
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Administrative Information

- Welcome to CSE30264!
- Instructor: Christian Poellabauer
- How to contact me \qquad
before/after class
office hours: Tuesday 10am-11am, Wednesday $11 \mathrm{am}-12 \mathrm{pm}$, and by appointment \qquad
office location: 354 Fitzpatrick
email: cpoellab@cse.nd.edu
phone: (574) 6319131 \qquad
- TA: Chris Miller and Veena Thomas ($1 / 2$)
office hours: Tuesday $3.15 \mathrm{pm}-4.15 \mathrm{pm}$ (Chris), Wednesday 11.30am-12.30pm (Veena)
office location: 356B Fitzpatrick ("DARTS Lab")
email:
Spring 2009
CSE 30264
\qquad
\qquad

Textbook

Larry L. Peterson and Bruce S. Davie, "Computer Networks, A Systems Approach", Morgan Kaufmann Publishers (Elsevier)

- ISBN-10: 155860832X
- ISBN-13: 978-1558608320
- Fourth Edition:
- ISBN-10: 0123705487
- ISBN-13: 978-0123705488

Spring 2009
CSE 30264

Administrative Information	
- http://www.cse.nd.edu/-cpoellab/teaching/cse30264	
- Course information	
- News	
- Assignments	
- Schedule	
- Slides	
Spring 2099 CEE 30664	4

\qquad

- Course information
- News
- Assignments
- Schedule \qquad
\qquad
\qquad
\qquad
\qquad

Course Goals	
- learn fundamental computer network principles - prepare for advanced CSE courses homework assignments, exams	
- learn algorithms, protocol, etc., that drive the Internet - homework assignments - get hands dirty with implementations and experiments programming assignments	
- learn to solve problems in teams - team-based programming assignments	
Spring 209 C CEE 30664	5

\qquad

Grading
- 4 homework assignments (35%):
- deepen understanding of principles, practice protocols,
algorithms, etc.
- 4 project assignments (40%):
- deepen understanding of principles, practice
programming, learn how to build distributed programs,
learn how to perform experiments, learn how to present
results
Midterm and final exam (10\%, 15\%):
- open book, answer questions under time pressure
Ssping 2009

Other Items

- Academic Honor Code
- Knowing fundamentals of computer networks and distributed systems is extremely important!
- Look for team members, let me know if help needed. Team size $=2-3(<2,>3$ possible if good reason)
- Participate! Ask questions! Use resources!

Spring 2009
CSE 30264
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Applications

- Email
- WWW: www.cse.nd.edu
- Audio/Video:
- http://www.apple.com/trailers/disney/up/
trailer large.htm \qquad
- youtube.com
- File sharing \qquad
- Online gaming
- Social networks \qquad
- Others: embedded systems, banking, military, ...

Spring 2009
CSE 30264 \qquad
\qquad

Computer Networks

- Computer networking has grown explosively
- Since the 1970s, computer communication has changed from a research topic to an essential part of infrastructure
- In 1980, the Internet was a research project that involved a few dozen sites
- Today, the Internet has grown into a communication system that reaches all of the world

Spring 2009
CSE 30264
10

Complexity of Computer Networks

- Many technologies exist; each technology has features that distinguish it from the others
- Companies create commercial network products and services
- No single underlying theory exists that explains the relationship among all parts
- Multiple organizations have created computer networks standards (some standards are incompatible with others)
- Various organizations have attempted to define conceptual models
- The set of technologies is diverse and changes rapidly models are either so simplistic that they do not distinguish among details - or so complex that they do not help simplify the subject

Complexity of Computer Networks

- The lack of consistency in the field has produced another challenge for beginners:
- Multiple groups each attempt to create their own terminology
- Researchers cling to scientifically precise terminology
- Marketing teams often invent new terms to distinguish their products or services from others
- Technical terms are confused with the names of popular products
- Professionals sometimes use a technical term from one technology when referring to an analogous feature of another technology
- A large set of terms and acronyms that contains many synonyms

Computer networking jargon contains terms that are often abbreviated, misused, or associated with products

Spring 2009
CSE 30264 12
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Network Applications and Programming

- Network services are provided by an application software
an application on one computer communicates across a network with an application program running on another computer
- Each application offers a specific service with its own form of user interface but all applications can communicate over a single, shared network
- A unified underlying network that supports all applications makes a programmer's job much easie
only programmer needs to learn about one interface to network and one basic set of functions to be used
it is possible to understand network applications, and even possible to write code that communicates over a network, without understanding the hardware/software technologies
once a programmer masters the interface, no further knowledge of networking may once a progr
be needed
- However, knowledge of the underlying network system allows a programmer to write better code and develop more efficient applications

Spring 2009
CSE 30264
13
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data Communications

- Data communications refers to the study of low-level mechanisms and technologies used to send information across a physical communication medium
- such as a wire, radio wave, or light beam
- Data communications focuses on ways to use physical phenomena to transfer information
- the subject may only seem useful for engineers who design low-level transmission facilities
- however, we will see that several key concepts that arise from data communications influence the design of many protocol layers
- Data communications provides a foundation of concepts
- on which the rest of networking is built
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Building Blocks for Data

Communications

- Nodes: PC, special-purpose hardware...
- hosts
- switches
- Links: coax cable, optical fiber...
\qquad
- point-to-point

- multiple access

Spring 2009
CSE 30264 15

Packet Switching and Networking Technologies

- In 1960s, the packet switching concept revolutionized data communications
- Early communication networks had evolved from telegraph and telephone systems
a physical pair of wires between two parties to form a dedicated circuit
- Although mechanical connections of wires was being replaced by electronic switches, but the underlying paradigm remained the same:
- form a circuit and then send information across the circuit
- Packet switching changed networking in a fundamental way
it provided the basis for the modern Internet
packet switching allows multiple users to share a network
packet switching divides data into small blocks, called packets
it includes an identification of the intended recipient in each packet
devices throughout the network each have information about how to reach each possible destination

Spring 2009
CSE 30264 16 \qquad

Switched Networks

- A network can be defined recursively as...

Spring 2009
CSE 30264
17 \qquad

Packet Switching and Networking Technologies

- Many designs for packet switching are possible
- But there is a need for answers to basic questions:
how should a destination be identified?
- how can a sender find the identification of a destination?
how large should a packet be?
- how can a network recognize the end of one packet?
how can a network recognize the beginning of another packet?
- if a network is shared, then how can they coordinate to insure that each receives a fair opportunity to send?
how can packet switching be adapted to wireless networks?
how can network technologies be designed to meet various requirements for speed, distance, and economic cost?
- Many packet switching technologies have been created
- to meet various requirements for speed, distance, and economic cost

Spring 2009
CSE 30264
19
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Internetworking with TCP/IP

- In the 1970 s, another revolution in computer networks arose: Internet
- In 1973, Vinton Cerf and Robert Kahn observed that
- no single packet switching technology would ever satisfy all needs
- They suggested to stop trying to find a single best solution
- instead, explore interconnecting many packet switching technologies into a functioning whole
-they proposed a set of standards be developed for such an interconnection
- the resulting standards became known as the TCP/IP Internet Protocol Suite (usually abbreviated TCP/IP)
- The success of TCP/IP lies in its tolerance of heterogeneity
- TCP / IP takes a virtualization approach
that defines a network-independent packet and a network-independent identification scheme \qquad

Public/Private Internet

- The Internet consists of parts that are owned and operated by individuals or organizations
- From ownership point of view, we can categorize networks into public and private networks
- A public network is run as a service that is available to subscribers any individual or corporation who pays the subscription fee can use a company that offers service is known as a service provider
public refers to the general availability of service, not to the data being transferred
- A private network is controlled by one particular group
network use is restricted to one group
- a private network can include circuits leased from a provider

Networks, Interoperability, Standards

- Communication always involves at least two entities
one that sends information and another that receives it
- All entities in a network must agree on how information will be represented and communicated; agreement requires many details
the way that electrical signals are used to represent data
the way that electrical signals are used to represent data
procedures used to initite and conduct communication,
and the format of messages
- An important issue is interoperability
-it refers to the ability of two entities to communicate
- All communicating parties agree on details and follow the same set of rules, an exact set of specifications
- Communication protocol, network protocol, or simply protocol to refer to a specification for network communication
- A protocol specifies the details for one aspect of communication
including actions to be taken when errors or unexpected situations arise
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Protocol Suites and Layering Models

- A set of protocols must be constructed
to ensure that the resulting communication system is complete and efficient
- Each protocol should handle a part of communication not handled by other protocols
- How can we guarantee that protocols work well together? instead of creating each protocol in isolation, protocols are designed in complete, cooperative sets called suites or families
- Each protocol in a suite handles one aspect of networking the protocols in a suite cover all aspects of communication
- the entire suite is designed to allow the protocols to work together efficiently

Spring 2009
CSE 30264 \qquad

Protocol Suites and Layering Models

- The fundamental abstraction used to collect protocols into a unified whole is known as a layering model
- All aspects of a communication problem can be partitioned into pieces that work together
- each piece is known as a layer
- Dividing protocols into layers helps both protocol designers and implementers manage the complexity
- to concentrate on one aspect of communication at a given time

