
2/7/23

1

Graduate Operating Systems

Spring 2023

1

File Systems

2

2/7/23

2

Client Server Model

• Client: active
• Server: passive

3

Caching in CS Model

• Caching reduces
– Network delay
– Disk access delay

• Server caching - simple
– No disk access on subsequent access
– No cache coherence problems
– But network delay still exists

• Client caching - more complicated
– When to update file on server?
– When/how to inform other processes when files is updated on

server?

4

2/7/23

3

Updating Server Data
• When to update file on server?

– Write-through
• Overhead can be significant

– Delayed writing
• Requires weaker semantics

– Only propagate update when file is closed or at end of transactions

• How to propagate changes to other caches?
– Server initiates/informs other processes

• Violates client/server relationship
– Clients check periodically

• Checking before each access defeats purpose of caching
• Checking less frequently requires weaker semantics

– Session semantics: only check when opening the file

5

Paper “Distributed FS”

6

2/7/23

4

RPC

• Remote Procedure Call

7

Stateful Servers

• Stateful = Maintain state of open files
• Client passes

commands & data
between user
process & server

• Problem when server crashes:
– State of open files is lost
– Client must restore state when server recovers

8

2/7/23

5

Stateless Servers

• Stateless Server (e.g., NFS pre v4) =
Client maintains state of open files

• When server crashes:
– Client waits until server recovers
– Client reissues read/write commands

9

Paper “Distributed FS”

10

2/7/23

6

Paper “Distributed FS”

• Current system:
– Dedicated process per client (page 53)
– Address space sharing & IPC via files (page 53)
– Full pathnames
– Stub directories
– Asynchronous slow-propagation
– Verify file timestamp upon opening
– Whole-file caching

11

Paper “Distributed FS”

• Observations:
– CPU-bound vs. I/O-bound
– ’stat’ primitive; includes cache validity check
– Difficult to operate & maintain
– Critical resource limits; context switches; high

virtual memory paging
– Benchmarks: Table I
– Vice calls: Table II
– Prototype benchmarks: Table III & Table IV

12

2/7/23

7

Paper “Distributed FS”

• New version:
– Keep whole-file caching
– Keep RPC
– Keep Vice/Venus as user-level processes

13

Paper “Distributed FS”

• Cache:
– Still status, data (as before)
– Still LRU
– Modifications to cache locally (server upon close);

directories immediately
– Use callbacks (invalidation messages); requires

callback state information!

14

2/7/23

8

Paper “Distributed FS”

• Name resolution:
– Unique fixed-length Fid (file id)
– Each directory maps component of a pathname to a

Fid
– Servers are unaware of pathnames (Fid has no explicit

location information)

• Server process structure:
– Single process for all clients
– LWPs (user-level threads); bound to client
– RPC part of LWP implementation (in user space)

15

Paper “Distributed FS”

• Results: Figure 1, Table VII, Figure 2

• What are pros/cons of whole file caching?
• What are pros/cons of invalidation messages?
• What are pros/cons of stateful and stateless

servers?

16

