
1/22/23

1

Graduate Operating Systems

Spring 2023

1

Today’s Paper

• [3] Dawson R. Engler, M. Frans Kaashoek, and 
James O'Toole Jr., "Exokernel: An Operating 
System Architecture for Application-Level 
Resource Management", Proc. of the 15th 
Symposium on Operating Systems Principles, 
December 1996.

2



1/22/23

2

Traditional Operating Systems
• Traditionally, operating systems were built 

as a monolithic kernel:

everything

user programs

hardware

OS kernel

3

Traditional Operating Systems

• Traditional operating systems use a “one-size-
fits-all” interface and implementation of OS 
abstractions

Hardware

Applications

InterfaceAbstractions

Hardware

Apache

InterfaceAbstractions

SQL Server

4



1/22/23

3

Problems with Traditional OS

• Performance
– Denies applications the advantages of domain-

specific optimizations
• Flexibility
– Restricts the flexibility of application builders
– Concept: “with more information exposed, 

resources can be utilized ’better’”!
• Functionality
– Discourages changes to the implementations of 

existing abstractions

5

Microkernels
• Popular in the late 80s, early 90s
– recent resurgence of popularity for small devices

• Goal:
– minimize what goes in kernel
– organize rest of OS as user-level processes

• This results in:
– better reliability (isolation between components)
– ease of extension and customization
– poor performance (user/kernel boundary crossings)

• First microkernel system was Hydra (CMU, 1970)
– follow-ons: Mach (CMU), Chorus (French UNIX-like OS), 

early Windows NT (Microsoft), OS X (Apple)

6



1/22/23

4

Example: Exokernel

Hardware

SQL Server

Library OS 
Customized for SQLServer

InterfaceAbstractions

Library OS
Customized for Webserver

Apache

InterfaceAbstractions

Exokernel

7

Solution: Exokernel

• Separate protection from management!
– Allows user level to manage resources
• Application libraries implement OS abstractions

– Exokernel exports (not emulate) resources
• Low level interface
• Protects, does not manage
• Exposes hardware

• End-to-end argument; “applications know 
better”

8



1/22/23

5

Exokernel + Library OS

• Exokernel’s resource management:
– Allocate, revoke, share, track ownership

• Library OS:
– Uses low-level exokernel interface, provides 

higher-level abstractions; provides special purpose 
implementations

An application can choose the library which best 
suits its needs, or even build its own.

9

Exokernel

10



1/22/23

6

Exokernel

• Hypotheses:
– Exokernels can be very efficient
– Low-level, secure multiplexing of hardware 

resources can be implemented efficiently
– Traditional operating system abstractions can be 

implemented efficiently at application level
– Applications can create special-purpose 

implementations of these abstractions

11

Library Operating Systems

• Simpler
• Specialized
• Multiple can exist
• Few kernel crossings

12



1/22/23

7

Design Challenge

• How can an Exokernel allow libOSes to freely 
manage physical resources while protecting 
them from each other?
– Track ownership of resources
• Secure bindings – libOS can securely bind to machine 

resources
– Guard all resource usage
• Invisible/visible resource revocation

– Revoke access to resources
• Abort protocol

13

Design Principles

• Securely expose hardware
� Kernel should provide secure low-level primitives that allow all 

hardware resources to be accessed as directly as possible.

• Expose allocation
� Allow to request specific physical resources

• Expose names
� Export physical names.
� Remove a level of indirection: Translation

• Expose revocation
� Utilize a visible resource revocation protocol

14



1/22/23

8

Secure Bindings

• Exokernel allows LibOSes to bind resources 
using secure bindings

• Decouples authorization from the actual use 
of a resource

• Multiplex resources securely
• Performs authorization only at bind time
– Allows the kernel to protect resources without 

having to understand them

15

Some Terminology

• Packet filters
• TLB
• Physical memory: capabilities for page
• Downloadable code (ASH)
• RPC
• DMA

16



1/22/23

9

Kernel Comparisons

17

Microkernels
• A good idea in the 1970s and 80s
• Not up to demands of modern processors

• Virtual memory
• Heavy caching

• Not up to demand of modern operating systems
• “Resurrection”:

– Compare to concepts of virtual machines
– Mobile and wearable devices:

– Fixed or limited functionality
– No general purpose files
– No dynamic virtual memory
– Simple context switches
– All code already in memory
– Easy IPC

18


