

Administrative Information

- · Welcome to CSE30264!
- · Instructor: Christian Poellabauer
- · How to contact me:
 - before/after class office hours: Tuesday 10am-11am, Wednesday 11am-12pm, and by appointment
- office location: 354 Fitzpatrick
- email: cpoellab@cse.nd.edu
 phone: (574) 631 9131
- TA: Chris Miller and Veena Thomas (1/2)
 - office hours: Tuesday 3.15pm-4.15pm (Chris), Wednesday 11.30am-12.30pm (Veena)

CSE 30264

2

- office location: 356B Fitzpatrick ("DARTS Lab")
- email:
- Spring 2009

Textbook · Larry L. Peterson and Bruce S. Davie, "Computer Networks, A Systems Approach", Morgan Kaufmann Publishers (Elsevier) - Third Edition: • ISBN-10: 155860832X • ISBN-13: 978-1558608320 - Fourth Edition: • ISBN-10: 0123705487 • ISBN-13: 978-0123705488 Spring 2009 CSE 30264

Course Goals

- · learn fundamental computer network principles
- prepare for advanced CSE courses – homework assignments, exams
- learn algorithms, protocol, etc., that drive the Internet
 homework assignments
- get hands dirty with implementations and experiments
 _ programming assignments
- learn to solve problems in teams
 team-based programming assignments

Spring 2009

Spring 2009

CSE 30264

Grading

• 4 homework assignments (35%):

- deepen understanding of principles, practice protocols, algorithms, etc.
- 4 project assignments (40%):
 - deepen understanding of principles, practice programming, learn how to build distributed programs, learn how to perform experiments, learn how to present results

6

Midterm and final exam (10%, 15%):
– open book, answer questions under time pressure

CSE 30264

Other Items

Academic Honor Code

Spring 2009

- Knowing fundamentals of computer networks and distributed systems is extremely important!
- Look for team members, let me know if help needed. Team size = 2-3 (<2, >3 possible if good reason)

CSE 30264

7

Participate! Ask questions! Use resources!

Dutline Computer Networks Overview Statistical Multiplexing Inter-Process Communication Network Architecture Performance Metrics Implementation Issues

Computer Networks

- · Computer networking has grown explosively
- Since the 1970s, computer communication has changed from a research topic to an essential part of infrastructure
- In 1980, the Internet was a research project that involved a few dozen sites
- Today, the Internet has grown into a communication system that reaches all of the world

CSE 30264

10

11

Complexity of Computer Networks

- Many technologies exist; each technology has features that distinguish it from the others
- Companies create commercial network products and services
- No single underlying theory exists that explains the relationship among all parts
 Multi-exercised parts are dealer.
- Multiple organizations have created computer networks standards (some standards are incompatible with others)
 Various organizations have attempted to define conceptual models
- Various organizations have attempted to define conceptual mode.
 The set of technologies is diverse and changes rapidly
- models are either so simplistic that they do not distinguish among details
 or so complex that they do not help simplify the subject

Spring 2009

Spring 2009

CSE 30264

Complexity of Computer Networks

- The lack of consistency in the field has produced another challenge for beginners:
 - Multiple groups each attempt to create their own terminology
 - Researchers cling to scientifically precise terminology
 - Marketing teams often invent new terms to distinguish their
 - products or services from othersTechnical terms are confused with the names of popular products
 - Professionals sometimes use a technical term from one technology
 - when referring to an analogous feature of another technology
 - A large set of terms and acronyms that contains many synonyms
 Computer networking jargon contains terms that are often
 - abbreviated, misused, or associated with products

Spring 2009

CSE 30264

- Network services are provided by an application software
 an application on one computer communicates across a network with an application
 program running on another computer
- Bach application offers a specific service with its own form of user interface
 but all applications can communicate over a single, shared network
- A unified underlying network that supports all applications makes a programmer's job much easier
 - only programmer needs to learn about one interface to network and one basic set of functions to be used
 - it is possible to understand network applications, and even possible to write code that communicates over a network, without understanding the hardware/software technologies
- once a programmer masters the interface, no further knowledge of networking may be needed
 However, knowledge of the underlying network system allows a programmer to write better code and develop more efficient applications
- Spring 2009 CSE 30264

Internetworking with TCP/IP

- · In the 1970s, another revolution in computer networks arose: Internet
- · In 1973, Vinton Cerf and Robert Kahn observed that
- no single packet switching technology would ever satisfy all needs
- · They suggested to stop trying to find a single best solution - instead, explore interconnecting many packet switching technologies into a functioning whole
 - they proposed a set of standards be developed for such an interconnection the resulting standards became known as the TCP/IP Internet Protocol Suite (usually abbreviated TCP/IP)
- The success of TCP/IP lies in its tolerance of heterogeneity
- TCP / IP takes a virtualization approach
- that defines a network-independent packet and a network-independent
- identification scheme

Spring 2009

CSE 30264

Public/Private Internet

- · The Internet consists of parts that are owned and operated by individuals or organizations
- · From ownership point of view, we can categorize networks into public and private networks
- A public network is run as a service that is available to subscribers
 - any individual or corporation who pays the subscription fee can use - a company that offers service is known as a service provider
 - public refers to the general availability of service, not to the data being _
- transferred
- · A private network is controlled by one particular group
 - network use is restricted to one group

```
- a private network can include circuits leased from a provider
```

CSE 30264

Spring 2009

21

Protocol Suites and Layering Models

- · A set of protocols must be constructed
- to ensure that the resulting communication system is complete and efficient
- · Each protocol should handle a part of communication not handled by other protocols
- · How can we guarantee that protocols work well together? - instead of creating each protocol in isolation, protocols are designed in complete, cooperative sets called suites or families
- · Each protocol in a suite handles one aspect of networking
 - the protocols in a suite cover all aspects of communication - the entire suite is designed to allow the protocols to work together
 - efficiently CSE 30264

23

Spring 2009

Protocol Suites and Layering Models · The fundamental abstraction used to collect protocols into a unified whole is known as a layering mode All aspects of a communication problem can be partitioned into pieces that work together each piece is known as a layer Dividing protocols into layers helps both protocol designers and implementers manage the complexity to concentrate on one aspect of communication at a given time CSE 30264 24 Spring 2009

