overhead

* Winner: EDF

20

3/7/23

10

Paper “RM/EDF”

* Schedulability analysis
— EDF (d=p): simple
— RMS: U <=0.69; simple, but resources wasted
* Hyperbolic bound (higher acceptance ratio for large n)

— Exact for EDF:
* Processor Demand Criterion (PDC) for d<p

— Exact for RMS:
* Response Time Analysis (RTA)

21

Paper “RM/EDF”

* Schedulability analysis

.....

* Winner: Tie?

22

3/7/23

11

Paper “RM/EDF”

* Robustness during overloads

T Permanent il kLol el Lol

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

oo |l g e | el e

36 48 60 72 84 96 108 120

(51200
0 20 40 60 80 100 120

SR ey gy ey ey ey ay ay ey ey gy

08 16 24 32 40 48 56 64 72 80 88 96 104 112 120

’Z““"’\m\jﬁr‘}n\'ﬂﬁnhﬁﬂmhﬁnh‘lﬁ

% 48 60 2 % 108 120
0 | | | | | | |
0 20 a0 60 50 100 120

Figure 8. Schedules produced by EDF (s) and RM (b) for a et of three periodic tasks in a permanent overload
condition.

— Winner: RMS

23

Paper “RM/EDF”

* Robustness during overloads

— Transient

b |

i 20 30

K ‘ | I'h | — }_\ il }_\

0 9 18 7

Deadline miss

o ml . m

0 0

d A
0 10 15 0 25 30

Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for
the other tasks

— Winner: Tie

24

3/7/23

12

Paper “RM/EDF”

* Jitter and Latency

* Winner: Tie?

25

Paper “RM/EDF”

* Resource sharing
— Solutions for EDF and RMS exist
* Aperiodic tasks

— Periodic servers (EDF has higher utilization
bounds)

* Resource reservations

— Reservation protocols exist for EDF and RMS

26

3/7/23

13

