Reliability Issues in Computing System Design

B. RANDELL
P. A. LEE
P. C. TRELEAVEN

Computing Laboratory, Unwersity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU UK

This paper surveys the various problems involved in achieving very high reliability from
complex computing systems, and discusses the relationship between system structuring
techniques and techniques of fault tolerance. Topics covered include: 1) protective redun-
dancy in hardware and software; 2) the use of atomic actions to structure the activity of a
system to limit information flow; 3) error detection techniques; 4) strategies for locating
and dealing with faults and for assessing the damage they have caused; and 5) forward and
backward error recovery techniques, based on the concepts of recovery line, commitment,
exception, and compensation. The 1deas described relate to techmques used to date in
systems mntended for environments in which high reliability 1s demanded Three specific
systems the JPL-STAR, the Bell Laboratories ESS No. 1A processor, and the PLURIBUS
are described 1n some detail and compared.

Keywords and Phrases: error, failure, fault, fault tolerance, fault avoidance, hardware

reliability, software reliability, system structure

CR Categories: 4.30 6.20

INTRODUCTION

This paper attempts to provide a general
framework, based on concepts of system
structuring, for the analysis and compari-
son of contrasting approaches to the goal of
providing continuous and trustworthy ser-
vice from a computing system. Discussion
includes brief descriptions of some specific
systems designed for highly demanding en-
vironments. It covers both software and
hardware reliability problems, including
those arising from design inadequacies, al-
though one very important topic—software
correctness—is largely ignored since it has
been the subject of a number of survey and

tutorial papers [ELsP72, LoND75, FosD76,
HANT76].

System reliability is sometimes inter-
preted rather broadly as a measure of how
a system matches its users’ expectations.
See for example [NAUR77]. The trouble
with this view is that the expectations
themselves can be mistaken and can change
almost arbitrarily, based perhaps on expe-
rience with the system. In this paper a
somewhat narrower interpretation of sys-
tem reliability is taken, more in line with
typical formal, and often quantitative, as-
sessments of hardware reliability. Thus sys-

General permission to make fair use in teaching or research of all or part of this material is granted to individual
readers and to non-profit libraries acting for them provided that ACM’s copyright notice is given and that
reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery To otherwise reprint a figure, table, other substantial
excerpt, or the entire work requires specific permission as does republication, or systematic or multiple

reproduction.

© 1978 ACM 0010-4892/78/0600-0123 $00.75

Computing Surveys, Vol 10, No 2, June 1978

124 .
CONTENTS

INTRODUCTION
1 BASIC CONCEPTS
Systems and Their Failures
Errors and Faults
2 RELIABILITY ISSUES
Regquirements
Types of Fault
Fault Avoidance and Fault Tolerance
Design Fault Tolerance
SYSTEM STRUCTURE
Static Structure
Dynamic Structure
Atomic Actions
Levels of Abstraction
Faults and Structuring
FAULT TOLERANCE TECHNIQUES
Protective Redundancy
Error Detection
Types of Check
Interface Checking
Fault Treatment
Damage Assessment
Error Recovery
Backward Error Recovery
Forward Error Recovery
Multilevel Error Recovery
5 FAULT-TOLERANT COMPUTING SYSTEMS
The JPL-STAR Computer
System Description
Reliability Strategies
Reliability Evaluation
Bell Laboratones ESS No 1A Processor
System Description
Reliability Strategies
Relhability Evaluation
PLURIBUS
System Description
Reliability Strategies
Reliability Evaluation
SUMMARY
CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

]

L

——————— S ———

tem reliability is related to the success with
which a system provides the service speci-
fied. By this means the concept of the re-
liability of a system is separated from that
of the reliance placed on it.

It is of course to be hoped that the reli-
ance placed on a system will be commen-
surate with its reliability. When this is not
the case, one or other will have to be ad-
justed if the system is to be retained. For
example, users of a time-sharing service
that has a tendency to lose the contents of
current work spaces probably would learn
to take the precaution of frequently re-
questing the saving of copies of their work
space, thereby satisfying themselves with
the quality of the service that they are
getting. Notions of reliance, therefore, can

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

be as much bound up with psychological
attitudes as with formal decisions regarding
the requirement that a system is supposed
to satisfy.

In fact the history of the development of
computers has seen some fascinating inter-
play between reliance and reliability. The
reliability of early computers caused rela-
tively little reliance to be placed on the
validity of their outputs, at least until ap-
propriate checks had been performed. Even
less reliance was placed on the continuity
of their operation—lengthy and frequent
periods of downtime were expected and
tolerated. As reliability increased so did
reliance, sometimes in fact outdistancing
reliability so that additional efforts had to
be made to reach previously unattained
reliability levels. During this time comput-
ing systems were growing in size and func-
tional capacity so that, although compo-
nent reliability was being improved, the
very complexity of systems was becoming
a possible cause of unreliability, as well as
a cause of misunderstandings between users
and designers about system specifications.

The subject of system specifications and
of how these can be arrived at; documented,
validated, and updated, is a large and com-
plex topic, well worthy of discussion in its
own right. However, given the interpreta-
tion of system reliability that we have cho-
sen, it is inappropriate to pursue the topic
further in the present paper, which takes as
its main starting point the informal but
hopefully rigorous definitions of concepts
relating to system reliability given in Sec-
tion 1, Basic Concepts. These definitions
presume the existence of some external
specification of the requirements that the
system is supposed to meet.

As discussed in Section 2, Reliability Is-
sues, the increasing complexity of the func-
tions that computing systems are asked to
provide, and the increasing reliance that is
wished to place on them—for example, in
environments where unreliability can lead
to huge financial penalties or even loss of
life—have spurred the search for a greater
understanding of reliability issues. Aspects
of computing systems, such as their soft-
ware, which were previously virtually ig-
nored in many discussions of reliability

Reliability Issues in Computing System Design .

problems, are now being addressed, causing
earlier approaches and solutions to be re-
evaluated.

The basis for this reevaluation is pro-
vided by recent ideas on system structuring
and its relationship to reliability and, in
particular, to fault tolerance. The likely
importance of system structuring was well
expressed in the 1973 SRI survey of fault-
tolerant computing [NEUM 73]. It stated
that: “Our assessment of the structured de-
sign approach is that it has the potential
for providing highly flexible and economical
fault tolerance without greatly compromis-
ing system cost, system performance, and
system efficiency. Some qualities of struc-
ture are found in the current art, but full
realization of this potential requires further
development. . . . A serious weakness in the
current art is the absence of a design meth-
odology that integrates hardware and soft-
ware into a systems concept addressing re-
liability, availability, security, efficiency,
and functional capability in a unified way.
For example, significant benefits can be
expected from techniques for structural de-
sign and implementation. . . ”

This SRI survey provided a very useful
account of the state of the art of hardware
fault tolerance, an account which is still of
value. Because of the existence of this sur-
vey and much other relevant literature,
such as the proceedings of the IEEE Sym-
posia on Fault-Tolerant Computing, the
present paper does not attempt to describe
the present vast array of techniques for
hardware fault tolerance in great detail, but
rather concentrates on the overall system
aspects of reliability. System structuring
therefore forms one of the major topics, and
is the subject of Section 3. It is this section
which provides a basis for describing, in
Section 4, Fault Tolerance Techniques, dif-
ferent approaches to attaining reliable op-
eration, such as masking redundancy, and
forward and backward error recovery.

The present paper is a condensed version
of a much lengthier survey originally pre-
pared as lecture notes for the Advanced
Course on Operating Systems, Munich 1977
[RAND78]. Several sections of this survey
were based closely on various earlier papers
[LoME77, MELL77, RAND75] also emanat-

125

ing from the research project on com-
puting system reliability at the University
of Newcastle upon Tyne. The survey in-
cludes eight appendices, each giving a de-
tailed description of a particular highly re-
liable computing system, and an analysis of
the reliability strategies it uses. In Section
5, Fault-Tolerant Computing Systems, just
three of these systems, namely the JPL-
STAR, the Bell Laboratories ESS No. 1A
processor, and the PLURIBUS, are de-
scribed and used to illustrate the general
concepts discussed in earlier sections.

1. BASIC CONCEPTS

The terminology we use is intended to be
suitable for both hardware and software
systems, and to correspond broadly to con-
ventional usage. However, the definitions
of some terms differ from previous practice,
which typically has paid little attention to
design inadequacies as a potential source of
unreliability.

Systems and Their Failures

We define a system as a set of components
together with their interrelationships where
the system has been designed to provide a
specified service. The components of the
system can themselves be systems, and we
term their interrelationships the algorithm
of the system. There is no requirement that
a component provide service to a single
system; it may be a component of several
distinct systems. The algorithm of the sys-
tem is, however, specific to each system
individually.
Example: Figure 1 is a simple, schematic repre-
sentation of a system consisting of a processor,
a console, and an interconnecting cable. These
three components are interrelated by being
plugged together. Interconnecting lines repre-
sent these interrelationships, rather than any
physical component.

The reliability of a system is taken to be
a measure of the success with which the
system conforms to some authoritative
specification of its behavior. Without such
a specification, nothing can be said about
the reliability of the system. When the be-
havior of a system deviates from that which
is specified for it, this is called a failure. A

Computing Surveys, Vol 10, No. 2, June 1978

126 .

l CONSOLE | CABLE

FIGURE 1.

PROCESSOR

A three component system.

failure is thus an event, with the reliability
of the system being inversely related to the
frequency of such events. Various formal
measures related to a system’s reliability
can be based on the actual (or predicted)
incidence of failures, and their conse-
quences (see, for example, [SHO0068]).
These measures include Mean Time Be-
tween Failures (MTBF), Mean Time to
Repair (MTTR), and availability, that is,
the fraction of the time that a system meets
its specification. Further measures can of
course be defined which take into account
classifications of the type and seriousness
of the failure.

The internal state of a system is the
aggregation of the external states of all its
components. The external state of a system
is an abstraction of its internal state. During
a transition from one external state to an-
other, the system may pass through a num-
ber of internal states for which the abstrac-
tion, and hence the external state, is not
defined. The specification defines only the
external states of the system, the operations
that can be applied to the system, the re-
sults of these operations, and the transi-
tions between external states caused by
these operations, the internal states being
inaccessible from outside the system.

The service provided by a system is re-
garded as being provided to one or more
environments. Within a particular system,
the environment of a given component con-
sists of those other components with which
it is directly interrelated.

Errors and Faults

In contrast to the simple, albeit very broad,
definition of “failure” given above, the def-
initions we now present of “error” and
“fault” are not as straightforward. This is
because they aim to capture the element of
subjective judgment which we believe is a
necessary aspect of these concepts, partic-
ularly when they relate to problems which

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

could have been caused by design inade-
quacies in the algorithm of a system.

We term an internal state of a system an
erroneous state when that state is such that
there exist circumstances (within the spec-
ification of the use of the system) in which
further processing, by the normal algo-
rithms of the system, will lead to a failure
which we do not attribute to a subsequent
fault. The subjective judgment that we wish
to associate with the classification of a state
as being erroneous derives from the use of
the phrases ‘“normal algorithms” and
“which we do not attribute” in this defini-
tion. The first of these imblies the possible

will typically be the error recovery algo-
rithms.

The term “error” is used to designate
that part of the state which is “incorrect.”
An error is thus an item of information, and
the terms error, error detection, and error
recovery are used as casual equivalents for
erroneous state, erroneous state detection,
and erroneous state recovery.

A fault is the mechanical or algorithmic
cause of an error, while a potential fault is
a mechanical or algorithmic construction
within a system such that (under some
circumstances within the specification of
the use of the system) the construction will
cause the system to assume an erroneous
state. It is evident that the failure of a
component of a system is (or rather, may
be) a mechanical fault from the point of
view of the system as a whole.

We hope it will now be clear that the
generality of our definitions of failure and
fault enables the notion of fault to encom-
pass design inadequacies such as a mis-
taken choice of component, a misunder-
stood or inadequate specification (of either
the component or the service required from
the system), or an incorrect interrelation-
ship among components (such as a wrong
or missing interconnection in the case of
hardware systems, or a program bug in
software systems), as well as, say, hardware
component failure due to aging.

It can be very difficult to attribute a
given failure to a specific fault. A demon-
stration that further processing can lead to
a failure of a system indicates the presence
of an error, but it does not suffice to identify

Reliability Issues in Computing System Design .

a specific item of information as the error.
Consider a system affected by an algo-
rithmic fault. The sequence of internal
states adopted by this system will diverge
from that of the “correct” system at some
point; the algorithmic fault being the cause
of this transition into an erroneous state.
But there can be no unique correct algo-
rithm. It may be that any one of several
changes to the algorithm of the system
could have precluded the failure. A subjec-
tive judgment as to which of these algo-
rithms is intended determines the fault, the
items of information in error, and the mo-
ment at which the state becomes erroneous.
Some judgments may of course be more
useful than others.

The significance of the distinction be-
tween faults and errors may be seen by
considering the repair of a database system.
Repair of a fault may consist of the replace-
ment of a failing program (or hardware)
component by a correctly functioning one.
Repair of an error requires that the infor-
mation in the database be changed from its
currently erroneous state to one which will
permit the correct operation of the system.
In most systems, recovery from errors is
required, but repair of the faults which
cause these errors, although very desirable,
is not necessarily essential for continued
operation.

2. RELIABILITY ISSUES
Requirements

The reliability requirements of different en-
vironments can differ enormously. One ex-
treme is the case of air- and space-borne
computers where only momentary cessa-
tion of service can be tolerated, no mainte-
nance or manual repair activity is feasible,
and incorrect results are completely unac-
ceptable. In most other cases, however,
maintenance and manual repair are usually
possible. In some cases the reliability goals
can be met only by allowing for such repairs
while the system is in service. Thus the
repair activity is concerned with faults
rather than with system failures.

In contrast, in many environments ob-
taining very high reliability from a comput-
ing system is not worth the expense because

127

many other failure-prone devices, e.g., com-
munications lines and mechanical periph-
erals, are being used, or because the cost of
failure is comparatively low. Often certain
types of failure are regarded as compara-
tively unimportant. For example, in com-
puterized telephone systems, relatively in-
frequent, isolated small breakdowns can be
tolerated, as long as the overall system re-
mains operational.

Another type of reliability requirement is
that typical of on-line database systems or,
indeed, any systems intended to retain ex-
tensive amounts of valuable data over
lengthy periods of time. In many such sys-
tems safeguarding the data held is more
important than providing continuity of ac-
cess to that data.

These examples highlight the fact that
reliability is a commodity whose provision
involves costs, either direct, or arising from
performance degradation. In theory the de-
sign of any nontrivial computing system
should involve careful calculations of trade-
offs between reliability, performance, and
cost. In practice the data and relationships
which would be needed for such calcula-
tions in complex systems, are quite often
unknown, particularly with regard to unre-
liability caused by residual design faults.

Types of Fault

An enumerative list of fault categories is
hardly likely to be exhaustive. Such a list
could include hardware component failure,
communication faults, timing problems,
mistakes by users and operators, design
inadequacies, and the like. Faults due to
hardware component failures, are often
classified by duration, extent, and value.
Duration refers to whether the fault is per-
manent or transient (after agreeing on some
time scale); extent applies to whether the
effect of the fault is localized or distributed;
and value indicates whether the fault cre-
ates fixed or varying erroneous logical val-
ues. Extension of this classification to soft-
ware faults is possible, but not particularly
helpful. What is significant about software
faults is, of course, that they must be algo-
rithmic faults stemming from unmastered
complexity in the system design. Because
hardware systems have, in the past, been

Computing Surveys, Vol 10, No 2, June 1978

128 .

much simpler than those constructed using
software, algorithmic faults in hardware are
less common, although not unknown.

A further category of faults is that caused
by erroneous interactions with the system,
for instance by a user providing invalid
input data. While the occurrence of such
faults can be reduced by appropriate check-
ing, some interactions may be valid with
respect to the system specification although
discovered later to be incorrect. Such faults
can be subtle, serious, and difficult to deal
with.

Fault Avoidance and Fault Tolerance

The traditional approach to achieving reli-
able computing systems has been based
largely on fault avoidance (termed fault
intolerance by Avizienis). Quoting Avi-
zienis [AVIZ76]:

The procedures which have led to
the attainment of reliable systems us-
ing this approach are: acquisition of
the most reliable components within
the given cost and performance con-
straints; use of thoroughly-refined
techniques for the interconnection of
components and assembly of subsys-
tems; packaging of the hardware to
screen out expected forms of interfer-
ence; and carrying out of comprehen-
sive testing to eliminate hardware and
software design faults. Once the de-
sign has been completed, a quantita-
tive prediction of system reliability is
made using known or predicted failure
rates for the components and inter-
connections. In a “purely” fault intol-
erant (i.e., nonredundant) design, the
probability of fault-free hardware op-
eration is equated to the probability
of correct program execution. Such a
design is characterized by the decision
to invest all the reliability resources
into high-reliability components and
refinement of assembly, packaging,
and testing techniques. Occasional
system failures are accepted as a nec-
essary evil, and manual maintenance
is provided for their correction.

There are several situations in which the

Computing Surveys, Vol. 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

fault avoidance approach clearly does not
suffice. These include situations where the
frequency and duration of repair time are
unacceptable, or where the system may be
inaccessible to manual maintenance and
repair activities. An alternative approach
to fault avoidance is that of fault-tolerance.
This approach, which at present is largely
confined to hardware systems, involves the
use of protective redundancy. A system can
be designed to be fault-tolerant by incor-
porating additional components and abnor-
mal algorithms which attempt to ensure
that occurrences of erroneous states do not
result in later system failures. The degree
of fault tolerance (or “coverage”) will de-
pend on the success with which erroneous
states corresponding to faults are identified
and detected, and the success with which
such states are repaired or replaced.

There are many different degrees of fault
tolerance which can be attempted. For ex-
ample, a system designer might wish to
reduce the incidence of failures during pe-
riods of scheduled operation by designing
the system so that it will remain operational
even in the presence of, say, a single fault.
Alternatively, he might wish to increase the
average length of periods of uninterrupted
operation by designing the system so that
it can tolerate not only the presence of a
fault, but also the activity involved in re-
pairing the fault.

Fault-tolerant systems differ with respect

to their behavior in the presence of a fault.
In some cases the aim is to continue to
provide the full performance and functional
capabilities of the system. In other cases
only degraded performance or reduced
functional capabilities are provided until
the fault is removed. Such systems are
sometimes described as having a “fail-soft”
capability.
Example: 1t is now typical for the computer
terminals used in banks to incorporate signifi-
cant processing and storage facilities. Such ter-
minals enable data input and possibly some lim-
ited forms of data validation to continue even
when the main computer system is not opera-
tional.

Schemes for fault tolerance also differ
with regard to the types of fault which are
to be tolerated. In particular, many systems

Reliability Issues in Computing System Design .

which are designed to tolerate faults due to
hardware component aging, electrical inter-
ference, and the like, make no specific at-
tempt to cope with algorithmic faults in
either the hardware or the software design.
This in fact illustrates that fault tolerance
and fault avoidance are better regarded as
complementary rather than competitive
approaches to system reliability—indeed
the two different approaches are often used
within the same system in an attempt to
deal with different types of fault.

Design Fault Tolerance

It is only recently that efforts have been
undertaken to extend the fault-tolerant ap-
proach to cover design faults. The a prior:
elimination of design faults, assumed in the
fault avoidance approach, is the normal
(and praiseworthy) aim, so that many
writers have equated the notion of reliabil-
ity with that of correctness, particularly in
the case of software. Virtually all research
relating to the practice of software devel-
opment can, therefore, be claimed to be
directly relevant to software reliability; ex-
amples include the design of high-level lan-
guages, formal verification techniques, pro-
gram design methodologies and tools, de-
bugging aids, etc. However, important as all
of these topics are, they can not guarantee
that a complex software design is ever en-
tirely fault free or that modifications to the
design might not introduce new faults.
When this is admitted the only alternative
to simply accepting the resulting (probably
unquantifiable) reliability is to seek to im-
prove matters by the use of design fault
tolerance.

Most existing approaches to the design
of fault-tolerant systems make three as-
sumptions: first, as mentioned earlier, that
the algorithms of the system have been
correctly designed; second, that all of the
possible failure modes of the components
are known; and third, that all of the possible
interactions between the system and its
environment have been foreseen. However,
in the face of increasing complexity of sys-
tems, the validity of these assumptions
must be questioned. At some stage it must
surely become impractical to rely on enu-

129

merating all of the possible types of fault
which might affect a system, let alone de-
sign algorithms to detect or accommodate
each possible type of fault individually.

Thus the problem in using design fault
tolerance is essentially that of how to tol-
erate faults which are not or cannot be
anticipated as opposed to those previously
enumerated and categorized. We would
therefore argue that design fault tolerance
requires a considerable rethinking of the
techniques which have in the past proved
suitable for tolerating various kinds of hard-
ware component faults.

3. SYSTEM STRUCTURE

Considerations of the reliability problems
of complex computing systems, and of
means for coping with them, are closely
interwoven with various notions that can
be collectively termed “system structur-
ing.”

Static Structure

The definition of system given in Section 1
indicates that each system has what might
be termed a static structure, which indi-
cates what components it is regarded as
comprising and how these components are
interrelated.

One can of course visualize a given sys-

tem in terms of many different structures,
each implying a different identification of
the components of the system.
Example: A programmer visualizes a CDC 6600
as having a single sequential main processor and
a set of independent peripheral processing units,
but the maintenance engineer sees it as consist-
ing of a set of parallel function units, and a single
time-shared peripheral processor.

Some static structures will have a more
visible reality in the actual system than
others—in the case of hardware systems,
for example, by corresponding to the inter-
related physical components from which
the system is constructed. The important
characteristic of such “actual” (as opposed
to “conceptual”) structuring is that the in-
terrelationships between its components
are constrained, while the system is opera-
tional, ideally to just those that the designer
intended to occur. The stronger the con-

Computing Surveys, Vol. 10, No 2, June 1978

130 .

straint, the more the structuring is actual,
and the more reasonable it is to base pro-
visions for fault tolerance on that structur-
ing. (The “strength” of a constraint is in
fact a measure of the variety of different
faults that it prevents from affecting the
planned interrelationship.)

Example: When the various registers and func-
tional units of a central processor are imple-
mented using separate hardware components,
the designer can have reasonable confidence
that (presuming the absence of electrical or me-
chanical interference) only those registers and
functional units that are meant to communicate
with each other do so (along the interconnecting
wires that the designer has provided).

The software of a computing system
serves to structure that system by express-
ing how some of the storage locations are
to be set up with information which repre-
sents programs. These then control some of
the interrelationships among hardware
components, for example, ensuring that the
potential communication path between two
I/0 devices via working store is actually
usable.

However, the software can itself be
viewed as a system and its structure dis-
cussed in terms of the programming lan-
guage that was used to construct it. Thus
in a block-structured language each block
can be regarded as a component, which is
itself composed of, and expresses the inter-
relationships among, smaller components
such as declarations and statements (in-
cluding blocks).

The operational software will have “ac-
tual” structure matching that of its source
language version only to the extent that it
consists of components with constrained
methods of interacting.

Example: The scope rules in a block-structured
language are often enforced by a compiler, which
then emits unstructured code. However the com-
piler could emit code in which the variables of
each different block are kept, say, in different
segments, and some form of protection mecha-
nism used to impede access to those variables

which are not supposed to be currently accessi-
ble.

Dynamic Structure

Just as the system itself can be regarded as
having a static structure, so can its activity

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

be regarded as having a dynamic structure.
In fact each static structuring of a system
implies a dynamic structuring of its activity.
The static structure is important for under-
standing the kinds of faults that might exist
in the system and the provisions that have
been made for trying to cope with them;
the dynamic structure is of equal impor-
tance for understanding the effects of these
faults and how (or whether) the system
tolerates them in order to continue func-
tioning.

The activity of a given system can be

visualized in terms of many different struc-
tures, depending on which aspects of this
activity one wishes to highlight or to ignore.
One basic and now well-established concept
used for describing some important aspects
of the dynamic structure of a system’s ac-
tivity is the “process.” Depending on the
viewpoint chosen, quite different processes
with their interrelationships might be iden-
tified as constituting the structure of the
system’s activity. Again, a dynamic struc-
ture will be “actual” rather than merely
“conceptual” to the extent to which the
interrelationships are constrained to be as
the designer intended.
Example: Reasonably “actual” dynamic struc-
ture exists in the situation where processes cor-
respond to the application of programs to sets of
data, if the programs and data are suitably pro-
tected and processes are impeded from interact-
ing other than, say, via an explicit message pass-
ing system.

The sequencing, or control flow, aspects
of process structuring, namely the creation,
existence, and deletion of processes, can be
shown graphically in some form such as
Figure 2. However, matters of information

[
[
1
process 1

>

(
t
t
i
¢
§
)
'
[
1
1
|
1

-

—
progress

1

|
| present
+ tame

FIGURE 2. Control flow aspect of dynamic structure.

Reliability Issues in Computing System Design .

flow (intended or unintended) between
processes are at least as important as con-
trol flow when it comes to considerations of
reliability, particularly the problem of de-
termining the possible damage that a fault
has caused. Therefore, we need a concept
such as atomic action [LOME77] as a part
of our means of expressing the dynamic
structure of the activity of a system.

Atomic Actions

The activity of the system is made up of
primitive or atomic (i.e., apparently instan-
taneous) operations that are carried out by
the components of the system. Atomic ac-
tions provide a means of generalizing such
atomic operations. They are, in fact, a
means by which a system designer can spec-
ify what process interactions are, if possible,
to be prevented in order to maintain system
integrity, without having to indicate how
this is done. They do this by enabling the
designer to indicate the sections of the ac-
tivity, i.e., the sequences of atomic opera-
tions, of a process, or a group of processes
that are themselves to be executed “atom-
ically.” Such “atomic” execution has the
property that there is no information flow
in either direction between the process (or
group of processes) and the rest of the
system.

Example: Consider a message-passing system
that maintains a pool of buffers for holding
messages and uses the variable “i” as a buffer

131

frame pointer. The action of inserting an item
into the buffer might involve the sequence of
operations “u:=i + 1” and “buffer(1):= item”. It
is essential that this sequence of operations is
executed as a single atomic action if the buffering
scheme is to work properly.

An atomic action could involve several
processes, since 1) a process executing a
simple atomic action could temporarily cre-
ate one or more further processes to assist
it; and 2) two or more processes could co-
operate directly in a shared atomic action,
so that their activity is atomic with respect
to the remainder of the processes in the
system.

These various possibilities are shown in
Figure 3, which is based on Figure 2, but
where the ovals indicate atomic actions,
and incomplete ovals represent atomic ac-
tions that are still in progress. The lines
indicate processes, and should themselves
be regarded as consisting of miniscule ovals,
placed end to end, corresponding to the
primitive operations out of which the proc-
esses are constructed.

The figure illustrates that “atomicity”
has to be regarded as relative rather than
absolute, and that atomic actions can them-
selves involve atomic actions, as well as the
basic atomic operations. It also, by impli-
cation, illustrates that atomic actions, by
their very nature, cannot overlap. Methods
of implementing atomic actions lie outside
the scope of this paper. However, it is worth
mentioning that such methods include the
use of separate processors, the disabling of

process 1

Vo

o

N

process 2 / / [e_@

)

process 3

progress

\\\“

1
ipresent
{time

FIGURE 3. Processes and their atomic actions.

Computing Surveys, Vol 10, No 2, June 1978

132 *

interrupts on an individual (multipro-
grammed) processor, and synchronization
schemes such as monitors and resource
locking strategies.

We have so far described atomic actions
merely as a means for a designer to indicate
what system integrity constraints should be
met. However, it should be clear that they
are of direct relevance to techniques for
achieving fault tolerance. This is due to the
fact that they provide a means of error
detection, and more importantly, a means
of delimiting the possible consequences of
a fault.

An atomic action is in fact a generaliza-
tion of the concept of a “transaction” intro-
duced by database designers [EswA76,
GRAY75, LOME77]. The transaction scheme
allows a database system user to arrange
that a sequence of interactions with the
database will be treated as atomic, in order
that desired consistency constraints on the
database can be realized. A transaction can
thus be viewed as an atomic action involv-
ing the user and the database system (or,
more exactly, the process which is the user’s
activity, and one of the terminal support
processes of the system). For reasons of
performance, it is usually necessary to ex-
ecute many such transactions concurrently,
so atomicity can be provided by file- or
record-locking strategies (for example, see
[EswA76, GRAY75)).

The concept of an atomic action is itself
generalized by being made independent of
the notion of a sequential process, and is
defined wusing occurrence graphs, in
[MERL77]. However in this paper we will
content ourselves with using the present
informally described and process-based
concept.

Levels of Abstraction

In choosing to regard a system (or its activ-
ity) as composed of certain components and
to concentrate on their interrelationships
while ignoring their inner details, one is
deliberately considering just a particular
abstraction of the total system. Thus the
sorts of structuring that we have discussed
so far can be described as structuring within
a single level of abstraction, or horizontal
structuring. If we consider further details
of a system (or part of a system), our view

Computing Surveys, Vol. 10, No. 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

focuses on a lower level of abstraction
which shows how components and their
interrelationships are implemented and act,
in terms of some more detailed components
and interrelationships. These will of course
in turn just be abstractions of yet more
detailed components and interrelation-
ships, and so on.

In choosing to identify a set of levels of
abstraction (each of which might relate to
the whole system, or just some part of the
system) and to define their interrelation-
ships, one is once again imposing a struc-
ture on a system, but this is a rather differ-
ent form of structure which we will refer to
as vertical structuring. Thus vertical struc-
turings describe how components are con-
structed, whereas horizontal structurings
describe how components interact.

The importance of levels of abstraction

is that they allow one to cope with the
combinatorial complexity that would other-
wise be involved in a system constructed
from a very large number of very basic
components. The price that is paid is the
requirement for well-documented specifi-
cations of the external characteristics of
each level. Such specifications can be
thought of as the abstraction interfaces
interposed vertically between levels, much
as the interrelationships defined between
interacting components within a level func-
tion as what could be termed communica-
tion interfaces. In each case the interface
will, if well chosen, allow the designer to
ignore (at least to some extent) the work-
ings of those parts of the system which lie
on the far side of the interface.
Example: The system shown in Figure 4 has a
vertical structure comprising four levels, all but
the topmost of which are implemented by an
interpreter. Each interpreter is programmed us-
ing the set of apparently atomic facilities (ob-
jects, operations, etc.) that is provided at one
abstraction interface, and has the task of provid-
ing the more abstract set of (again apparently
atomic) facilities that the next higher abstrac-
tion interface defines. Because each of these
abstraction interfaces is fully specified and doc-
umented, the designer of the implementation of
any one level will normally need little or no
knowledge of the design, or perhaps even the
existence, of any other levels.

As with horizontal structuring, so can
many different vertical structurings be used

Reliability Issues in Computing System Design .

4 APL statements

(APL Machine)
3 Instructions

(s/31¢ Machine)
2 Micro=1nstructions

(IBM micro-instruction Machine)
1 Hardware logac,

storage etc.

FIGURE 4. A fully interpretive multilevel system

to visualize a given system. Equally, some
vertical structurings will have a more visi-
ble reality in the actual system than others.
Once again, the important characteristic of
such “actual” structuring is that, while the
system is operational, the rules of the ab-
straction interfaces are, to some degree,
constrained or “enforced.” The greater the
extent of this enforcement, the more the
vertical structuring is actual. The role of
the enforcement will be to try to prevent
faults (or more likely, just certain of the
more likely types of fault) from invalidating
the abstraction that a level is designed to
provide.

Example: In Dijkstra’s THE system [D1Jk68]
the levels are almost entirely conceptual. They
were used as a means of factoring the design
effort, and of facilitating the validation of the
system design. However no attempt was made
to incorporate mechanisms in the system which
would perform run-time checks on the rules
relating to the usage of the facilities provided at
various levels. Thus, for example, if a memory
parity error was detected there was no way of
relating this to a particular level of abstraction,
much less of directly incorporating appropriate
provisions in each level for coping with such
faults.

However, the more the vertical structur-
ing is actual, the more reasonable it is to
base provisions for fault tolerance on it.
Example: Consider a multilevel interpreter sim-
ilar to that of Figure 4, but where the micropro-
gram and the program are each held in a (sepa-
rate) part of the same store. Naturally, we as-
sume that the microprogram has been designed
to constrain the program from overwriting the
part of the store holding the microprogram.
Then the microprogrammed and programmed
interpreters might well each have their own
distinct means of recovering from a reported
store parity error.

133

Faults and Structuring

We have already discussed some examples
of how the provision of “actual” structure
in a system makes feasible the provision of
certain types of fault tolerance. Subsequent
sections develop these points further. How-
ever the relationship between faults and
structuring is really very basic, as well as
subtle. In fact our whole categorization of
faults into mechanical faults, algorithmic
faults and faults due to invalid interactions
with (i.e., misuse of) a system is based on
system structure. Only after having chosen
a particular perspective on a system, and
having identified a vertical and horizontal
structuring, can one say to which of these
three categories a given fault belongs.
Worse than this, the process of identify-
ing a structuring seems to involve a con-
scious (or more likely unconscious) assump-
tion about the sorts of fault that could
occur, and should be considered. Putting
this thought another way, just as it seems
impossible to consider any object as being
completely unstructured, it seems that we
can never, at any one time at least, avoid
limiting the fault possibilities that can be
conceived. Structurings that are useful
from the point of view of considering the
reliability of a system (i.e., structurings
which are “actual” structurings) are those
which enable designers to think, and to
think simply, about those faults which are
likely to occur. This is not just a question
of considering the relative likelihood of
problems with particular pieces of hard-
ware, or from particular types of interface,
but in complex systems is also a question of
the likelihood of mistakes being made by
the designers themselves. Good structuring
should reduce the number of such mistakes
but gives no guarantee of their absence.

4. FAULT TOLERANCE TECHNIQUES

Techniques for attempting to achieve fault
tolerance can be classified in various differ-
ent ways. Here we choose to regard them
as comprising, in general, strategies for 1)
error detection, 2) fault treatment, 3) dam-
age assessment, and 4) error recovery.

The particular strategies used may vary
in different parts of a single system, and at
different times during its operation. Indeed
it is not always possible to make a positive

Computing Surveys, Vol. 10, No. 2, June 1978

134 .

identification of the components responsi-
ble for each of the constituent strategies
used in a given fault tolerance technique.
The order in which these strategies are
carried out can vary, and there can be much
interaction between them, but the starting
point is always the detection of an error.
The additional components and algorithms
that provide these various strategies in a
fault-tolerant system constitute what can
be termed “protective redundancy.”

Protective Redundancy

One common way of classifying protective
redundancy is to differentiate masking re-
dundancy from dynamic redundancy. This
distinction is in fact related not as much to
the type of strategy used, as to the way in
which it is fitted into the structure of the
system.

Masking redundancy is redundancy used
to mask or hide the effects of faults in a
component. Thus, as far as the environ-
ment of the component is concerned, the
component works perfectly, despite inter-
nal faults, at least while the masking redun-
dancy is effective. This contrasts with the
situation where redundancy is used inside
a component to provide explicit or implicit
indications among the outputs of a compo-
nent as to whether these are erroneous.
This internal redundancy would then have
to be complemented by external redun-
dancy, in the form of provisions for recov-
ery, in the system that uses the component.
Redundancy schemes can also be related to
the structure of a system in such a way that
they possess attributes of both classes. Such
hybrid redundancy schemes will mask the
effects of some types of fault, and provide
error indications for some other types.

Masking redundancy is often equated to
a form of redundancy which is termed static
redundancy because the redundant com-
ponents that it involves remain in use, and
in the same fixed relationship, whether or
not any errors are detected. Examples of
masking or static redundancy include fault
masking via coding, and fixed replication
with voting. The canonical example of the
latter is Triple Modular Redundancy (see
Types of Check, below).

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

Error Detection

The purpose of error detection is to enable
system failures to be prevented by recog-
nizing when they may be about to occur.
Ideally, the checks made by error detection
mechanisms should both be based only on
the specification of the service that the
system is supposed to provide, and be in-
dependent of the system itself. Without
such independence there is the possibility
of a single fault affecting both the system
and the check, and so preventing error de-
tection.

Example:. The PRIME system [BAsk72] at-
tempts to detect and limit the propagation of
errors by requiring that an independent check
be made on every critical function performed by
every processor [FABR73]. The independent
check is performed either by another processor
making a consistency check or by hardware
making a validity check. Moreover, the system
software has been designed with the aim of
having sufficient redundancy to ensure that ev-
ery critical decision can be checked indepen-
dently. This approach is in fact an example of
the use of decision verfication [DENN76]

If such checks could be designed to cover
all of the aspects of the system specifica-
tions, and complemented by appropriate
means of error recovery, then no single
algorithmic or component fault would lead
to system failure. In practice, of course, one
has to make do with much less rigorous
checking than this. For a start, the system
specification may be expressed in terms of
information which is external to the system,
and in a way which is not amenable to a
computational verification. Any checks
would therefore have to ignore some as-
pects of the system specification, because
of the necessity of expressing them in al-
gorithmic form which involved only infor-
mation that was available within the sys-
tem. Furthermore, the independence of the
check and the system being checked cannot
be absolute; assessments of the degree of
independence will be based on implicit or
explicit assumptions about what faults
might occur and what faults will not (for
example it might be assumed that the soft-
ware is correct). Even then considerations
of cost and effects on performance might
further decrease the quality of the check.

Reliability Issues in Computing System Design .

Example: Because of the requirement that
checks have to be based on information available
in the system, a stock control program cannot
guard against being fed valid but incorrect data.
It therefore cannot ensure that the actual stock
supply situation matches that represented by
the information it is holding.

For all these reasons, therefore, the sorts
of checks which can be made in a system
will be ones which attempt to enforce some
lower standard of behavior than absolute
correctness, a standard usually referred to
as ‘“acceptability.” All that can be aimed
for is the choice of tests for acceptability
which provide a very high degree of confi-
dence that any error will be detected.

Types of Check

Ideally the checks on the function of a
system will be made on its “results” im-
mediately before they leave the system; this
is the principle of minimizing “Time of
Check to Time of Use” that is described by
McPhee [McPu74].

Example: Acceptance tests [HORN74] are a pro-
gramming language construct which is in accord
with this principle. Such tests are performed on
the values of selected variables that exist when
the end of a program block is reached. The
acceptance test takes the form of a Boolean
expression based, in general, both on the current
values of these variables and on the values that
existed when the block was entered. Means of
checking that changes were made only to varia-
bles listed in the acceptance test, i.e., checking
that the block did not have any unanticipated
effects, are described in [RAND75].

It is often possible, through knowledge of
the algorithms of the system, to recognize
that certain values of internal data items
are erroneous; to do so will save useless
processing and enable more speedy recov-
ery. However, such checks are an inade-
quate substitute for checks which are made
at the last possible moment and based on
the external specifications of the system.
Rather, such internal checks, which neces-
sarily depend on the internal algorithms of
the system, may lack independence from
those algorithms.

In many cases, the task of establishing
the acceptability of the results of a system
involves some form of replication, followed
by the checking of the consistency of the

135

results obtained. The replications might,
for example, involve two or more systems
of independent design, two or more copies
of the same design or repeated use of the
same system, depending on the sorts of
faults that are expected, and on the
cost/performance constraints on the sys-
tem. Such techniques can also be the means
by which fault masking is provided, so that
separate error recovery is not needed.

Example: Triple Modular Redundancy (TMR)
involves the use of three subcomponents (or
“modules”) of identical design, and majority vot-
ing circuits which check the module outputs for
exact equality. It is thus designed to mask the
failure of any single module, by accepting any
output that at least two of the modules agree on.
(The TMR structure shown in Figure 5 is as-
sumed to be part of a larger TMR structure, and
so has triplicated inputs and outputs.)

Such a TMR organization was adopted in the
SIFT (Software Implemented Fault Tolerance)
computer [WENS72] where each task is executed
by three (or more) processors and the results
voted on by three subsequent processors.

TMR schemes are based on the assumption
that failures in the different modules are inde-
pendent of each other. Thus a (hardware or
software) design fault which caused all three
modules to produce identical but incorrect out-
puts would not be masked. Equally, it is neces-
sary that the modules do not interact with each
other, i.e., that the activity of each is an atomic
action. This requirement is difficult to guarantee
for modules within a single integrated circuit
package, where TMR use is therefore inappro-
priate.

A somewhat different kind of check, a
reversal check, is sometimes possible. This
involves processing the results of the sys-
tem activity in order to determine the cor-
responding inputs and check them against
the actual inputs.

)

Module 1

Module 2

—] Module 3

N\

Voters
FIGURE 5. Triple modular redundancy.

Computmg Surveys, Vol 10, No 2, June 1978

136 .

Example: A reversal check on a system which
produces a set of factors of an integer is very
convenient, but this is not the case if the system,
say, produces a single bit result, indicating
whether or not a given integer is a prime num-
ber.

Many very effective error detection tech-
niques involve the use of coding as a means
of reducing the cost of the check. Tech-
niques such as parity checks, Hamming
codes, and cyclic redundancy checks are
well established, particularly for detecting
certain types of operational error. Checking
the acceptability of large and complex
masses of data is often infeasible without
the use of coding techniques.

Example: Rather than undertake the task of
checking that one large set of data is a permu-
tation of another set, it might suffice to confirm
that their checksums are correct, and identical.

Any form of error detection based on
coding is, however, at best a limited form
of check, whose acceptability must be based
on assumptions about the probable char-
acteristics of the errors to be detected.
Thus, for instance, parity checks are re-
garded as suitable for core stores, but as
quite inadequate for telecommunications,
because of the different types of fault in-
curred and hence the different characteris-
tics of the errors.

Error detection mechanisms can them-
selves suffer from faults. Provided that
these faults do not cause damage to the
system being checked, just two cases need
be considered: the mechanism can detect
nonexistent errors, or fail to detect actual
errors. The detection of an error which does
not exist cannot of itself cause the system
to fail, though it will use up some of the
recovery capability of the system. (If this
capability is insufficient a failure will of
course ensue.) One can expect that such
faults in error detection mechanisms, since
they draw attention to themselves, will be
quickly identified and remedied. Unfortu-
nately the reverse is true for faults which
cause errors to remain undetected.

Interface Checking

Ideal or “complete” checks on the function-
ing of a system, as described above, would
take no account of the design of the system,
or of its intended internal structuring. In-

Computing Surveys, Vol. 10, No. 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

ternal checks are typically based on a com-
bination of suspicion and faith in the struc-
turing of a system. Faith in “actual” struc-
turing is based on the presumed effective-
ness of the constraints that are applied to
interfaces; faith in “conceptual” structuring
on the quality of the thought that went into
the design.

Error detection mechanisms within com-
ponents that serve to check interactions
across interfaces (either abstraction or
communication) are one means of provid-
ing constraints. Checks for division by zero,
protection violation, lack of response to a
message within a time limit, and power
supply irregularities are typical examples of
such checks. All these checks of course can
be viewed from inside a component as
checks on the attempted use made of the
component (i.e., system) by its environ-
ment. Clearly therefore they can at most
guarantee validity of use, as opposed to
correctness with respect to environment-
level criteria.

The notion that a particular structuring

obscures the possibility of certain types of
fault has as its counterpart the fact that the
choice of an interface makes some sorts of
checking of the parts of the system on the
far side of the interface impossible or at
least impracticable.
Example: 1t is quite practicable to program a
computer to perform a given task in such a way
as to incorporate some checking on the correct
functioning of the computer (for example of its
arithmetic unit or backing store). However it
would hardly be feasible to incorporate checks
on the instruction fetching and decoding, or the
store addressing into such a program.

This point leads us to the notion of di-
agnostic checking—that of periodic at-
tempts to determine whether a component
(e.g., the instruction decoder) is presently
functioning satisfactorily, interspersed with
periods when it is assumed that it is. To be
effective the diagnosis must be capable of
revealing the existence of likely faults, and
the demands made on the component by
the diagnostic scheme should approximate
to or preferably exceed the demands made
during normal use. Such schemes are ap-
plicable only in the case of faults that arise
through uncontrolled changes to the system
(such as component degradation caused by
aging or perhaps inadequately planned

Reliability Issues in Computing System Design .

modifications), though the diagnosis tech-
nique may be invoked in response to a
failure, in an attempt to locate its underly-
ing cause. The adequacy of diagnostic
checking schemes will also depend on the
amount of time and resources involved dur-
ing diagnosis periods, and hence the fre-
quency with which they can be undertaken,
as compared to the arrival frequency of
faults. The trouble with such schemes is
that errors might go undetected for a long
period, while damage spreads throughout
the system, and beyond.

Fault Treatment

A detected error is only a symptom of the
fault that caused it, and does not necessar-
ily identify that fault. Even where the re-
lationship between the fault and the de-
tected error appears obvious, it will be
found that many other possible faults could
have caused the same error to be detected.
It is often contended that the errors caused
by different kinds of faults have fundamen-
tally different natures, that for instance
hardware component faults and software
design faults are essentially different. We
would argue that the differences are super-
ficial. It may be that a pattern-sensitive
type of fault, which generates an error only
for specific patterns of inputs, is more com-
mon in software, whilst an abrupt change
in behavior due to a change in internal state
is more frequent in hardware. But both
types of fault can be present in both hard-
ware and software components (for exam-
ple a program can damage its database and
be unable to give any further service, and
a hardware circuit can be affected by
crosstalk).

The task of locating and removing a fault
can therefore be a very complex one, whose
automation is feasible only in situations
which are (or are presumed to be) very
simple. An alternative strategy is to ignore
the fault and to try to continue to provide
a service despite its continued presence,
after having dealt in some way with the
damage it might have caused. This also
involves assumptions, this time about the
maximum possible extent of such damage.
(In practice it would be unwise not to log

137

the occurrence of an error, and perhaps
some information which might aid the later
identification of the fault by maintenance
personnel. Thus fault repair is not so much
avoided, as delayed and left to manual tech-
niques—such techniques can of course be
aided considerably by the provision of ap-
propriate tools.)

Continued usage of a component in

which there is evidence of the presence of
a fault makes sense only when the fault is
believed to be one that is effectively a tran-
sient fault. For example, it is appropriate
for faults which arise from sensitivity to a
very limited set of specific input patterns,
or from occasional time-varying behavior
of subcomponents.
Example: Continued usage could be made of a
magnetic tape unit, even though it is occasion-
ally necessary to make repeated attempts at
reading a tape before one is successful. If the
operating system keeps a record of unsuccessful
attempts at reading, this can provide evidence
for use during the next period of scheduled main-
tenance, unless the tape unit deteriorates so
rapidly that more urgent remedial action is
called for.

If, or more realistically, when, it is de-
cided that some action must be taken to
avoid the fault during further operation of
the system, or indeed to repair the fault, it
must first be located. More exactly, the
(assumed) position of the fault must be
located to within a component of a size
which is acceptable as a unit of replacement
(for example a printed circuit board or a
sequence of instructions). The search strat-
egy will perforce be influenced by some
preconceived ideas about the structure of a
system. These will, at least initially, mislead
the searcher (whether human or electronic)
if a point has been reached where the fault
has caused violation of some intended in-
terrelationship between components. This
fault will have occurred, without being de-
tected at the time, because of the absence
or inadequacy of constraints on the inter-
relationship. Where such possibilities have
not previously been anticipated, and re-
flected in at least some existing (preferably
documented) viewpoints on the system and
its structure, the task of locating the fault
can be very difficult indeed, even for a
human, since it will in essence involve the
generation of a new viewpoint.

Computing Surveys, Vol. 10, No. 2, June 1978

138 .

Example: This is what has to be done all the
time while debugging a program. It can become
a much more difficult task when it concerns
residual bugs in a system which has successfully
operated for some time, and whose programmers
have gained increased, but misplaced, confi-
dence in the adequacy of their understanding of
the system and its structure.

Given that a component has been desig-
nated as faulty, and as one whose further
use should be avoided, various strategies
are possible. Borgerson [BORG73] divides
these into replacement and reconfigura-
tion strategies. Replacement strategies are
those in which a previously idle component
(a so-called “stand-by spare”) is directly
substituted for the designated component.
Reconfiguration strategies involve arrang-
ing for some or all of the responsibilities of
the component to be taken over by other
components which are already in use by
the system. Reconfiguration therefore nec-
essarily involves some degree of perform-
ance and/or functional degradation.

Borgerson further classifies such strate-
gies as being either manual, dynamic, or
spontaneous. In the first category the sys-
tem takes no part in the strategy, which in
the case of hardware may involve manual
recabling and the like. In the second cate-
gory, external stimuli cause the system to
make use of provisions it contains for reor-
ganizing its future activity. Spontaneous
replacement and reconfiguration are strat-
egies that are carried out entirely automat-
ically by the system itself, and are some-
times referred to as “self repair” strategies.
Example: When a failure occurs in a hardware
unit (such as a processor) in the PRIME system,
the system is spontaneously reconfigured to run
without that unit. Thus the system was designed
as a “fail-softly” system which provides a grace-
ful degradation in service when a failure occurs
[BoRG 72, BORG 73]. In contrast, the JPL-STAR
computer discussed in Section 5 uses sponta-
neous replacement to deal with certain types of
hardware fault.

To date there has been comparatively
little work on the design of systems which
are specifically intended to tolerate soft-
ware faults, and on means of spontaneous
replacement for this purpose. This is in fact
what is provided by the recovery block
scheme, (described below, under Backward

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

Error Recovery), which can be regarded as
a technique for using standby spare soft-
ware components. Here the standby spares
are of course of different design to that of
the main component. A principal difference
between this scheme and that usual with
hardware standby sparing is that the spare
component replaces the main component
only momentarily. This is just in order to
cope with the particular set of circum-
stances (such as the pattern of input data)
that has caused a residual design fault to
reveal its presence. Thereafter, attempts
are made once again to rely on the main
component. With hardware standby spar-
ing, the spare component, being of the same
design, should be as good as the main com-
ponent, and would normally be used as a
replacement at least until the main com-
ponent has been repaired, or more probably
until it itself starts to fail.

Damage Assessment

Damage assessment can be based entirely
on a priori reasoning, or can involve the
system itself in activity intended to deter-
mine the extent of the damage. Each ap-
proach can involve reliance on the system
structure to determine what the system
might have done, and hence possibly have
done wrongly. The approach can be ex-
plained, and might have been designed, by
making explicit use of atomic actions.

Figure 6 shows a set of processes and
their as yet uncompleted atomic actions. (It
is derived from Figure 3 but does not show
the complete history of process creation
and deletion, and of the lifetime of atomic
actions. Rather, all completed actions and
processes are elided.) Figure 6 therefore
indicates, for example, that process 1 has
been completely isolated since point C1 in
its progress, but that process 2 has perhaps
had some interactions with process 3 since
they passed points D2 and D3 respectively,
but not since process 3 passed point G3.

If process 3 is now detected to be in error,
then one possible strategy is to assume
initially that what it has done since point
G3 is suspect. However if process 2 is the
one that is detected to be in error the same
strategy would involve an initial assump-
tion that everything it has done since D2

Reliability Issues in Computing System Design .

1

A2

process 1 /
process 2 k D2

(Jz ._

process 3 A3

progress

' present
| time

FiGURE 6. Extant atomic actions.

and everything process 3 has done since D3
is suspect. These assumptions may of
course be too optimistic, in which case
greater amounts of recent progress, perhaps
on the part of a greater number of proc-
esses, will have to be treated with suspicion.

Atomic actions thus provide a simple
choice of an a priori delimitation, or rather
sequence of delimitations, of amounts of
possible damage corresponding to each dif-
ferent error detection point. Such a delim-
itation can be used to select the area which
is inspected for possible damage—a process
which is feasible only to the extent that
records have been kept of actual informa-
tion flow and/or meaningful consistency
checks can be performed on the system
state. Alternatively, and much more simply,
one can regard everything within the delim-
ited area as being suspect, so that all must
be abandoned. (This is discussed further in
Backward Error Recovery, below.) How-
ever both these uses assume that the atomic
actions are actual, rather than merely
hoped for. Thus reliance on atomic actions
for damage assessment is reliance on the
constraints against unplanned information
flow, i.e., reliance on “error confinement
mechanisms” [DENN76].

In practice, damage assessment is often
involved closely with efforts at error recov-
ery and at dealing with faults, and is usually
a rather uncertain and incomplete affair.
Thus effort spent in trying to prevent the
spread of damage, by careful definition and
monitoring of interfaces between compo-
nents, (e.g., using a capability-based protec-
tion scheme) is well worthwhile.

139
Error Recovery

Schemes for dealing with the damage that
has been assessed as existing when an error
is detected are usually classified into back-
ward or forward recovery techniques. Such
techniques aim to place the system in a
state from which processing can proceed
and failure can be averted. Backward error
recovery involves first of all backing up one
or more of the processes of a system to a
previous state which it is hoped is error-
free, before attempting to continue further
operation of the system or sub-system.
(The method of further operation will de-
pend on the fault treatment strategy which
is being used.) This technique is thus in
sharp contrast to forward error recovery,
which is based on attempting to make fur-
ther use of the state which has just been
found to be in error. (This distinction is in
fact related to the structuring of the sys-
tem—the system is regarded as having two
levels, the lower level consisting of the com-
ponents that provide the means of back-
ward error recovery. It is only the system
state visible at the upper level which is
backed up, using information visible only
at the lower level. If this classification of
the information in the system were not
made, one would have to regard all the
activity which followed error detection as
forward error recovery, by definition.)

Backward Error Recovery

Backward error recovery depends on the
provision of recovery points, i.e., a means
by which a state of a process can be re-
corded and later reinstated. Various tech-
niques can be used for obtaining such re-
covery points. Checkpointing-type mecha-
nisms involve foreknowledge of the re-
sources that the processes could modify
while they are in the atomic action (e.g. all
of working storage). Audit trail techniques
involve recording all the modifications that
are actually made. Recovery cache-type
mechanisms are a compromise which in-
volve recording the original states of just
those resources which are modified (see
[ANDE76] and [VERH77a,b]).

The recovery block scheme [HORN74,
RAND75], a technique of structuring se-

Computing Surveys, Vol 10, No. 2, June 1978

140 .

quential programs so as to provide means
of tolerating faults whose exact location
and consequences have not been antici-
pated, is based on the use of recovery cache-
type mechanisms for backward error recov-
ery. Recovery blocks in fact provide a
means for expressing nested atomic actions
in a sequential program, and for specifying
a final programmed check (the acceptance
test discussed previously in this section) on
the results of an atomic action. The recov-
ery block structure also enables zero or
more alternative algorithms (called “alter-
nates”) to act as standby-spares for the
atomic action. Figure 7, taken from [ANDE
76] illustrates the form of a simple recovery
block example.

The functioning of a recovery block is as
follows: the first algorithm of the recovery
block is executed, followed by the evalua-
tion of the acceptance test. If the accept-
ance test fails, then the next algorithm in
the block is attempted. (This also occurs if
an error is detected during the execution of
an alternate.) However, before this next
algorithm is invoked, the state of the pro-
gram is automatically reset to its state be-
fore the previous alternate was started (i.e.,
backward error recovery). Thus everything
that the program has done since entering
the current recovery block is discarded. If
the final alternative algorithm (the last
standby-spare) does not succeed in reach-
ing and passing the acceptance test, this is
treated as an error in the enclosing recovery
block (if there is one) which therefore leads
to the backward error recovery of the en-
closing block.

Because each of the alternates can be
designed on the assumption that they start
from the same state, their designs can (and
preferably should) be independent of each
other. The designer of one alternate need
have no knowledge of the designs of the
other alternates, much less any responsibil-
ity for coping with any damage that they
may have caused. Equally, the designer of
a program that contains a recovery block
does not necessarily have to concern him-
self with which of the various alternative
algorithms of the recovery block was even-
tually used. It is therefore argued that the

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

ensure
———

data still valid "acceptance test®

4

apply fast update "ormal algorithm"

elseby

apply slow but sure update "standby=-spare 1"

elseby

warning ("update not applied®) "gtandby=-spare 2"

elseerror

FIGURE 7. A simple recovery block.

extra size of programs that incorporate re-
covery blocks as a means of design fault
tolerance does not imply any increase in
complexity. Clearly with this scheme the
form of fault treatment is very simple. Since
the intention is to cope with faults whose
exact position and form are unanticipated,
no attempt is made at fault diagnosis and
location, although errors are logged for off-
line inspection. Instead, after error recovery
the next alternative algorithm is used as a
temporary standby-spare to cope with just
the particular set of input data that led to
the error. On subsequent uses of the recov-
ery block, with (presumably) different input
data, the normal (first) algorithm will again
be used. Thus the aim is to continue to
provide service until there is an opportunity
for manual fault diagnosis and repair.

The use of atomic actions as a basis for
backward error recovery can be generalized
so as to deal with systems in which there is
concurrent activity, since atomic actions
provide a means for specifying pre-planned
limitations on information flow in such sys-
tems. All that is required is that recovery
points are saved for a process each time it
enters an atomic action and are retained
for all processes involved in any given
atomic action until all have reached the end
of that atomic action. (The straightforward
way of ensuring this latter requirement is
to arrange that no process is allowed to
leave a shared atomic action until all have
indicated their readiness to do so. This is
the scheduling restriction involved in “con-
versations” [RAND75].)

Reliability Issues in Computing System Design .

Given such a discipline of saving and
retaining recovery points, the set of extant
atomic actions directly defines the amount
of system activity that will be abandoned
should an error be detected in any process.
Example: In Figure 6, if an error is detected in
process 1, it could be backed up to recovery
point C1. However if an error was detected in
process 2, it would have to be backed up to
recovery point D2 and process 3 to recovery
point D3.

More complex backward error recovery
strategies are possible, either instead of, or
as supplements to, this atomic action-based
strategy. These all involve incorporating
strategies into the actual system to deter-
mine what information flow has, or might
have, occurred. Such strategies therefore
can be regarded as ones whose tasks involve
both damage assessment and the choice of
which recovery points are to be used.

Thus, in contrast to the case of an atomic
action-based scheme, the design of such
strategies involves the possibly very diffi-
cult task of taking into account the effects
of any other activity in the system that
continues while the strategy is evaluated,
and also the possibility of faults occurring
during this time (see [MERL77]).

A major problem with strategies based
simply on records of what information flow
has, or might have, occurred is that they do
not necessarily result in the location of a
set of usable recovery points. The problem
is illustrated in Figure 8. This shows three
processes, each of which has three recovery
points in addition to that taken at the point
of its entry to the shared atomic action.
The dotted lines mark occurrences of infor-
mation flow between processes.

process 1 /

process 2

!
L
1

= I
Y___w__1__

—
N
w

[' N
Y T
1 ' [2

L r
\; §

process 3

r
4

—_—
progress

| bresent
1 time

FiIGURE 8. The domino effect.

141

If it should be necessary to back up proc-
ess 1, this can clearly be done to its third
recovery point, without affecting the other
processes. If it is process 2 that requires
backing up, it will be seen that if this is to
its third recovery point, then process 1 will
also have to be backed up, and to its second
rather than its third recovery point, since
its third recovery point postdates interac-
tions between the two processes. However
if process 3 has to be backed up, it and the
other two processes will have to be backed
up right to the start of the atomic action,
due to what can be visualized as a sort of
“domino effect” [RAND75].

The search for a usable set of recovery
points for the process which is in error, and
for any other processes which are also af-
fected, is in fact a search for a set of con-
sistent recovery points. Such a set we will
term a recovery line. Each process will at
any moment have associated with it a (pos-
sibly empty) sequence of recovery lines. A
recovery line in fact identifies a set of re-
covery points, each belonging to a different
process, such that
a) one of these processes is the process in

question;

b) no information flow took place between
any pair of processes in the set during
the interval spanning the saving of their
identified recovery points;

¢) no information flow took place between
any process outside the set and any
process in the set subsequent to its iden-
tified recovery point.

Thus defined, a recovery line identifies a
set of process states which might have all
existed at the same moment, and since
which all the processes have been isolated
from the rest of the system, so that aban-
doning the activity which postdates these
states is a straightforward task. (The con-
cept of recovery line is very similar to that
of “sphere of control,” introduced by Dav-
ies and Bjork [DAvi72, BJoRrR72] as a
method of representing the system infor-
mation used for scheduling processes, re-
cording information flow, and preserving
recovery points.)

Figure 9 is based on Figure 8, with all the
recovery lines drawn in. The line represent-

Computing Surveys, Vol. 10, No 2, June 1978

142 .

process 1 /

process 2 ek {
N 1

1 |
w 1
y .

N
_____i_.‘--__

P e

-
i
1
t

R
N

FIGUREY9. Recovery lines.

process 3

w
A

——

)
progress , Ppresent

v time

ing the shared atomic action is also a recov-
ery line, since recovery points saved at the
start of an atomic action automatically con-
stitute a pre-planned recovery line. Without
such pre-planned recovery lines, it may well
be the case that, due to the domino effect,
one or more processes have no recovery
lines at all. Such processes must be re-
garded as being “out of control.”

Clearly, therefore, if the scheduling con-
straints (and hence performance impact) of
shared atomic actiohs can be accepted, they
provide a much preferable basis for back-
ward error recovery than what might be
termed “information flow analysis” tech-
niques. These scheduling constraints have
so far been described in such a way as to
imply that shared atomic actions can be
used only where there is an explicit require-
ment for a set of processes to have some
private interactions, in furtherance of some
common goal. In fact one can imagine the
sequencing constraints being imposed on a
set of separately designed processes, merely
because of a fear of accidental interactions.
(An extreme example of this is the step of
stopping all the activities of a system so as
to take a system-wide checkpoint.) Unfor-
tunately, in some situations one must resort
instead to the more complicated and risky
information flow-based techniques, because
of an absence or scarcity of pre-planned
recovery lines.

Schemes based on information flow
analysis——The essence of such schemes
is the search for a recovery line. Recovery
lines come into existence through the sav-
ing of recovery points. When a recovery
line ceases to exist we say that a commit-
ment occurs. A commitment is therefore an
impediment to future recovery. (This defi-
nition of commitment differs greatly from

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

the various and varied descriptions of com-
mitment given by Davies [DAv172] and by
Bjork and Davies [BJOR72] but is claimed
to capture the essential idea involved.)
There are several important varieties of
commitment, including what we term “ex-
plicit commitment,” “interaction commit-
ment,” and “accidental commitment.”

The deliberate discarding of a recovery
point (for example at the end of an atomic
action), and hence of any recovery lines of
which it was a member, constitutes an ex-
plicit commitment. Such explicit commit-
ment is therefore the means by which the
extent of the resources devoted to error
recovery provisions is limited. In some
schemes these limitations can be quite se-
vere, so that only a few recovery points ever
exist.

Example: File processing systems often have
just two recovery points, implemented by the

retention of so-called father and grandfather
files.

If information is allowed to flow between

processes whose latest recovery lines are
not identical, and there is no means of
“compensating” for this information flow,
this constitutes an interaction commit-
ment. It means that all recovery lines, for
each process, which postdate the latest re-
covery line which is common to all the
processes cease to exist. Such interaction
commitments are to be expected for un-
planned recovery lines—recovery lines that
correspond to uncompleted atomic actions
will cease to exist if, for example, the re-
source locking mechanism fails.
Example: We can re-interpret Figure 6 as a
representation of a set of recovery lines for the
three processes. Thus process 1 currently has
recovery lines (C1) and (A1, A2, A3); process 2
has recovery lines (D2, D3) and (Al, A2, A3)
and process 3 has (G3), (D2, D3) and (Al, A2,
A3). If there is now an uncompensatable infor-
mation flow between process 2 and process 3,
process 3 will lose its latest recovery line, ie.,
(G3).

Compensation [BJOR72] is in fact a form
of forward error recovery, involving the
provision of supplementary corrective in-
formation, a technique which is discussed
later in this section. There is however one
special case of information flow which does

Reliability Issues in Computing System Design .

not need compensation, and which does not
cause any commitment. This is the case
when the recipients are not relying on the
accuracy of the information they receive, to
the extent that any one of a defined set of
possible values will be acceptable, whether
or not the sender later regrets having sent
it. Bjork and Davies [Bsor72] term such
information reference nformation, al-
though insignificant information would
perhaps be a better term. (A possible ex-
ample of such information is that obtained
by a process which is monitoring the prog-
ress of another process.) Barring means of
detecting that information is being treated
as insignificant, some explicit indication of
this intention is needed. Such indications
can be used to help determine when back-
up is needed.

Clearly the task of establishing which
recovery lines still exist, rather than which
have disappeared because of interaction
commitments can be a very difficult one.
The rational design of strategies for this
task must be based on the assumption that,
in the absence of known constraints, infor-
mation flow will have occurred unless it can
be established otherwise. (See for example
[EDEL74].)

The third form of commitment poses
even worse problems. This is accidental
commitment, which occurs when something
damages the information or the mecha-
nisms that provide one or more (perhaps
many more) recovery lines, thus making
them unusable. The effects of this sort of
commitment can be particularly insidious,
since its occurrence might be, from the
designer’s viewpoint, totally unrelated to
the activities of many of the processes it
may affect. Moreover the commitment may
not be noticed at the time that it occurs, so
that its effects are only felt later if and
when error recovery is needed.

Our approach to understanding, and per-
haps even coping rationally with, such
problems involves the concept of multi-
level error recovery, discussed later in this
section.

Schemes based on information valida-
tion—-The designs of the backward error
recovery strategies described above do not
involve any critical assumptions as to which

143

of the processes involved is, or is not, re-
sponsible for a particular error. However
several important approaches to backward
error recovery are based on what are often
quite reasonable assumptions about error
causes.

For example, some data base systems use
audit trails of transactions in order to shield
users from the consequences of the system
having had to be backed up. Rather than
request the user to resubmit the sequence
of requests which postdated the recovery
point, the copies of these messages that are
held in the audit trail file are reprocessed
instead. This technique presupposes that
the user’s messages were neither them-
selves the cause of the error nor mistakenly
based on erroneous messages from the sys-
tem itself. (The scheme described by Rus-
sell [Russ76] generalizes this approach
somewhat, so as to deal with networks of
interacting processes, rather than a single
system interacting with a set of users.)

In effect, such techniques assume that
the inputs to a process can be presumed
valid or can be checked completely. A con-
trasting scheme would allow a process some
means of indicating when its outputs should
be regarded as having been certified as
correct (with respect to its inputs, and as-
suming that the process was executed cor-
rectly). Then when an error was subse-
quently detected, such certifications would
be regarded as indicating which recovery
lines were not worth using because more
global error recovery was needed. Whether
such global error recovery is actually at-
tempted is another matter.

Forward Error Recovery

The relative simplicity of backward error
recovery is due to two facts: first, that ques-
tions of damage assessment and repair are
treated quite separately from those of how
to continue to provide the specified service;
and second, that the actual damage assess-
ment takes virtually no account of the na-
ture of the fault involved. In forward error
recovery these questions are inextricably
intermingled, and the technique is to a
much greater extent dependent on having
identified the fault, or at least all its con-
sequences. Thus generalized mechanisms

Computing Surveys, Vol 10, No 2, June 1978

144 .

for backward error recovery are quite fea-
sible.

In contrast, forward error recovery
schemes must, it seems, be designed as
integral parts of the system they serve.
Despite this entanglement with all of the
other aspects of a system, forward error
recovery techniques can be quite simple
and effective. However this simplicity will
be based on the assumed simplicity of the
faults and the ensuing damage that they
are expected to have to cope with. Where
such assumptions are justified, forward er-
ror recovery can be both simple and much
more efficient than backward error recov-
ery. (After all, backward error recovery in-
volves undoing everything a system has
done since passing its last recovery point,
not just the things it did wrongly.) However
in many cases the simplicity owes much to
the fact that the forward error recovery
provisions are not even required to achieve
complete error recovery.

Example: In many operating systems, recovery
after a crash involves attempting to establish
what system resources, and what parts of the
data relating to current jobs, seem unharmed.
These jobs will then be restarted. On the other
hand, jobs which were being executed when the
crash occurred, or perhaps all jobs that were in
main store, may not be restartable or even rec-
ognizable as jobs. Thus although some (perhaps
most) users will be unaware of there having been
any trouble, others will find that their work has
been lost or spoiled, and will themselves have to
sort out what should be done about the situation.

The classification of faults that is implied
by choosing a view of the system and its
structuring provides us with a means of
analyzing forward error recovery strategies.
Thus they can be provided in a system in
order to cope with faults either in the sys-
tem components, or in systems it is inter-
acting with, or in the design of the algo-
rithm of the system. (It should however be
noted that a forward error recovery strat-
egy intended for one of these purposes
might, more or less accidentally, on occa-
sion cope with other classes of fault.) For-
ward error recovery strategies intended for
coping with component faults are discussed
next, under the heading Exception Han-
dling, and our second category follows un-
der the heading Compensation. It is our

Computing Surveys, Vol. 10, No. 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

opinion that the third case, the deliberate
use of forward error recovery to cope with
residual design faults in the algorithm of
which it is regarded as part, is inappro-
priate. Should one wish to provide means
of tolerating such faults, backward error
recovery seems much more appropriate.
Forward error recovery would involve au-
tomated diagnosis of design faults, a task
whose complexity is such as to be produc-
tive of design faults, rather than conducive
to the design of reliable systems. Indeed,
when the type and location of a design fault
can be predicted, it should be removed,
rather than tolerated. This topic is dis-
cussed more fully in [MELL77].

Exception handling——Rational design
of an algorithm incorporating strategies for
recovering from errors due to faulty com-
ponents requires prediction of the possible
faults, and of how they manifest themselves
outside the component. In effect therefore
it involves including various possible types
of undesirable behavior among the activi-
ties that the component is specified as pro-
viding. As long as a component does per-
form one of its specified activities, it will
not, by our definitions, have failed. How-
ever from the viewpoint of the system there
will be a fault when one of the undesired
activities takes place, and some (not nec-
essarily easily identified) part of the algo-
rithm of the system will be concerned with
coping with it.

Example: A hardware system can incorporate
forward error recovery strategies, based on the
use of error correcting techniques and codes, to
cope with faulty information storage and trans-
mission components. A given coding scheme will
be usable for correcting just a particular, limited,
class of errors (e.g., those involving not more
than n successive bits).

It is often desirable to have some means
of distinguishing, from each other, and from
the main part of an algorithm, those of its
parts which have the task of providing for-
ward error recovery for the different kinds
of component fault which have been envis-
aged. Programming language designers
have catered to this need by means of lan-
guage facilities for “exception handling.”
The PL/I language provided an early form
of such facilities with its “ON conditions”;

Reliability Issues in Computing System Design .

more recent proposals include those by
Goodenough [GooD75], Wasserman
[WAss76] and Levin [LEVI77].

Example: Wasserman’s proposals are linked
closely with procedure declarations and calls. A
procedure can contain statements which will
cause particular exceptions to “hold” (e.g., arith-
metic overflow, end of tape, array bound check,
etc.). Then each procedure call explicitly, or by
default, indicates what is to be done when each
possible condition occurs. This is illustrated in
Figure 10. The procedure CHECKNUM pro-
vides an exception handler MESSAGE which
will be invoked by the procedure READ if the
OVERFLOW, UNDERFLOW or CONVER-
SION exceptions occur, and the exception han-
dler CRASH for the IOERR exception.

Since we regard exception handling as a
means of programming forward error recov-
ery, we do not regard it as appropriate for
coping with residual bugs in programs.
However forward and backward error re-
covery techniques should be thought of as
potentially complementary, rather than
competitive, techniques. Thus exception
handling can be combined with the recov-
ery block scheme for backward error recov-
ery. An example of such a combination is

VAR NUM: INTEGER;
EXCEPTION GOOF = OVERFLOW OR UNDERFLOW OR
CONVERSION;

PROCEDURE CHECKNUM (=> J: INTEGER);
VAR COUNT: INTEGER; INIT COUNT<- §
PROCEDURE. MESSAGE;

GLOBAL COUNT: ASSIGNED;
BEGIN
COUNT <~ COUNT + 1;
WRITE (*PLEASE TRY AGAIN");
IF COUNT > 3 THEN
BEGIN
WRITE ("THREE STRIKES- —YOU'RE OUT");
SIGNAL FAIL;
END ELSE RETRY
FT
END MESSAGE;
PROCEDURE CRASH;
local declarations
BECIN
any required cleanup
STGNAL FAIL
END CRASH;
BEGIN
body of CHECKNUM
READ (J); GOOP: MESSAGE, IOERR: CRASH
END CHECKNUM;

BEGIN

main program

.
CHECKNUM (=> NUM);
program terminates :f FAIL 1s signaled

END.

FIGURE 10 An example of exception handling, taken
from [WAss 76].

145

given in [MELL77]. This example shows a
program which deals with readily forseea-
ble simple faults, such as invalid input data,
by means of exception handling and less
likely faults, including those arising from
design inadequacies in the exception han-
dlers, by recovery block techniques.
Compensation——Compensation, our
second form of forward error recovery, ful-
fills a very different, and indeed much more
important need, one which cannot be coped
with by backward error recovery. It pro-
vides the means for trying to deal with the
situation of an error being detected while a
system is in communication with an envi-
ronment which cannot be backed up. As
explained earlier compensation is an act by
which one system provides supplementary
information intended to correct the effects
of information that it had previously sent
to another system. This requires that both
(or more generally, all) the interacting sys-
tems are such that, when erroneous infor-
mation is found to have been sent out or let
out by a system, all of the other systems
are capable of accepting the corrective in-
formation which is then sent out by, or on
behalf of, the offending system.

Example: If a stock control data base has been
updated because of an input message indicating
the issuance of some stocked items, and it is
later found that this message was incorrect, it
might be possible to compensate for the wrong
message by means of another message purport-
ing to record the acquisition of replacement
stock items. Such a simple compensation would
probably not suffice if, for example, the stock
control system had, as a result of the wrong
information, recalculated optimum stock levels,
or produced purchase orders for the replenish-
ment of the stock involved.

As has already been described, determi-
nation of the extent of information flow,
and hence of the requirements for compen-
sation, can be aided by the concept of
atomic actions, and by the careful planning
of such actions. System algorithms that
incorporate compensation strategies can be
designed using such structuring techniques
as exception handling. (See [LEVI177] for a
detailed description of an exception han-
dling scheme which is specifically designed
to facilitate the programming of compen-
sation strategies.) However the problem of

Computing Surveys, Vol 10, No 2, June 1978

146 .

designing compensation algorithms that
will work well, in complex systems, is an
immense one, with no obvious general so-
lution. Clearly the simple, but unfortu-
nately impracticable, solution is to avoid
the need for any compensation by guaran-
teeing that no incorrect results are ever
allowed to leave a system.

Example: Even recent data base systems which
incorporate very sophisticated error recovery
strategies can occasionally get the data that they
hold into such a state that there is no alternative
but to suspend service, and attempt manual
correction of the data base, and manual assess-
ment of the damage that has been done through
the provision of wrong information to the orga-
nization using the system [GRAY77]. The basic
requirements for such manual determination of
what compensation is necessary are an under-
standing of the information flow in the environ-
ment of the system, and a complete record of all
information flow to and from the system (see
Bjork [BJor74)). In practice what usually hap-
pens is that such manual compensation is nei-
ther guaranteed, nor expected, to be complete.

Multilevel Error Recovery

The advantage of multilevel designs, i.e.,
those characterized by the existence of
specified (and hopefully well-documented)
abstraction interfaces, is that each level can
be designed independently of the internal
designs of other levels. This advantage is
especially desirable in situations which are
complicated by the possibility of faults. In-
deed it seems to be the only means we have
of mastering problems such as the occur-
rence of further faults while a previous fault
is still being dealt with.

Ideally the algorithm at any level of the
system would be designed on the assump-
tion that all of its components, that is the
level below, worked perfectly (either fault-
lessly, or with complete masking of faults).
Then error recovery would be needed only
for purposes of coping with invalid use of
the system and with design faults in the
algorithm of the system.

Even when perfection of components is
not assumed, it is possible to achieve con-
siderable independence of the design of sep-
arate levels, and even of their provisions for
error recovery. This in fact is conventional
practice in the simple multilevel structures

Computing Surveys, Vol. 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

(namely those that relate directly to the
physical construction of the system, and
involve no sharing of components) that are
typical of hardware designs.

Example: The three components, say proces-
sors, in a TMR structure might use such internal
error recovery strategies as instruction rentry
and error correcting codes. As long as the faults
which cannot be masked by these strategies are
independent, and do not destroy the TMR struc-
ture, it can mask their effects at the system level.

In more sophisticated forms of multilevel
structure, and in systems which have to
cope with more than just operational faults
in correctly designed hardware compo-
nents, the situation is more complicated.
However in all cases rational design of a
system is impossible if it incorporates faulty
components which are known to leave
themselves in internal states for which no
external state (i.e., system level abstrac-
tion) is defined.

Therefore one approach, feasible only for
faults whose exact consequences can be
predicted, is to incorporate the description
of the faulty behavior into the specification
of the abstraction interface. The system
algorithm then has to be augmented so as
to deal with this specified undesirable be-
havior, for example by using explicit excep-
tion handling facilities, or static redun-
dancy (such as in the above TMR example).
Parnas and Wurges [PARN76] give a de-
tailed discussion of one exception handling
approach, couched in terms of techniques
for programming hierarchies of abstract
machines, and based on the use of traps as
a means of reporting ‘“undesired events”
(i.e. exceptions). An account of how the
approach is used in the HYDRA operating
system, mainly for coping with hardware
faults, is given by Wulf [WULF75]. (See also
Denning [DENN76].)

The technique of augmenting and hence
complicating the specification of an ab-
straction interface by incorporating details
of all anticipated (unmasked) faults reduces
the practical, if not the theoretical, inde-
pendence of the designs of the levels it
separates. The one alternative means of
retaining a large measure of design inde-
pendence is to require that unmasked faults
in the components constituting the lower

Reliability Issues in Computing System Design .

level cause this lower level to assume a
defined state which corresponds to some
previous external state. Thus from the sys-
tem’s viewpoint, some sequence of opera-
tions end up by having had no effect. In
other words, errors detected at one level
result in what can be seen from the next
level as backward error recovery. A detailed
explanation of a very basic version of such
a scheme applicable to levels in a fully
interpretive multilevel system (such as
that shown in Figure 4) is described in
[RAND75]. More sophisticated versions,
which do not require levels to be fully in-
terpretive, are described in [VERH77a,b]
and [SHRI78]. A detailed general account of
multilevel system design and the problems
of recoverability is given in [ANDE77].
Example: The scheme described in [SHRI78] is
used to show how backward error recovery can
be provided by an operating system to indepen-
dent user processes which are competing for the
resources (e.g., storage space) being managed by
that operating system. Faults in one process do
not affect other processes, and the specification
of the operating system interface remains sim-
ple.

All strategies for independent design of
separate levels of a multilevel system de-
pend absolutely on the vertical structure
being “actual,” as was discussed in the sec-
tion on levels of abstraction. With respect
to error recovery specifically, there would,
for example, be little point in having the
checkpoints, audit trails, or whatever, that
were being kept for different levels, in the
same failure-prone storage device. If this
were done, and a failure did occur, the level
structure would be an impediment to un-
derstanding what had happened, rather
than an aid to designing some means of
tolerating such occurrences.

Multilevel recovery schemes therefore
have to be designed with very careful regard
for the possibility of an accidental commit-
ment (i.e., destruction of recovery lines)
caused by the failure of some system com-
ponent which is common to the recovery
mechanisms used for separate levels. Many
possible types of multilevel recovery
schemes are possible, with widely varying
strategies for achieving a measure of inde-
pendence between the recovery mecha-

147

nisms used for the different levels. Perhaps
the most common scheme is one which
provides two levels of recovery after a sys-
tem crash, one referred to as enabling a
“warm start,” the other a more brutal “cold
start” (one in which the system retains no
information from any of its activity prior to
the crash), for use when warm start cannot
be achieved. Both levels of recovery are
usually incomplete, since even the warm
start scheme normally ignores the effects of
some interaction commitments, so that
some users are left to fend for themselves.
This is the case even with the very sophis-
ticated scheme described by Lampson and
Sturgis [LAMP76]. However this scheme,
which is based on some quite plausible as-
sumptions about the ways in which storage,
communication channels, and processors
can fail, does guarantee the integrity of the
system’s distributed shared files, no matter
when the crash(es) occur.

5. FAULT-TOLERANT COMPUTING
SYSTEMS

There have been many fault-tolerant com-
puting systems designed (and built) to sat-
isfy high reliability requirements. The ter-
minology adopted in the description of such
systems has in general been sufficiently var-
ied that comparison between the systems is
often difficult or impossible. One of the
aims of this paper has been to present some
coherent but general reliability terminology
which can be used to describe and compare
such fault-tolerant systems from a common
viewpoint.

As an aid to further explication of the
ideas, and to appreciating their manifesta-
tions and significance in practice, a number
of different systems have been studied by
the Newcastle Reliability Project, and over-
all descriptions of some of these systems,
using the terminology adopted in this pa-
per, have been presented in [RAND78]. This
present section discusses just three of those
systems, namely: 1) the Jet Propulsion Lab-
oratory STAR computer, designed for un-
manned spacecraft applications; 2) the Bell
Laboratories ESS No. 1A processor, de-
signed for electronically controlled switch-

Computing Surveys, Vol 10, No 2, June 1978

148 .

ing systems such as telephone exchanges;
and 3) the Bolt, Beranek and Newman
PLURIBUS, which was designed as a mes-
sage switching node for the ARPA network.
The descriptions are based solely on the
particular documents that are referenced
and so do not necessarily give an up-to-date
or complete account of the systems. The
particular selection of systems has been
chosen merely to illustrate the diversity
(but common underlying principles) of ap-
proaches used in systems that were devel-
oped to operational status, and to show how
the different environments in which the
systems were designed to function have
been reflected in the manner in which fault
tolerance has been provided. (The selection
deliberately does not include a large data
base system—such systems are the subject
of the companion paper by Verhofstad.)

The JPL-STAR Computer

The Jet Propulsion Laboratory Self Testing
and Repairing (JPL-STAR) computer was
the result of studies, initiated in 1961, into
the design of fault tolerant computer sys-
tems. The principal goal stated in [Aviz71]
for the design of the STAR was to achieve
fault tolerance for a variety of hardware
faults, namely transient, permanent, ran-
dom and catastrophic. In order to achieve
this degree of fault tolerance, a variety of
techniques was used: coding, monitoring,
standby spares, replication with voting,
component redundancy, and program roll-
back and repetition. No specific provisions
were made for possible software
faults—rather it would appear that pro-
grams that are run on the STAR are as-
sumed to be correct.

The STAR was designed as a general-
purpose fault-tolerant computer, whose
main characteristics were chosen to match
the requirements of a spacecraft guidance,
control and data acquisition system which
would be used on long unmanned space
missions. Thus the reliability requirements
for the STAR were for 100,000 hour sur-
vival with a probability of 0.95, and with a
maximum time requirement for recovery of
50msecs. An experimental laboratory ver-
sion of the STAR was constructed and op-

Computmg Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

erational in 1969, although it did not imple-
ment all of the features of the STAR design.
This description will therefore concentrate
on the design presented in [Aviz71] rather
than on the particular implementation of
the STAR. Some of the results from exper-
imentation with the laboratory STAR are
presented in [Aviz72], and [ROHR73] dis-
cusses details of the system software.

System Description

The STAR computer may be regarded as
a three level system. The bottom (hard-
ware) level of the STAR supports two soft-
ware levels consisting of a resident execu-
tive and the applications programs.

The hardware level of the STAR can be
regarded as having a decentralized organi-
zation. A standard configuration of func-
tional subsystems (i.e., components) imple-
ments the abstraction interface presented
to the higher (software) levels, which essen-
tially has the appearance of a single-cpu
system with the required computing capa-
bility. Figure 11, taken from [Aviz71], illus-
trates a static structuring of the bottom
level of the STAR computer, consisting of
the following functional subsystems:

1) Control processor (COP)—contains the
index registers and contains and main-
tains the program location counter;

2) logic processor (LOP)—performs logical
operations;

3) main arithmetic processor (MAP)—per-
forms arithmetic operations;

4) read only memory (ROM);

5) read/write memory (RWM);

6) input/output processor (IOP);

7) interrupt processor (IRP)—handles in-
terrupt requests;

8) test and repair processor (TARP)—
monitors the operation of the computer
and implements the recovery.
Communication between the various

units is carried out on three buses: the

memory-out (M-0O) bus; the memory-in

(M-I) bus; and the control bus.

The second level in the STAR computer,
the resident executive, provides typical op-
erating system features for use by the ap-
plications programs in the third level.

Reliability Issues in Computing System Design .

149

M-1 BUS (4)

L
TARP }—« MLl 4 RWM2 —-{ me!- RWM4 4 RWMS [RWM6 =1
)
———?’?]
‘ 1
]]
i t
]
' 3 3 Y y '
' L |
| M-0 BUS (4) ;
1 t
! :
)
1
]
(]
, v w v v !
'-«ﬂ— COP - LOP -—-TH map F---]] 10- 1rP]—---I roM -~
T T -
CONTROL BUS (3),
STATUS LINES,
SWITCH LINES
A

FIGURE 11.

These features include interrupt control,
1/0 processing and job scheduling.

The STAR computer operates in two
modes: standard mode and recovery mode.
In standard mode the stored programs are
executed, and the “normal” algorithms of
the TARP issue the principal clocking sig-
nals and continually monitor the operation
of the system. Recovery mode is discussed
subsequently.

Reliability Strategies

The STAR computer employs a variety of
techniques, as already mentioned, to attain
the desired hardware controlled self-repair
and protection against many types of faults.
The TARP implements, in hardware, the
majority of these features. The correct op-
eration of the rest of the system is based on
the assumption that the TARP is always
functioning correctly.

Error detection——The major error de-
tection mechanisms in the STAR computer
are implemented in the hardware level. In
particular, the TARP is responsible for
monitoring the operation of the computer,
and detects errors by two methods: 1) test-
ing every word sent over the two data buses;
and 2) checking status messages from the
functional units for predicted responses.

STAR computer organization.

All machine words in the STAR are pro-
tected by various error detecting codes. The
codes are preserved by arithmetic opera-
tions although not by logic operations.
(Consequently operation of the logic proc-
essor is checked by replication, using two
operational copies to indicate when dis-
agreement occurs.) Thus the TARP can
detect errors arising from faults in the stor-
age, transmission and processing of words,
i.e., the TARP checks the abstraction in-
terface between the components at this
level.

Each functional unit in the STAR com-
puter generates status messages which are
checked in the TARP against the responses
that are predicted (independently) by logic
internal to the TARP. Thus the TARP can
identify, for example, both improperly ac-
tivated units (unexpected message) and
failed units (absence of an expected mes-
sage).

The types of message that a unit can
generate include “disagree with bus” mes-
sage and “internal fault” message. The “dis-
agree with bus” message is needed for du-
plex operation of units. The “internal fault”
message is produced by monitoring circuits
internal to each unit. These circuits utilize
redundancy internal to the unit to (attempt
to) detect errors in the internal state of that

Computing Surveys, Vol. 10, No 2, June 1978

150 .

unit. For example, a reversal check is em-
ployed whereby “inverse microprogram-
ming” deduces what the opera-
tion/algorithm should have been from the
active gating signals. The *deduced result
can then be checked against the requested
operation/algorithm. The status message
generating circuits in each unit are them-
selves duplicated, enabling some errors in
the status messages to be detected by the
TARP.

The read/write memory units in the
STAR computer have two modes of oper-
ation, absolute and relocated. In absolute
mode the unit will respond to its own wired-
in name; in relocated mode the unit re-
sponds to an assigned name. The relocated
mode can be used by the executive to pro-
vide duplicated or triplicated storage for
programs and data.

Finally, errors in the TARP itself are
detected (and masked) by triple modular
redundancy. The intention is that three
fully powered copies of the TARP will be
operational at all times with their outputs
decoded by a 2-out-of-(n+3) voter. An as-
sumption made, therefore, by the rest of
the system is that faults in the TARPs are
always masked.

It is not clear from the documentation
what error detection mechanisms (if any)
are made available to the higher (software)
levels in the STAR, apart from the availa-
bility of information concerning errors that
occurred in the interface with the arithme-
tic unit (for example, overflow, division by
Zero).

Fault treatment——Once an error has
been detected the TARP exits from stan-
dard mode and enters recovery mode (i.e.,
the “abnormal” algorithms are invoked). In
this mode the TARP is responsible for lo-
cating and treating the fault. It can be seen
from the previous section that the predic-
tion logic of the TARP coupled with the
status messages should, in general, enable
the TARP to locate the faulty unit causing
the error (assuming of course that this pre-
diction logic itself is correct). However, for
fault conditions which cannot be resolved
by the TARP logic there is a wired-in “cold
start” procedure (which is also invoked in

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

the case of temporary power losses).

As the STAR was intended for un-
manned space missions, permanent faults
are treated by the automatic replacement
of the faulty unit. There is no provision for
their repair. The standard configuration of
functional units is supplemented by one or
more unpowered spares of each unit, and
the TARP implements a spontaneous re-
placement strategy. A repeated fault indi-
cation in a unit leads to its replacement,
implemented by the TARP power by
switching. Spare TARP units are also pro-
vided; thus if one of the three operational
units disagrees with the other two, then the
faulty unit can be replaced by a spare.

Fault treatment is also performed by the
resident executive in the STAR. Software
assistance is required for memory replace-
ment, both for assignment and cancellation
of relocation names, and for reloading the
replacement memory. Reference is also
made in the documentation to a class of
diagnostic instructions, which can, among
other things, exercise the unit status mes-
sages and the TARP fault location logic,
and also control the power switching to the
spare units. The executive apparently im-
plements diagnosis for faulty units, al-
though the interface between this and the
TARP is not made clear.

Damage assessment——It would appear
that there is no dynamic damage assess-
ment at any level in the STAR computer,
as the error recovery described below is
always invoked. However, much of the ac-
tivity of the components in the bottom level
could be regarded as consisting of simple
atomic actions. First, each functional unit
contains its own instruction decoders and
sequence generators, as well as storage for
the current operation code, operands and
results. Apart from overall synchronization,
each unit operates autonomously. It would
appear, therefore, that once initiated a
functional unit could operate atomically.
Hence, if the internal monitoring circuits
detected an error, the damage could be
assumed to be localized to that particular
unit. The second activity in which atomic
actions can be identified is in the operation
of the TMR-protected TARPs. Assuming

Reliability Issues in Computing System Design .

that the activity of each TARP unit is
atomic, then any TARP fault should be
masked by the voter. Nevertheless, in both
of these cases the more global error recov-
ery described below is invoked.

Error recovery——The main form of er-
ror recovery in the STAR is implemented
by backward error recovery of the software
levels. When an error is detected and any
replacements have taken place, the TARP
issues a reset message which causes all op-
erational units to assume an initial state
(presumably the contents of the memories
are not reset to an initial state). The pro-
gram that was running is then forced to
rollback, that is, to back up to a previous
state.

The application programs are provided
with a mechanism for establishing a recov-
ery point. It would appear that it is the
responsibility of the programs to establish
recovery points as often as is needed for
reliable operation [ROHR73], and to specify
(correctly) the information that needs to be
checkpointed. The program also assumes
that this operation is performed reliably
(and atomically). Moreover, as only one
recovery point can be established at one
time, an explicit commitment will occur
whenever a new recovery point is estab-
lished. There is no automatic compensation
for information that has left the system
prior to such a rollback—presumably this
is the responsibility of the application pro-
grammers, as the recovery mechanisms
provided would enable the program to per-
form compensation actions if it so required.

The executive level is responsible for im-
plementing the recovery mechanism pro-
vided to the upper level. It uses the rollback
point register in the TARP to achieve this.
The rollback register can be updated by the
executive level, and acts in effect as an
interrupt vector, used to restart the execu-
tive when a rollback is invoked by the
TARP. The rollback of the application pro-
gram is then implemented by software in
the executive. The executive also uses the
rollback register to control non-repeatable
events (for instance, input/output opera-
tions). The storage of checkpoints for the
upper level programs is also the responsi-

151

bility of the executive, and it provides du-
plexed storage for this purpose. [ROHR73]
describes all of these strategies in more
detail.

The only other form of error recovery in
the STAR is provided by the “cold start”
procedure in the TARP, augmented by a
“cold start” capability in the resident ex-
ecutive.

Reliability Evaluation

According to [Aviz71], early analytical
studies using models of dynamically redun-
dant systems had indicated that mean-life
gains of at least an order of magnitude over
that yielded by a non-redundant system
could be expected from dynamically redun-
dant systems, with standby spares replacing
failed units. This gain compared favorably
with the mean life gain of less than 2 in
typical TMR systems. An analysis of a
model of the STAR’s reliability compared
its reliability with that of a simplex com-
puter of equivalent performance and with
the Mars Mariner spacecraft computer
(MM’69). Some of the results are indicated
in Table I, taken from [Aviz71], where the
lower bound (2 = 1) indicates an equal
failure rate of powered and spare units, and
the upper bound (% = infinity) indicates a
zero failure rate of spare units.

It is stated in [Aviz72] that initial exper-
imental tests on the STAR have verified
the effectiveness of the error detecting
codes used on the STAR words and the
coverage provided by the TARP for each
functional unit. The tests, involving the
introduction of noise bursts on the buses,
demonstrated 99.5-100% proper recovery.

TABLE 1. RELIABILITY VERSUS TIME FOR VARIOUS
CONFIGURATIONS.

Same STAR Computer with S Spares
Massion MM169 plex Lower Bound
T1me Com= Comm {Kmeo) (Kmo)
(n) puter puter S=3 §=2 §=3 Sw2

4368
(+6 months) 0.928 0.82 0.9999998 0.99997 0.999995 0.99982

43 680

(%5 years) 04475 0.14 0.997 0.97 0.966 0.87

87 360

(=10 years} 0.225 0,019 0.96 19 0.71 0.45

Computing Surveys, Vol 10, No. 2, June 1978

152 .

Limited tests on the adequacy of the TARP
for error detection, fault diagnosis and re-
covery demonstrated 90-100% coverage for

the various processors and memory mod-
ules.

Bell Laboratories ESS No.1A Processor

The Bell Laboratories Electronic Switching
Systems (ESS) represent one of the first
major attempts at incorporating extensive
fault tolerance in a processor. In this case,
the processor is the heart of the electroni-
cally controlled switching systems used in
the main for telephone exchanges. The first
system of this type was in service in 1965.

There are stringent reliability require-
ments to be met by the ESS systems. For
example, those specified for the No.1A ESS
[BELL77] require the system to be available
for 24 hours a day, and that down time for
the total system should not exceed 2 hours
over its 40 year life. Moreover, the percent-
age of calls handled incorrectly should not
exceed 0.02%. For the processor itself, the
requirement is that its average outage time,
that is the time during which established
calls are retained but no new calls are es-
tablished, is not greater than 2 minutes per
year.

There are extensive references to the var-
ious ESS systems, particularly in the Bell
System Technical Journals. This descrip-
tion will concentrate on the fault-tolerant
techniques employed in the processor in
the No.1A system, a description of which is
given in [BELL77] and [CLEM74].

System Description

The No.l1A processor is a self-contained
high speed processor developed specifically
for the control of Bell ESS systems. Its
design is based on the experience gained
from the earlier ESS systems. The instruc-
tion set of the No.1 processor is a subset of
that of the No.1A, thus enabling the No.1
ESS call processing programs, described in
[BELL64], to be used.

The system may simply be regarded as
having two levels with hardware compo-
nents at the bottom level supporting one

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

software level. Figure 12, taken from
[CLEMT74], illustrates a static structuring of
the hardware components of the No.1A
processor. The heart of the system is the
Central Control which is fully duplicated
(CCO and CC1). In general, both CCs op-
erate in synchronization although one of
the CC modules is designated as the
standby, while the active unit controls the
system.

The programs to be obeyed by the CCs
are stored in the program stores (PS). The
information relating to the processing of
telephone calls and the translation (rout-
ing) information for the system is stored in
the call store (CS) complex. This primary
memory can be divided into “protected”
and “unprotected” areas. The division is
enforced by the active CC, which provides
different instructions to write to these dif-
ferent areas, and contains the mapping reg-
isters which define the areas. The mapping
registers are software controllable via other
(special) write instructions. Basically, the
protected area contains the parts of the
memory that are not duplicated (e.g., the
program stores), as well as those areas
which vitally affect the operation of the
system (e.g., the internal registers of the
CC and the disk controllers).

The auxillary unit (AU) system at the
bottom of Figure 12 consists of the bulk
storage devices and their controllers, essen-
tially disk file units (FS) and tape units
(TUC). The disks provide a file store for
the system, used mainly for holding the
backup versions of the programs and data,
and for holding infrequently used programs.
The tape units hold the accounting infor-
mation that is generated for complete calls,
and also hold infrequently used parts of the
system database. The components in the
system are interconnected by the three (du-
plicated) buses indicated in Figure 12.

Basically there are two kinds of interrupt
in the No.1A processor: “call processing”
interrupts which invoke the “normal” (call
processing) algorithms of the software, and
“maintenance” interrupts which are dis-
cussed below. The call processing programs
can be divided into two classes, deferrable
and non-deferrable. The deferrable pro-

Reliability Issues in Computing System Design .

PROGRAM STORE COMMUNITY
N+M REDUNDANCY M = 1,2,3

ROVER
FIXED STORES STORES

153

CALL STORE COMMUNITY
2M+N REDUNDANCY

DUPLEX SIMPLEX
STORES STORES

CS BUSL

PS PS RPS RPS
1 2 0 1
PS BUSO

cs cs Ccs
0 1 2
CS_BUSO

|

PS BUS1

__LL_ﬂ

(ACTIVE)
cCo

AUX UNIT
SEQUENCE

AU BUSO

MATCHING

T

(STBY)
cCl

AUX UNIT
SEQUENCE

FULL
1 DUPLICATION

AU BUS1 l

DUPLICATION

TS

(—Fs P
(j:)(l)

DUPLICATION/

SIMPLEX
DUS DUS
0 1

DU BUSO

DU BUS1

TUC TUC
0 1

FiGURE 12. ESS No. 1A processor.

grams are those for which the data is al-
ready in the system, and the programs are
not therefore critically synchronized to real
time. The non-deferrable programs are
those that must be executed on a strict
schedule, otherwise data will be lost. These
programs are generally the input/output
programs, and are activated by a clock in-
terrupt. The majority of programs in the
system are deferrable, and run at what is
referred to as the base-level, with all of the
interrupts enabled.

Reliability Strategies

In order to attempt to reach the reliability
requirement of an average of less than 2
minutes outage per year, comprehensive
“maintenance” software is provided in the
No.1A processor. The various strategies for
error detection, fault treatment, damage

assessment, and error recovery are closely
related. In fact, many of the strategies em-
ployed in the No.1A processor have been
based closely on the accumulation of expe-
rience from the various earlier installed
ESS systems as to what sort of faults will
occur, and with what exact consequences.
Table II, taken from [BELL77], indicates
the reliability objectives that have been set
for each of the probable causes of outage
time.

Although the 1A system makes use of the
well-tested No.1 ESS call processing pro-
grams, it can be seen that “software defi-
ciencies” are still expected to result in an
outage of 0.3 minutes each year, although
this time would appear to include outages
caused by the integration of new software
into the system.

The “hardware unreliability” category
includes faults in the hardware which pre-

Computing Surveys, Vol. 10, No 2, June 1978

algorithms” in the 1A system are mainly
implemented at the software level, and the
system is dependent on these for its recov-
ery. However, it is recognized that there are
a large number of variables involved and
that system recovery is related to all other
maintenance components (for example, re-

154 . B. Randell, P. A. Lee, and P. C. Treleaven
TABLE II. No. 1A SysTEM OUTAGE ALLOCATION
Outage time
(minutes/year)
software deficiencies 0.3
hardware unrehability 04
procedural faults 0.6
abnormal algorithm deficiencies 0.7

vent a working system configuration from
being established. Significant effort was
placed into the design of the system hard-
ware components in order to make them
intrinsically reliable. However, the func-
tions implemented in some units are so
critical that the 1A system, in common with
the earlier ESS systems, makes significant
use of the full duplication of critical units.
In general, full duplication is used for the
parts of the system whose failure would
affect a substantial number of customers,
for example the central control, the bus
systems, and the file stores. (It is stated in
[BELL77] that reliability calculations have
shown that redundancy greater than full
duplication is not required.)

Replication of the core memory units is
influenced by the ease with which the data
contained in the unit can be regenerated.
Thus the program stores are supplemented
with standby spares, which can be loaded
from the file store. The standby spares in
the call-store complex are used to provide
full duplication for the units containing
transient data such as that relating to calls.
Figure 12 illustrates the redundancy in the
No.1A system.

The third cause of system outage time is
that attributed to “procedural faults,”
which is expected to cause about 0.6 min-
utes outage per year. In the main, these
faults will be caused by the human interface
so that particular attention has been paid
to the clarity and uniformity of the docu-
mentation, and to achieving a reduction in
the number of manual operations required.

The largest system outage time in the
No.1A system is expected to be caused by
“abnormal algorithm deficiencies,” i.e. de-
ficiencies in those algorithms in the system
that are invoked when an error occurs. As
with the earlier systems, the “abnormal

Computing Surveys, Vol 10, No 2, June 1978

covery can be easily misled by an incom-
plete diagnosis). Indeed it is stated in
[BELL77] that “there is no guarantee that
all impending trouble will be identified and
isolated before it can jeopardize system op-
eration.”

Error detection——Mechanisms for er-
ror detection are employed at both the
hardware and software levels in the 1A
system. The main hardware error detection
mechanisms are essentially the same as
those employed in earlier ESS systems,
namely:)

a) replication checks

b) timing checks

¢) coding checks

d) internal checks i.e., self checking units

Replication checks are the primary
mechanism for detecting errors caused by
hardware faults in the CC. The CC is fully
duplicated; in general two identical mod-
ules are fully operational (i.e., static redun-
dancy) with each executing the same in-
struction atomically, with both units in syn-
chronization. Each CC has special (dupli-
cated) circuits which perform consistency
(matching) checks between the two CCs.
The overall action of the CC can be re-
garded as a shared atomic action which
encloses the atomic actions of each proc-
essing module. Of course, this type of rep-
lication does not detect errors caused by
design faults in either the software or hard-
ware. Replication checks are also provided
by the CC on the transmissions on the
duplicated buses, and by the duplicated file
stores.

Timing checks are used throughout all of
the hardware components in the 1A proc-
essor. In particular, those on the CC are
used to verify that its operations are pro-
ceeding in the correct manner. Timing
checks are also provided by the CC to the
software level (described below).

Coding redundancy is used to protect all
of the words in the system. The codes used

Reliability Issues in Computing System Design .

include M-out-of-N codes, parity, and cyclic
codes, depending on the types of error ex-
pected.

Many of the hardware components in the
1A system have been designed to be self-
checking. Information concerning the de-
tection of internal faults in a unit is made
available to the recovery programs (dis-
cussed below) so that extensive software
checking may not be required to locate
faulty units.

The hardware level also provides error
detection mechanisms for use by the soft-
ware level. These mechanisms are run-time
interface and timing checks. The interface
checks verify that the addresses used by
the programs are within proper limits and
that the program does not violate the mem-
ory protection described above. Units such
as the tape and disk controllers also provide
interface checks on the operations they are
requested to perform. The timing checks
are used to ensure that the program control
in the system is not lost because of any
software (or hardware) fault.

Essentially, there are two error detection
mechanisms at the software level in the
No.1A system, namely the audit programs
and the diagnostic programs. The audit
programs have been designed to detect (and
correct) errors arising in the system data-
base, and are run at regular intervals during
the normal operation of the system, as well
as after hardware failures have been de-
tected. The audit programs provide an in-
dependent diagnostic check on the “actual”
structure of the database, using the redun-
dancy contained within the database. Rep-
lication checks can also be performed, com-
paring data with its replicated copy. Coding
checks are also used by the audit programs,
for example to check the non-transient data
in the program and call stores.

As discussed below, the diagnostic pro-
grams play an important role in the treat-
ment of faults in the No.1A system. How-
ever, the diagnostics are also used to detect
errors in units. Periodically, each unit is
removed from service and the diagnostic
tests performed to (attempt to) detect la-
tent faults in that unit.

Fault treatment——When an error is de-
tected by the hardware mechanisms de-

155

scribed above, the normal call processing

operation of the system is interrupted and

the fault treatment and recovery programs

are invoked. Essentially, there are three

priority categories for this interruption:

® immediate interrupt (maintenance inter-
rupt)—if the fault is severe enough to
affect the execution of the currently ex-
ecuting program

¢ interrupt deferred until the completion of
the currently executing program—if the
problem could affect several telephone
calls

¢ interrupt deferred until detected by the
routinely executed base-level jobs—if
the problem affects only a single call

The main aim for the fault treatment and
recovery programs is to re-establish the
call-processing capabilities of the system as
quickly as possible. This involves identify-
ing and isolating the faulty hardware unit
and (spontaneously) reconfiguring the sys-
tem to utilize a spare unit. (There are spe-
cial instructions implemented in the CC to
control the configuration circuits in the
subsystems.) For faults in the call store
complex, where no standby spares are avail-
able, a unit operating in duplex mode will
be pre-empted to replace a failed unit which
was not protected by duplication.

An attempt is made to minimize the ef-
fects of the non-deferrable maintenance ac-
tivities. In particular, a technique called
“first look” is generally used. With this
technique, the fault recognition program
examines the information provided by the
error detection hardware to determine the
most likely cause of the problem. The sys-
tem will then be configured to run without
the implicated unit(s), and further diagnos-
tics of those units will be scheduled for
deferred processing at the base-level, i.e.,
the diagnostic tests on the faulty unit will
be multiprogrammed with the normal op-
eration of the system. For example, if a
program store was removed from service, a
deferred action would be to run diagnostic
checks on that store.

Error records are collected by the fault
treatment programs to indicate the units in
which errors have been detected and the
response of the treatment programs to
those errors. If analysis of these records

Computing Surveys, Vol 10, No 2, June 1978

156 .

indicates that the system has not been re-
stored to fault-free operation, then at the
occurrence of the next error the “first look”
strategy is abandoned and a complete check
of the implicated units will be performed. If
a unit passes all of the diagnostic checks
then it is assumed that the fault was tran-
sient, and that the unit is now fault-free
and can be returned to service. However,
analysis of the error records will result in
the isolation of units experiencing a high
rate of transient faults.

It can be seen that fault location in the
system (and the recovery described below)
are program controlled and therefore re-
quire (and assume the existence of) a fault-
free processor. In order to achieve this,
“abnormal” algorithms in the hardware
level implement a spontaneous reconfigur-
ation mechanism to enable a (hopefully)
fault-free processor to be configured. There
are four steps that can be taken by this
mechanism.

The first step involves the automatic con-
figuration of a basic processor from the
components of the system, consisting of a
central control, program store and program
store bus. The processor is not capable of
full system operation, but only of running
fault recognition and spontaneous reconfi-
guration programs in an attempt to resume
normal operation of the system. If this step
fails (e.g., detected by timing checks), then
it is assumed that the program stores have
been corrupted, and the second step in-
volves repeating the first step and reloading
the program stores from the disks. If step
two fails, then step three will configure a
basic processor to perform simplified tests,
isolating various subsystems until (possi-
bly) fault-free operation is restored, and
normal operation of the system can be at-
tempted. If this step fails then the last step
is to stop the system and wait for manual
recovery actions.

The repair of faulty units in the No.1A
processor is performed manually. In order
to meet the reliability requirements for the
hardware (0.4 minutes outage per year) the
average repair time for a unit has to be less
than 2 hours. Thus a maintenance objective
for the No.1A processor was that at least

Computing Surveys, Vol. 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

90% of faults should be isolated to no more
than three replaceable modules by the (au-
tomatic) diagnostic programs, and that
such programs should detect at least 95%
of the possible faults.

It is clear from [BELL77] that very exten-
sive work has been carried out into the
design and development of the diagnostic
programs. The diagnosticians and hard-
ware designers work as a team from the
start of the design through to the completed
system. The hardware and diagnostic de-
signs proceed in parallel, and are used to
verify each other. Furthermore, the diag-
nostic tests are used in many applications,
from the initial development of the system
(tested using simulation), to the testing of
the various units while a system is being
built and commissioned, and are finally
used on-line in the operational systems.
Thus a large amount of experience with the
diagnostic programs is built up.

The design philosophy for the diagnostic

program is essentially that all of the tests
on a unit are run, and a post-processing
scheme, the trouble location procedure
(TLP), examines the results of all of the
tests to attempt to determine the problem.
Essentially, the TLP performs pattern
matching between a condensed version of
the results of the diagnostic tests and an
office-resident database (held on magnetic
tape), to produce an ordered list of sus-
pected faulty modules. The database has
been built up (off-line) by circuit analysis
and by the simulation of permanent hard-
ware faults using a physical or computer
model.
Damage assessment——The main form
of damage assessment in the No.1A system
appears to be based on the a priori reason-
ings that either a fault will not result in any
damage, or that any damage will manifest
itself as damage to the system database.
Damage to the database will be dynami-
cally assessed by the audit programs, to
invoke various stages of recovery as dis-
cussed below.

Clearly some form of dynamic damage
assessment will be performed by the envi-
ronment of the No.1A system. For example,
if a call is lost or routed incorrectly, then

Reliability Issues in Computing System Design .

the customer will assess the call as “dam-
aged,” and (hopefully) will retry the call. It
is not clear from [BELL77] whether the
possibility of the accounting information
being damaged is considered, or whether
this also relies on damage assessment by
the environment.

Error recovery——The main form of er-
ror recovery in the 1A system can be viewed
as forward error recovery at the software
level. Forward error recovery techniques
are used to provide recovery from faults in
any of the storage modules in the system
whose contents have been duplicated. For
example, if a program store fails, its con-
tents can be recovered from the copy on
the disk.

Recovery from errors in the system’s da-
tabase is also handled by forward error
recovery, implemented by compensation
algorithms in the audit programs. In gen-
eral, the algorithms may treat parts of the
database as insignificant information, in
that the erroneous information that is de-
tected is removed (and discarded) from the
database, without necessarily being cor-
rected. This may result, for example, in a
(it is hoped, small) number of telephone
calls being lost, but enabling the normal
operation of the system to be resumed.
Clearly the environment of the system will
provide the actions required to recover
from the system, treating some information
as insignificant; for example, customers
whose calls were lost will provide a form of
backward error recovery, abandoning the
current state of that call and attempting to
redial. The amount of information that is
treated as insignificant will depend on the
damage that is assessed. An “optimistic”
approach is adopted for this damage assess-
ment and compensation, i.e., those stages
least disruptive to the normal operation of
the system will be attempted first. If the
damage is assessed as minor, then the error
recovery will be multiprogrammed with the
normal operation of the system. If the dam-
age is more severe (i.e., too extensive to rely
on the normal audit to correct the prob-
lems), then the call processing is suspended
until the appropriate database reinitializa-
tion has been performed.

157

When an error occurs during the process-
ing of the maintenance programs at the
base-level of the system, the currently exe-
cuting program is terminated (to protect
the system against further disruption and
to guard against invalid results from the
program [B&LL77]). However, these pro-
grams can specify an “abnormal termina-
tion algorithm” which is invoked (once) by
the “abnormal” algorithms of the software
level, if it is assessed that the program
caused the error. Thus a program can at-
tempt to provide its own forward error re-
covery actions. If these fail then that pro-
gram is terminated, and the normal recov-
ery programs are relied on to resume nor-
mal system operation.

Reliability Evaluation

It is stated in [BELL77] that, after extensive
laboratory testing of the No.1A processor
(100,000 processor hours) and greater than
8000 hours in service, the overall perform-
ance indicates that the design objectives of
the system are being realized. Some early
studies were also conducted to evaluate the
reliability strategies employed in the sys-
tem. In one study, 2071 single determinate
hardware faults were inserted at random
into a normally operating system. Auto-
matic system recovery occurred in 99.8% of
these cases, with manual assistance re-
quired for only five of the faults. Another
study which analyzed, by simulation, the
performance of the diagnostic programs in
response to a random selection of 2400
hardware faults indicated that 95% of the
faults were detected by the programs. A
test of the trouble location procedure was
also performed by inserting circuits which
were known to be faulty into a system. In
only five of the 133 simulated repair cases
did the TLP fail to include the inserted
circuit on its list of suspected modules, and
in 94.7% of the lists the faulty component
was located within the first five modules.

PLURIBUS
PLURIBUS [HEAR73] is a packet-switch-

ing communications multiprocessor de-

Computing Surveys, Vol. 10, No. 2, June 1978

158 .

signed as a new form of switching node
(IMP) for the ARPA Network. Bolt, Bera-
nek and Newman Inc. started design of the
multiprocessor system in 1972 and a pro-
totype 13 processor system was constructed
by early 1974.

The machine, besides being capable of a
high baridwidth in order to handle the 1.5
megaband data circuits which are planned
for the network, is also intended to be
highly reliable [ORNS75], operating 24
hours a day all year round. PLURIBUS is
designed to recover automatically within
seconds of detecting an error and to survive
not only transient faults but also the failure
of any single component. To achieve this
fault tolerance, PLURIBUS uses such tech-
niques as replication, isolation of compo-
nents (e.g., processors and programs), mon-
itoring, process restart, and reconfiguration.
The information presented in this survey is
primarily based on [ORNs75], while Figures
14 and 15 are taken from [HEAR73] and
[ORNs75] respectively.

System Description

When discussing the system structure of
PLURIBUS, particularly with regard to its
reliability, it is useful to view the system as
consisting of four levels and three inter-
faces, as indicated by Figure 13.

The bottom level is formed by the hard-
ware (processors, memories, etc.) of PLU-
RIBUS which supports three software
levels. The first and second software levels
are concerned with the control and reliabil-
ity of the system, while the third level con-
sists of the application program that per-
forms the packet-switching role of the IMP.

Figure 14 illustrates the hardware level
static structure of the PLURIBUS system.
The system is designed around three types
of bus (processor, memory, input/output)

Levels Interfaces

4 application program
3 second software level
2 first software level

IMP
multi-computer
hardware architec-

1 hardware ture

Ficure 13. PLURIBUS level structure.

Computing Surveys, Vol 10, No. 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

that are joined together by special bus cou-
plers which allow units on one bus to access
those on another. Each bus, together with
its own power supply and cooling, is
mounted in a separate unit. A processor bus
contains two processors each with its own
local 4k memory which stores code that is
either frequently run or used for recovery
purposes. A memory bus contains the seg-
ments of a large memory, common to all
the processors, while an input/output (I/0)
bus houses device controllers as well as
central resources such as system clocks. A
feature of PLURIBUS is its treatment of
hardware units (processors, memory,
buses) as set of equivalent resources. There
is, for example, no specialization of proces-
sors for particular system functions and no
assignment of priority among the proces-
sors, such as designating one as master.

The hardware level, in addition to pro-
viding conventional processing and storage
facilities, contains three components: a
“pseudo interrupt device” which facilitates
processor scheduling, a “60 Hz interrupt”
and a “bus timer.” The functions of these
latter two components relate to the prob-
lem of monitoring software activity and
assuring its continued progress. The three
levels of software seem to be conceptual,
based on the assumed correctness of the
software design, and to the hardware they
appear as a single real-time program. This
single program, which includes the appli-
cation program (i.e. IMP job) as well as the
control and reliability programs, is divided
into small pieces called strips, each of which
handles a particular task. T'asks can initiate
other tasks but cannot communicate di-
rectly with them while running; communi-
cation is handled by leaving messages in
common memory.

When a task needs to be performed the
name of the appropriate strip is placed on
a queue of tasks to be run. Each processor,
when it is not running a strip, repeatedly
checks this queue for work. When a name
appears in the queue the next available
processor will remove it and execute the
corresponding strip. Since all processors
frequently access this queue, contention for
it is high. For this reason the queue is

Reliability Issues in Computing System Design .

159

-« 8US = PSEUDO c| = coMmunicaTiON
INTERRUPT "
EXTENDER DEVICE 1 INTERFACE
= BUS g = BUS COUPLER, FT* » REAL TIME
ARBITER 5| PROCESSOR END C CLOCK
PROCESSOR BUSSES(7)
C |+« CENTRAL Bl = BUS COUPLER, '
roweRr [8[C. {C | 4k | 4k |B|B[E P Cl * MEMORY END MEM! = MEMORY
suppLy [a) Ut i Imem Mem(SISIS y] PROCESSOR M
1
POWER |B{C. |C [4k | 4k [BIB|B
suppLy || ol Py |mem|mem|S(S|S
POWER |8[B BISHB 818]g] ex | e
SUPPLY |4 ,31& GISIGICIC ,a]r.‘.EM MEM
POWER Bcp CP 4K | 4K EE?; M MMMV M,
suPPLY {al "yl "y IMEM|MEMISISIS B
1
MEMORY
BUSSES
POWER {B[C |C | ak | 4k [B|BB
suppLy (2] Pl P, Imemmem|SISIS
l T
power lgiglelaisisia 3‘3 8K | 8K
clciclciclelcic
Cove, ElEREEIERIER) e,
poweR 1B8[C |C |4k | 4k |B]B|B T
PP clclc
SUPPLY |A ul v MEMIMEM slelp J
LI
power IB|C [C | 4k | ak |BIBIB
SuPPLY A‘ PU pU MEM MEME g g
POWER [B|C IC | 9k { 4k |B|BIB
plF cicic
suppLy Ja| * | FimemIMEM|S[SIS
170 BUS POWER [B[8i8|8[BIBIBIBl c [¢ {C (8B Power [B[BiBl ¢ | ¢ [FIRIT 170 BUS
ciciciclctcle CiC HTIT
SUPPLY Ajhivilviial 3] 1] 1 JE SUPPLY E|SISI 1) T Iplcly EXTENSION
LSS NN\

Ficurg 14. PLURIBUS hardware configuration

implemented in hardware by a special
pseudo interrupt device (Figure 14). By lim-
iting the maximum execution time of a strip
to 400 msecs (the time the most urgent task
can afford to wait) and priority-ordering
the task queue, a number of scheduling and
multiprogramming difficulties, such as sav-
ing and restoring the machine state, have
been eliminated.

Above the hardware architecture inter-
face, the first software level views the proc-
essors and stores as distinct virtual com-
puters for each of which it creates a context,
so that the computer can function reliably.

To achieve this reliability, two components
are used within each computer, called the
“code-tester” and the “individual.” The
code-tester monitors the operation of the
computer. It performs such tasks as check-
ing all local memory code and safeguards
all control and “lock” mechanisms. With
the help of the code-tester, the individual
provides an abstraction (multi-computer)
interface with the second software level.
Each individual finds all memories and
processors it considers usable and attempts
to form a dialog with the other individuals
so they can work together as reliable virtual

Computing Surveys, Vol 10, No. 2, June 1978

160 .

computers above the multi-computer inter-
face.

The second software level is concerned
with the problem of forming the separate
virtual computers provided at the multi-
computer interface into a single reliable
computer system. This task is performed
by three components, called the “consen-
sus,” the “IMP-system-reliability,” and the
“IMP-system.” The consensus monitors
the interactions of the separate virtual com-
puters and provides a single computer sys-
tem at the communications interface with
the IMP-system-reliability. Specific tasks
performed by the consensus include check-
ing all common memory code, finding' all
usable hardware resources (processors,
memories, etc.) from information supplied
by the individuals, testing each resource
and creating a table of operable ones.

The IMP-system-reliability monitors the
operation and, in particular, the data struc-
tures of the computer system (the IMP),
and helps to assure its reliability. It is as-
sisted in this task by the last component at
this level, the IMP-system, which monitors
the behavior of the ARPA Network and
will not allow the IMP to cooperate with
seemingly irresponsible network behavior.
Above the abstraction (IMP) interface the
application program can view the IMP as
a reliable, fast sequential computer with a
large store.

Reliability Strategies

For the purpose of ensuring fault tolerance
the hardware and software components of
PLURIBUS are organized into special
functional units called reliability subsys-
tems. These reliability subsystems are the
components (e.g., code-tester, consensus,
etc.) outlined above in the discussion of
levels and interfaces. The notion of relia-
bility subsystems seems to assume that all
faults are masked above the interface and
that the subsystem on the other side of the
interface has no responsibility for detecting
and coping with errors in the lower subsys-
tem.

A reliability subsystem is some grouping
of system resources (hardware, software

Computing Surveys, Vol. 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

and/or data structures) whose integrity is
verified as a unit by a self-contained test
mechanism. Moreover, each subsystem
contains a reset mechanism which will re-
turn it to some specified initial recovery
point. [ORNs75] describes the entire PLU-
RIBUS system as being made up of such
subsystems, which communicate via data
structures, and which appear conceptually
to operate asynchronously. Furthermore
these subsystems are organized into a
“chain” (Figure 15) in which each member
monitors the behavior of the next member
of the chain, and may externally activate
the reset mechanism of that system, if it
detects some malfunction.

The monitoring of subsystems is carried
out using watchdog timers, which ensure
that each subsystem passes through a pre-
defined cycle of activity. This is done by
including code in the cycle to restart the
timer, so that if the cycle is not executed
properly the timer will run out and cause
the monitoring subsystem to detect an er-
ror. The defined cycle must also contain an
execution of a self-test mechanism, so that
correct passage through the cycle provides
strong evidence of the reliability of the sub-
system. Another aspect of the “chain”
structure is that subsystems low in the
chain attempt to provide and “guarantee”
the reliability of some components used by
higher subsystems.

Error detection——Strategies used by
the reliability subsystems of PLURIBUS
for error detection are mainly based on
watchdog timers, supported at the hard-
ware level by the 60 Hz interrupt. These
facilities are used within level 2 (the first
software level) by the code-tester to moni-
tor the operation of each processor and
store. First, it sumchecks all low level code
(including itself); second, it ensures that all
subsystems are receiving a share of the
processor’s attention; and finally it safe-
guards that “locks” to critical resources do
not hang up. Also at level 2 is the individual
that performs error detection at the inter-
face with level 3. An individual running
from the local store of each processor per-
forms the task of locating all usable re-
sources. This involves addressing every de-

Reliability Issues in Computing System Design .

NETWORK -- Q_—_Gj\ \/_;/(o

161

NETWORK
CONTROL

IMP SYSTEMS
—— IMP SYSTEM
RELIABILITY
CONSENSUS
INDIVIDUALS _
COLE +
TESTER
BUS TIMER &
60Hz INTERRUPT
, |
. A monitors a
timer on B and |
resets B if i
the timer runs)
out. |

Ficure 15. PLURIBUS rehability structure.

vice in the system and every page in mem-
ory and listing those which are operable.
At level 3, error detection is handled by
the consensus, performing such tasks as
sumchecking all common code and main-
taining a timer for each processor. The
consensus will count down these timers in
order to detect uncooperative or dead proc-
essors. The IMP-system-reliability, also at
level 3, detects errors in the IMP-system by
monitoring its cycle of behavior and watch-

ing its data structures. Finally at level 3 the
IMP-system monitors the behavior of the
other IMPs in the ARPA Network and will
not respond to erroneous operations. In
return the ARPA Network, through the
Network Control Center, monitors the be-
havior of the IMP and if it detects a dead
IMP trys to restart it remotely.

Fault treatment——Given that an error
has been detected in a subsystem of the
PLURIBUS, another subsystem will at-

Computing Surveys, Vol. 10, No 2, June 1978

162 .

tempt to locate and remove the fault. For
example, at the hardware level the bus
timer will reset an inactive bus after 1 sec.
which clears any hung device commands.
To allow for faults in hardware resources,
all bus couplers have a program-controlla-
ble switch that inhibits transactions via the
coupler. The individuals at level 2 use these
switches to effectively “amputate” a bus by
turning off all couplers from that bus. This
mechanism is protected from capricious use
by requiring a particular data word (pass-
word) to be stored in a control register of
the bus coupler before use.

Fault treatment data is built up by each
individual (indicating the set of devices con-
sidered operable) in regions in common
memory. This information is used by the
consensus at level 3 to determine the “true”
set of usable hardware resources, by a form
of replicated voting. The consensus can also
run tests on resources to determine the
extent of a fault.

Damage assessment——Within PLURI-
BUS, damage assessment seems to be based
entirely on a single strategy—it is assumed
that everything that the subsystem has
done since starting a task is damaged and
hence the task being performed is aban-
doned. This strategy is adequate in PLU-
RIBUS, as discussed below, because of the
fault tolerant environment in which an IMP
operates.

Error recovery——When an error is de-
tected in a reliability subsystem, the moni-
toring subsystem performs backward error
recovery by re-initializing the reliability
subsystem, and treating any information
flow as insignificant. Each processor in the
PLURIBUS system, for example, can reset
or reload any other processor by means of
password protected paths in the hardware.
The notion of reliability subsystems is vul-
nerable to a simultaneous transient fault
(e.g., loss of power) of all processors. How-
ever the Network Control Center has access
to the above recovery facilities and can
therefore restart an IMP if necessary.

Reliability Evaluation

Although a number of PLURIBUS systems
have been constructed and are in operation,
the referenced papers do not include any

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

evaluations of the reliability strategies em-
ployed in the system.

SUMMARY

Clearly, all three of the systems we have
discussed are notable examples of the use
of fault tolerance in order to achieve high
levels of system reliability. The success of
the ESS No.1A system is particularly im-
pressive, given the complexity of the task
which it has to perform—very detailed de-
scriptions and analyses of this system have
been published, and this is reflected in the
length of our account of the system com-
pared to the others.

The system designs differ greatly, due in
no small measure to the differences be-
tween the environments for which they
were designed. Thus, the JPL-STAR, in-
tended for spacecraft guidance, and hence
unable to rely on manual repair, employs
spontaneous replacement (though at a level
which would perhaps not be appropriate for
modern technology). In contrast, the ESS
No.1A and PLURIBUS depend on manual
repair to achieve their reliability objectives.
The designers of the ESS No.1A have put
immense effort into the design of diagnostic
programs aimed at assisting the activities
of maintenance personnel. The intended
environments of the PLURIBUS and ESS
No.1A are somewhat similar, but the de-
signers of PLURIBUS have chosen to use
dynamic rather than static redundancy.

The tasks of the designers of these two
systems were obviously considerably aided
by experience gained from predecessor sys-
tems. This is particularly the case with the
ESS No.1A processor, whose design relies
heavily on the accuracy and completeness
with which faults and their consequences
have been predicted, in order to make use
of numerous forward error recovery tech-
niques. Equally, both systems also rely on
the tolerance exhibited by their environ-
ment—callers can be expected to redial in
the case of ESS, and the ARPANET pro-
tocols have been designed to cope with a
failing node processor.

The three systems differ greatly with re-
spect to provisions for coping with software
faults. The design of the JPL-STAR makes
few such provisions, and issues concerning

Reliability Issues in Computing System Design .

the reliability of application programs are
largely ignored in the papers that we have
referenced. The PLURIBUS system is in-
tended to run with a fixed program, which
together with the basic software, is ex-
pected to be fault free. Software issues fig-
ure much larger in the work of the ESS
No.1A designers; despite the use of the
(well-tested) programs from earlier ESS
systems, it has been recognized that the
complexity of the programs and the need
for their modification will result in “soft-
ware deficiencies.” Thus, reliance is placed
mainly on forward error recovery strategies
to correct errors introduced by both soft-
ware and hardware faults. Again, the ex-
perience with earlier systems has influ-
enced the design of such strategies.

CONCLUSIONS

This paper has attempted to bring out all
of the assumptions (justified or not) which
are always present in any discussion of the
reliability of a complex computing system,
and in system designs aimed at providing
very high reliability. It has shown how re-
liability concepts are inextricably intermin-
gled with system structuring concepts, and
how a concern for system structuring can
help (and hinder) the rational design of
fault-tolerant systems.

The aim has been to deal with all possible
types of fault, including design inadequacies
(both hardware and software) and wvalid
input data which is belatedly identified as
incorrect, as well as more obvious faults
such as those due to hardware component
wear and ageing.

Various basic concepts, such as those of
atomic action, level, recovery line, commit-
ment and compensation have been defined
and described. As an aid to further expli-
cation of these ideas, and to appreciating
their manifestations and significance in ac-
tual systems, overall descriptions of a small
number of different approaches to the de-
sign of highly reliable systems were given
in Section 5.

The one major moral to be drawn from
this paper is the prime importance of the
choice and design of interfaces, both com-
munication and abstraction, and of ensur-
ing that they are matched as closely as

163

possible by the “actual” structure of the
system. Each interface that is specified al-
lows the system designers to achieve what
Dijkstra [D1JK76] terms “a separation of
concerns”’—this separation may be benefi-
cial, but can also be misleading. Particular
types of interface are to be preferred (when
the cost of providing them can be justified).
These are ones which enable all, or at any
rate a large proportion of, faults to be
masked, and those which enable the exis-
tence of complete backward error recovery
to be assumed, even in situations involving
parallelism. Both types simplify the inter-
face specification, and hence the task of the
designer who is trying to provide or make
use of the interface. Ideally the design task
will be so simplified by appropriate choice
of interfaces that it can be carried out fault-
lessly—if there is reason to doubt this (and
there nearly always is), and the needs for
high reliability justify attempting to
achieve design fault tolerance, we would
argue that this should be based on back-
ward error recovery (or possibly replication
and voting) rather than forward error re-
covery.

Forward error recovery can be very effec-
tive for predictable faults inside a system;
the actual choice of interface will again be
important because of the effect it has on
the ability of the system to detect errors.
(For example, results which can have a
reversal check applied to them are better in
this regard than a single bit result which
must either be trusted, or recalculated.)
However we would suggest that because of
the complexity it engenders, forward error
recovery should be used sparingly, and re-
garded as an optimization of backward er-
ror recovery, which in any case might still
be needed to deal with unanticipated faults.
However, forward error recovery, in the
form of compensation, may be necessary
(as opposed to a mere optimization) when
dealing with environments that cannot be
forced to back up, although it is much bet-
ter to prevent incorrect information flow
than to have to compensate for it later.

Ideally all these various design issues
would be decided upon, in a particular case,
by mainly quantitative methods, based on
relative probabilities of faults, the costs and
performance characteristics of different

Computmg Surveys, Vol 10, No 2, June 1978

164 .

strategies, and interfaces, etc. Certainly,
conventional reliability engineering calcu-
lations can and should be used in those
parts of the system design task which are
sufficiently well understood and codified,
such as the construction of simple subsys-
tems from tried and tested standard hard-
ware components. However it would seem
that many of the design tasks involved in
achieving high levels of overall reliability
from large and complex hardware/software
systems will continue for a long time to
require large measures of creative skill and
experience on the part of the designers.

ACKNOWLEDGMENTS

The 1deas presented in this paper, and a number of
sizable portions of the text, owe much to the work of
other past and present members of the UK Science
Research Council-sponsored project, at the University
of Newcastle upon Tyne, on the design of highly
reliable computing systems. In particular the prepa-
ration of the actual paper has been greatly aided in
particular by discussions with Tom Anderson, Ellis
Cohen and Santosh Shrivastava, and by the referees’
comments on an earlier version. Earlier discussions
with Jim Gray, of IBM San Jose, and with members
of IFIP Working Group 2.3 on Programming Meth-
odology have also had a strong influence on the paper,
as has the pioneering work by Davies and Bjork on
spheres of control. Nevertheless, the detailed contents
and any inadequacies of this attempt at an overall
analysis of reliability issues and the role of system
structuring in complex computing systems remain the
responsibility of the authors.

REFERENCES

ANDERSON, T.; AND KERR, R. “Re-
covery blocks in action: a system sup-
porting high rehability,” m Proc. Int
Conf. Software Engineering, 1976.
ANDERSON, T.; LEE, P. A; AND SHRI-
VASTAVA, S. K. A model of recovera-
bility in multi-level systems, Tech. Rep
115, Computing Laboratory, Umv. New-
castle upon Tyne, UK, Nov. 1977. To
appear in IEE Trans. Softw Eng
AVIZIENIS, A. et al. “The STAR (self
testing and repairing) computer an in-
vestigation of the theory and practice of
fault tolerant computer design,” IEEE
Trans. Comput. C-20, 11 (Nov. 1971),
1312-1321.

Avizienis, A.; AND ReENNELs, D. A.
“Fault tolerance expermments with the
JPL-STAR computer,” IEEE COMP-
CON 72, IEEE, New York, 1972, pp.
321-324.
AVIZIENIS, A

[ANDET76]

[ANDET7]

[Aviz71]

[Aviz72]

[Av1Z76] “Fault-tolerant sys-

Computing Surveys, Vol 10, No 2, June 1978

B. Randell, P. A. Lee, and P. C. Treleaven

[Bask72]

[BEL1.64]
[BELL77]
[BJoR72]

[BJor74)]

[BorG72]

[BoraG73]

[CLEM74]

[Dav172]

[DENNTE]

[D1sk68]

[Drix76]

[EDEL74]

[ELsP72]

[Eswa76]

[FaBR73]

[Fosp76)

[GooD75]

[GRAYT5]

[GRAYT7]

tems.” IEEE Trans. Comput C-25, 12
(Dec. 1976), 1304-1312.

Baskin, H. B.; BORGERSON, B. R.; AND
RoBERTS, R. “PRIME—a modular ar-
chitecture for terminal-onientated sys-
tems,” in Proc. 1972 AFIPS Spring Jt.
Computer Conf, Vol. 40, AFIPS Press,
Montvale, N.J., pp. 431-437.

Bell Syst. Tech. J., (Sept. 1964).

Bell Syst. Tech. J., (Feb. 1977).

Biork, L. A; AND Daviges, C. T. The
semantics of the preservation and recov-
ery of integrity in a data system, Rep.
TR 02.540, IBM, San Jose, Calif,, Dec.
1972.

Biork, L. A. Generalised audit trail
(ledger} concepts for data base appli-
cations, Rep. TR 02.641, IBM, San Jose,
Calif., Sept. 1974
BorGersoNn, B. R. “A fail-softly sys-
tem for timesharing use,” Digest of pa-
pers FTC-2, 1972, pp. 89-93.
BoORGERSON, B. R “Spontaneous re-
configuration in a fail-softly computer
utility,” Datafair (1973), 326-331
CLEMENT, C. F, anD Tover, R.
D. “Recovery from faults in the No. 1A
processor,” FTC-4, 1974, pp 5.2-57
Davies, C. T. A recovery/integrity ar-
chitecture for a data system, Rep. TR
02.528, IBM, San Jose, Calif., May 1972.
DENNING, P. J. “Fault-tolerant oper-
ating systems,” Comput. Surv. 8, 4 (Dec.
1976), 359-389.

DuksTrRA, E. W. “The structure of
the ‘THE’-multiprogramming system,”
Commun. ACM 11, 5 (May 1968),
341-346.

DuksTrA, E. W A discipline of pro-
grammuing, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1976.

EDELBERG, M. “Data base contamina-
tion and recovery,” in Proc. ACM SIG-
MOD Workshop Data Description, Ac-
cess and Control, 1974, ACM, New York,
pp. 419-430.

ELspas, B.; LEviTT, K. N ; WALDINGER,
R J.; AND WAKSMAN, A “An assess-
ment of techniques for proving program
correctness,” Comput. Surv. 4, 2 (June
1972), 97-147

EswaraN, K P.; Gray, J. N, LoriE, R.
A, AND TRAIGER, . L. “The notions of
consistency and predicate locks in a da-
tabase system,” Commun. ACM 19, 11
(Nov. 1976), 624-633.

FaBry, R S “Dynamic verification of
operating system decisions,” Commun.
ACM 16, 11 (Nov 1973), 659-668.
Fospick, L. D., AND OSTERWEIL, L.
J “Data flow analysis in software reli-
ability,” Comput. Surv. 8, 3 (Sept. 1976),
305-330.

GOODENOUGH, J. B. “Exception han-
dling' 1ssues and a proposed notation,”
Commun. ACM 18, 12 (Dec. 1975),
683-696.

GRrAY, J. N,; Lorig, R. A,; PuTzoLy, G.
R.; AND TRAIGER, L. L. Granularity of
locks and degrees of consistency in a
shared database, IBM Research Rep.
RJ1654, Sept. 1975

GRAY, J. N. Private commumecation.

[HANT76]

[HEART73]

[HoRrN74]

[LaMP76]

[LEv177}

{LoMET7T7]

[LonD75]

{McPn74]

[MELL77]

[MERL77)

[Naur77}

[NEUMT73]

Reliability Issues in Computing System Design .

HANTLER, S. L., AND KING, J. C. “An
introduction to proving the correctness
of programs,” Comput. Surv. 8, 3 (Sept.
1976), 331-353.

HearT, F. E.,; ORNSTEIN, S. M,
CROWTHER, W. R; AND BARKER, W.
B “A new minicomputer/multiproces-
sor for the ARPA network,” in Proc.
1973 AFIPS Natl. Computer Conf, Vol
42, AFIPS Press, Montvale, N.J., pp.
529-537

HORNING, J.; LAUER, H C.; MELLIAR-
SMmiTH, P. M.; AND RANDELL, B. “A
program structure for error detection
and recovery,” in Proc. Conf. Operating
Systems; Theoretical and Practical As-
pects. IRIA, 1974, pp. 177-193. (Re-
printed in Lecture notes in computer
science, Vol. 16, Springer-Verlag, New
York.)

LaMPsoN, B.; AND STURGIS, H. Crash
recovery in a distributed data storage
system, Computer Science Laboratory,
Xerox Palo Alto Research Center, Palo
Alto, Calif., 1976.

LeviN, R. “Program structures for ex-
ception condition handling,” PhD The-
sis, Carnegie-Mellon Unwv., Pittsburgh,
Pa, June 1977.

LoMET, D. B. “Process structuring,
synchronisation and recovery using
atomic actions,” m Proc. ACM Conf.
Language Design for Reliable Software,
SIGPLAN Notices 12, 3 (March 1977),
128-137.

Lonpon, R. L. “A view of program ver-
ification,” in Proc. Int. Conf. Reliable
Software, 1975, ACM, New York, pp.
534-545.

McPHEE, W S “Operating system in-
tegrity in OS/VS2,” IBM Syst. J. 13, 3
(1974), 230-252.

MELLIAR-SMITH, P. M.; AND RANDELL,
B. “Software rehability: the role of pro-
grammed exception handling,” in Proc.
ACM Conf. Language Design for Reli-
able Software, SIGPLAN Notices 12, 3
(March 1977), 95-100.

MERLIN, P. M. AND RANDELL,
B. Consistent state restoration in dis-
tributed systems, Tech. Rep. 113, Com-
puting Laboratory, Univ. Newecastle
upon Tyne, UK, Oct. 1977.

NAUR, P. “Software reliability,” in In-
fotech State of the Art Conf. Reliable
Software, 1977, Infotech International
Ltd., Maidenhead, UK, pp. 7-13.
NEUMANN, P. G.; GOLDBERG, J.; LEV-
ITT, K. N; AND WENSLEY, J. H A
study of fault-tolerant computing, Stan-
ford Research Inst., Menlo Park, Calif.,

[OrNs75]

[PARN76]

[RAND75]

[RAND78]

[ROHBR73]

[Russ76]

[SBO0068]

[SHR178]

[VERH77a]

[VERHT77D]

[WAsS76]

[WENs72]

[WULF75]

165

July 1973.

ORNSTEIN, S. M.; CROWTHER, W. R;
KrALEY, M. F.; BRESSLER, R D.; M1-
CHAEL, A., AND HEART, F. E. “Plun-
bus—a reliable multi-processor,” in
Proc 1975 AFIPS Natl. Computer Conf.,
Vol. 44, AFIPS Press, Montvale, N.J,,
pp- 551-559.

ParNAS, D. L.; AND WURGES, H. “Re-
sponse to undesired events in software
systems,” in Proc. Int. Conf. Software
Engineering, 1976, pp. 437-446.
RANDELL, B. “System structure for
software fault tolerance,” IEEE Trans.
Softw Eng. SE-1, 2 (June 1975),
220-232.

RANDELL, B., LEE, P. A,; AND TRE-
LEAVEN, P. C “Rehable computing
systems,” to appear in Lecture notes in
computer science, Springer-Verlag, New
York.

RoOHR, J. A. “Starex self-repair rou-
tines software recovery mn the JPL-
STAR computer”’, Digest of papers
FTC-3, 1973, pp. 11-16.

Russer, D. L. State restoration
amongst communicating processes,
Tech. Rep. 112, Digital Systems Labo-
ratory, Stanford Umwv., Stanford, Calif.,
June 1976

SHoomaN, M. L. Probabilistic relia-
bility; an engineering approach, Mc-
Graw-Hill, Inc, New York, 1968
SHRIVASTAVA, S. K.; AND BANATRE, J-
P. “Reliable resource allocation be-
tween unreliable processes,” to appear in
IEEE Trans. Softw Eng. (Also pub-
lished as Tech. Rep. 99, Computing Lab-
oratory, Univ Newcastle upon Tyne,
UK, June 1977.

VERHOFSTAD, J. S. M. “Recovery and
crash resistance mn a filing system,” mn
Proc. SIGMOD Conf,, 1977, ACM, New
York, pp. 158-167.

VERHOFSTAD J. S. M. “The construc-
tion of recoverable multi-level systems,”
PhD Thesis, Univ. Newcastle upon
Tyne, UK, Aug. 1977

WASSERMAN, A.l. Procedure-oriented
exception handling, Medical Informa-
tion Science, Univ. California, San Fran-
cisco, Calif., 1976.

WENSLEY, J. H. “SIFT—software im-
plemented fault tolerance,” in Proc. 1972
AFIPS Fall Jt. Computer Conf., Vol. 41,
Part I, AFIPS Press, Montvale, N.J., pp.
243-253.

WuLr, W. A, “Reliable hardware-soft-
ware architecture.” in Proc. Int. Conf.
Reliable Software; SIGPLAN Notices
10, 6 (June 1975), 122-130.

RECEIVED SEPTEMBER 13, 1977; FINAL REVISION ACCEPTED FEBRUARY 27, 1978.

Computing Surveys, Vol 10, No 2, June 1978

