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Client Server Model

• Client: active
• Server: passive
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Caching in CS Model

• Caching reduces
– Network delay
– Disk access delay

• Server caching - simple
– No disk access on subsequent access
– No cache coherence problems
– But network delay still exists

• Client caching - more complicated
– When to update file on server?
– When/how to inform other processes when files is updated on 

server?
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Updating Server Data
• When to update file on server?

– Write-through
• Overhead can be significant

– Delayed writing
• Requires weaker semantics

– Only propagate update when file is closed or at end of transactions

• How to propagate changes to other caches?
– Server initiates/informs other processes

• Violates client/server relationship
– Clients check periodically

• Checking before each access defeats purpose of caching
• Checking less frequently requires weaker semantics

– Session semantics: only check when opening the file
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Paper “Distributed FS” 
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RPC

• Remote Procedure Call
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Stateful Servers

• Stateful = Maintain state of open files
• Client passes

commands & data
between user
process & server

• Problem when server crashes:
– State of open files is lost
– Client must restore state when server recovers
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Stateless Servers

• Stateless Server (e.g., NFS pre v4)  = 
Client maintains state of open files

• When server crashes:
– Client waits until server recovers
– Client reissues read/write commands
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Paper “Distributed FS” 
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Paper “Distributed FS” 

• Current system:
– Dedicated process per client (page 53)
– Address space sharing & IPC via files (page 53)
– Full pathnames
– Stub directories
– Asynchronous slow-propagation
– Verify file timestamp upon opening
– Whole-file caching
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Paper “Distributed FS” 

• Observations:
– CPU-bound vs. I/O-bound
– ’stat’ primitive; includes cache validity check
– Difficult to operate & maintain
– Critical resource limits; context switches; high 

virtual memory paging
– Benchmarks: Table I
– Vice calls: Table II
– Prototype benchmarks: Table III & Table IV
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Paper “Distributed FS” 

• New version:
– Keep whole-file caching
– Keep RPC
– Keep Vice/Venus as user-level processes
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Paper “Distributed FS” 

• Cache:
– Still status, data (as before)
– Still LRU
– Modifications to cache locally (server upon close); 

directories immediately
– Use callbacks (invalidation messages); requires 

callback state information!
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Paper “Distributed FS” 

• Name resolution:
– Unique fixed-length Fid (file id)
– Each directory maps component of a pathname to a 

Fid
– Servers are unaware of pathnames (Fid has no explicit 

location information)

• Server process structure:
– Single process for all clients
– LWPs (user-level threads); bound to client
– RPC part of LWP implementation (in user space)
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Paper “Distributed FS” 

• Results: Figure 1, Table VII, Figure 2

• What are pros/cons of whole file caching?
• What are pros/cons of invalidation messages?
• What are pros/cons of stateful and stateless 

servers?
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