
Graduate Operating Systems

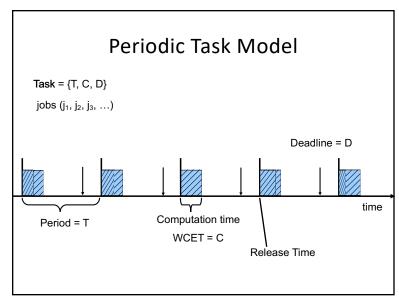
Spring 2023

1

Paper "RM/EDF"

- The correctness of the system
 - Logical/functional
 - Temporal
- RT computing
 - The objective of "fast computing" is to minimize the average response time
 - The objective of real-time computing is to meet the individual timing requirement of each task

3


Paper "RM/EDF"

- Job
 - Each unit of work that is scheduled and executed by the system
- Task
 - A set of related jobs
 - For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at every period
- · Release time
 - Time instant at which a job becomes available for execution
 - It can be executed at any time at or after the release time
- Deadline
 - Time instant by which a job should be finished
 - Relative deadline: Maximum allowable response time
 - Absolute deadline = release time + relative deadline

Δ

- Periodic task T_i
 - Period Pi
 - Worst case execution time C_i
 - Relative deadline Di
- Job J_{ik}
 - Absolute deadline = release time + relative deadline
 - Response time = finish time release time
- Deadline miss if
 - Finish time > absolute deadline
 - Response time of $J_{ik} > D_i$

5

- Table-driven scheduling
- Jitter
- Hyperperiods

7

Paper "RM/EDF"

- A scheduling algorithm S is optimal if S cannot schedule a real-time task set T, no other scheduling algorithm can schedule T
- E.g., Rate Monotonic & EDF

Common Assumptions

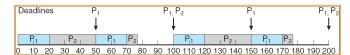
- Single processor
- Every task is periodic
- Deadline = period
- Tasks are independent
- WCET of each task is known
- Zero context switch time

9

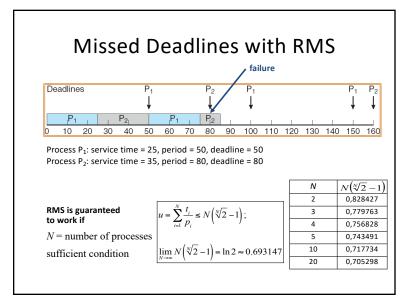
Paper "RM/EDF"

- Fixed priority system
 - Assign the same priority to all the jobs in each task
 - Rate monotonic (RMS)
- Dynamic priority system
 - Assign different priorities to the individual jobs in each task
 - Earliest Deadline First (EDF)

- RMS: optimal fixed priority scheduling algorithm
- Shorter period → Higher priority
 - − Higher rate → higher priority
- · Utilization bound


$$U = \sum_{i=1}^{n} C_i / T_i \le n(\sqrt[n]{2} - 1)$$

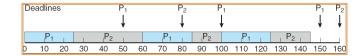
 $\lim_{n \to \infty} n(\sqrt[n]{2} - 1) = \ln 2 \approx 0.693147...$


11

RMS (Rate Monotonic Scheduling)

Process P₁: service time = 20, period = 50, deadline = 50 Process P₂: service time = 35, period = 100, deadline = 100

3/7/23


13

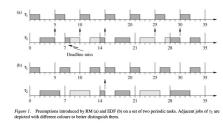
Paper "RM/EDF"

- EDF: shorter absolute deadline → Higher priority
- Utilization bound U_b = 1
- U_b is necessary and sufficient

Process P₁: service time = 25, period = 50, deadline = 50 Process P₂: service time = 35, period = 80, deadline = 80

15

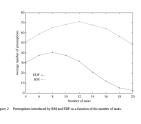
Paper "RM/EDF"

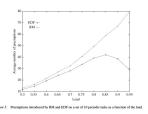

- RMS
 - RMS may not guarantee schedulability even when U < 1
 - Low overhead: priorities do not change for a fixed task set
- EDF
 - EDF guarantees schedulability as long as U <= 1
 - High overhead: task priorities may change dynamically

- Implementation complexity
 - Modifying systems vs. from scratch
 - Periods for newly arriving tasks
 - Fixed vs. infinite number of priority levels
 - EDF runtime overheads (priorities change)
 - Winner: RMS

17

Paper "RM/EDF"

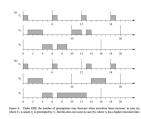

- Run-time overhead
 - Updating deadlines costly
 - EDF: fewer context switches (preemptions)



3/7/23

Paper "RM/EDF"

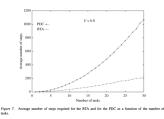
• Run-time overhead



19

Paper "RM/EDF"

• Run-time overhead


• Winner: EDF

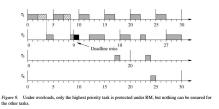
- Schedulability analysis
 - EDF (d=p): simple
 - RMS: U <= 0.69; simple, but resources wasted</p>
 - Hyperbolic bound (higher acceptance ratio for large n)
 - Exact for EDF:
 - Processor Demand Criterion (PDC) for d<p
 - Exact for RMS:
 - Response Time Analysis (RTA)

21

Paper "RM/EDF"

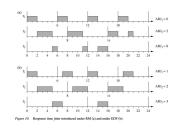
• Schedulability analysis

• Winner: Tie?


- Robustness during overloads
 - Permanent

- Winner: RMS

23


Paper "RM/EDF"

- Robustness during overloads
 - Transient

- Winner: Tie

• Jitter and Latency

• Winner: Tie?

25

Paper "RM/EDF"

- Resource sharing
 - Solutions for EDF and RMS exist
- Aperiodic tasks
 - Periodic servers (EDF has higher utilization bounds)
- Resource reservations
 - Reservation protocols exist for EDF and RMS