Graduate Operating Systems

Spring 2023

File Systems

File system interface

Symbolic Open
Levels of file name file ID
abstraction - -
< USER
Files/ -7 Y |
directories Directory
FS management
Logical
& # \ —
block # \ Basic file
)8 \ system
Physical s
device \ y -
address \ l.)e(\;‘ce‘urgnnlzulnm
\ methods
\
\

lHigh-Icvcl e and
| directory functions

Low-level data

} Open/close functions
} access [unctions

Logical block #

T/O system interface

2/7/23



Client Server Model

e Client: active

* Server: passive

Request

<

Response

(lient Server

Caching in CS Model

* Caching reduces
— Network delay
— Disk access delay

* Server caching - simple
— No disk access on subsequent access
— No cache coherence problems
— But network delay still exists

* Client caching - more complicated
— When to update file on server?

— When/how to inform other processes when files is updated on
server?

2/7/23



Updating Server Data

When to update file on server?
— Write-through
* Overhead can be significant
— Delayed writing
* Requires weaker semantics
— Only propagate update when file is closed or at end of transactions
How to propagate changes to other caches?
— Server initiates/informs other processes
* Violates client/server relationship
— Clients check periodically
* Checking before each access defeats purpose of caching
* Checking less frequently requires weaker semantics
— Session semantics: only check when opening the file

Paper “Distributed FS”

file-system interface
Gint Sorvor
’

VFS interface

l

|

Vitual fle system
(VFS) layer

Virtual fle system
(VFS) layer

v
Local fle
systom interfaco

2
NFS clont

local file system
type 1

local file system
pe 2

remote file system
type 1

disk

3

|

network

RPC diient
stub

A
=2
:

H2ie
=y 33

= |

x
e

ARG sorver
; g

| ——

Networs

3

2/7/23



RPC

* Remote Procedure Call

Caller Callee
(client) (server)

Arguments

Client
stub

Remote Procedure Call (RPC)

Stateful Servers

 Stateful = Maintain state of open files
* Client passes Ve ors

client

i = open (X.o+0)

commands & data i = open (X,+++) —— send command
between user

process & server receive index d

read (i, buf.n) ——={ send command read (i buf. 1)

receive data bytes G~ 1)

read (i, buf,n)

read (i, buf.n) ——| send command

* Problem when server crashes:

bytes n: (20 — 1
reccive data ylesn: (2 — 1)

— State of open files is lost

— Client must restore state when server recovers

DFS

receive command
open file
OF1

send index

receive command
perform read
update OFT
send data

reccive command
perform read
update OFT

send data

2/7/23



2/7/23

Stateless Servers

* Stateless Server (e.g., NFS pre v4) =
Client maintains state of open files
* When server crashes:
— Client waits until server recovers

— Client reissues read/write commands
User

DFS DFS

client server
i=open(X.---) open file

OFT

i [Xpos]eer
return index

read (i.buf.n) ——| determine pos
read (X.pos.n)
send command

bytes 0: (1 — 1)

receive data

read (i, buf,n) ——| determine pos
read (X.pos.n)

send command TSI LDPON o receive command
perform read
bytes n: (2n — 1)
L send data

Paper “Distributed FS”

Workstations Servers

ser VeNuS~_
program

Vice
UNIX kernel

=—]
UNIX kernel
Venus~_ =R —R—

User
) Network

UNIX kernel

=

Vice

EUser Venus <
program UNIX kernel
UNIX kernel
=R —R—|
=




Paper “Distributed FS”

* Current system:
— Dedicated process per client (page 53)
— Address space sharing & IPC via files (page 53)
— Full pathnames
— Stub directories
— Asynchronous slow-propagation
— Verify file timestamp upon opening
— Whole-file caching

11

Paper “Distributed FS”

* Observations:
— CPU-bound vs. 1/0-bound
— ’stat’ primitive; includes cache validity check
— Difficult to operate & maintain

— Critical resource limits; context switches; high
virtual memory paging

— Benchmarks: Table |
— Vice calls: Table Il
— Prototype benchmarks: Table Ill & Table IV

12

2/7/23



Paper “Distributed FS”

* New version:

— Keep whole-file caching
— Keep RPC
— Keep Vice/Venus as user-level processes

13

Paper “Distributed FS”

* Cache:
— Still status, data (as before)
— Still LRU

— Modifications to cache locally (server upon close);
directories immediately

— Use callbacks (invalidation messages); requires
callback state information!

14

2/7/23



Paper “Distributed FS”

* Name resolution:
— Unique fixed-length Fid (file id)
— Each directory maps component of a pathname to a
Fid
— Servers are unaware of pathnames (Fid has no explicit
location information)

* Server process structure:
— Single process for all clients
— LWPs (user-level threads); bound to client
— RPC part of LWP implementation (in user space)

15

Paper “Distributed FS”

* Results: Figure 1, Table VII, Figure 2

* What are pros/cons of whole file caching?
» What are pros/cons of invalidation messages?

* What are pros/cons of stateful and stateless
servers?

16

2/7/23



