
1

Spring 2009 CSE30264 1

Reliable Byte-Stream (TCP)

Outline
Connection Establishment/Termination
Sliding Window Revisited
Flow Control
Adaptive Timeout

Spring 2009 CSE30264 2

End-to-End Protocols
•  Underlying best-effort network

–  drop messages
–  re-orders messages
–  delivers duplicate copies of a given message
–  limits messages to some finite size
–  delivers messages after an arbitrarily long delay

•  Common end-to-end services
–  guarantee message delivery
–  deliver messages in the same order they are sent
–  deliver at most one copy of each message
–  support arbitrarily large messages
–  support synchronization
–  allow the receiver to flow control the sender
–  support multiple application processes on each host

Spring 2009 CSE30264 3

Simple Demultiplexor (UDP)
•  Unreliable and unordered datagram service
•  Adds multiplexing
•  No flow control
•  Endpoints identified by ports

–  servers have well-known ports
–  see /etc/services on Unix

•  Header format

•  Optional checksum
–  pseudo header + UDP header + data

SrcPort DstPort

ChecksumLength

Data

0 16 31

2

Spring 2009 CSE30264 4

UDP
Application

process
Application

process
Application

process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

Spring 2009 CSE30264 5

TCP Overview

•  Connection-oriented
•  Byte-stream

–  app writes bytes
–  TCP sends segments
–  app reads bytes

•  Full duplex
•  Flow control: keep sender

from overrunning receiver
•  Congestion control: keep

sender from overrunning
network

Application process
Write
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process
Read
bytes

TCP
Receive buffer

■ ■ ■

Spring 2009 CSE30264 6

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

3

Spring 2009 CSE30264 7

Segment Format (cont)
•  Each connection identified with 4-tuple:

–  (SrcPort, SrcIPAddr, DstPort, DstIPAddr)
•  Sliding window + flow control

–  ACK, SequenceNum, AdvertisedWindow

•  Flags
–  SYN, FIN, RESET, PUSH, URG, ACK

•  Checksum
–  pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Spring 2009 CSE30264 8

Connection Establishment
Active participant

(client)
Passive participant

(server)
SYN, SequenceNum = x

ACK, Acknowledgment =y+1

Acknowledgment =x+1
SYN+ACK, SequenceNum=y,

Spring 2009 CSE30264 9

Connection Termination
First participant Second participant

FIN, SequenceNum = x

ACK, Acknowledgment =y+1

ACK, Acknowledgment=x+1,

FIN, SequenceNum = y,

Acknowledgment = x+1

4

Spring 2009 CSE30264 10

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Spring 2009 CSE30264 11

Sliding Window Revisited

•  Sending side
–  LastByteAcked < =
LastByteSent

–  LastByteSent < =
LastByteWritten

–  buffer bytes between
LastByteAcked and
LastByteWritten

•  Receiving side
–  LastByteRead <
NextByteExpected

–  NextByteExpected < =
LastByteRcvd +1

–  buffer bytes between
LastByteRead and
LastByteRcvd

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected
(a) (b)

Spring 2009 CSE30264 12

Flow Control
•  Send buffer size: MaxSendBuffer
•  Receive buffer size: MaxRcvBuffer
•  Receiving side

–  LastByteRcvd - LastByteRead < = MaxRcvBuffer
–  AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected -

1) - LastByteRead)
•  Sending side

–  LastByteSent - LastByteAcked < = AdvertisedWindow
–  EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

–  LastByteWritten - LastByteAcked < = MaxSendBuffer
–  block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

•  Always send ACK in response to arriving data segment
•  Persist when AdvertisedWindow = 0

5

Spring 2009 CSE30264 13

Protection Against Wrap Around

•  32-bit SequenceNum

 Bandwidth Time Until Wrap Around
 T1 (1.5 Mbps) 6.4 hours
 Ethernet (10 Mbps) 57 minutes
 T3 (45 Mbps) 13 minutes
 FDDI (100 Mbps) 6 minutes
 STS-3 (155 Mbps) 4 minutes
 STS-12 (622 Mbps) 55 seconds
 STS-24 (1.2 Gbps) 28 seconds

Spring 2009 CSE30264 14

Silly Window Syndrome
•  How aggressively does sender exploit open window?

•  Receiver-side solutions
–  after advertising zero window, wait for space equal to a

maximum segment size (MSS)
–  delayed acknowledgements

Sender Receiver

Spring 2009 CSE30264 15

Nagle’s Algorithm
•  How long does sender delay sending data?

–  too long: hurts interactive applications
–  too short: poor network utilization
–  strategies: timer-based vs self-clocking

when application produces data to send
 if both the available data and the window >= MSS
 send a full segment
 else
 if there is unACKed data in flight
 buffer the new data until an ACK arrives
 else
 send all the new data now

6

Spring 2009 CSE30264 16

Adaptive Retransmission

•  Round-Trip Time Estimation:
–  wait at least one RTT before retransmitting
–  importance of accurate RTT estimators:

•  Low RTT -> unneeded retransmissions
•  High RTT -> poor throughput

–  RTT estimator must adapt to change in RTT
•  But not too fast, or too slow!

–  problem: If the instantaneously calculated RTT is 10, 20, 5, 12, 3 , 5, 6;
what RTT should we use for calculations?

–  EstimatedRTT = α * EstimatedRTT + (1 - α) SampleRTT
–  recommended value for α: 0.8 - 0.9
–  retransmit timer set to β RTT, where β = 2

Spring 2009 CSE30264 17

Retransmission Ambiguity

A B

ACK

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission
ACK

Spring 2009 CSE30264 18

Karn/Partridge Algorithm

•  Accounts for retransmission ambiguity
•  If a segment has been retransmitted:

–  don’t count RTT sample on ACKs for this segment
–  reuse RTT estimate only after one successful

transmission
–  double timeout after each retransmission

7

Spring 2009 CSE30264 19

Jacobson/Karels Algorithm

•  Key observation:
–  using β RTT for timeout doesn’t work
–  at high loads round trip variance is high

•  Solution:
–  if D denotes mean variation
–  timeout = RTT + 4D

Spring 2009 CSE30264 20

Jacobson/Karels Algorithm

•  New Calculations for average RTT
•  Diff = SampleRTT - EstimatedRTT
•  EstimatedRTT = EstimatedRTT + (d * Diff)
•  Dev = Dev + d * (|Diff| - Dev)

–  where d is a factor between 0 and 1

•  Consider variance when setting timeout value
•  TimeOut = m * EstimatedRTT + f * Dev

–  where m = 1 and f = 4

Spring 2009 CSE30264 21

Record Boundaries

•  Byte-stream protocol: write 8+2+20 bytes and
read 5+5+5+5+5+5 (loop).

•  TCP offers two features to insert record
boundaries:
–  URG flag
–  push operation

8

Spring 2009 CSE30264 22

TCP Extensions

•  Implemented as header options
•  Better way to measure RTT (use actual system

clock for sending time and add timestamp to
segment).

•  64-bit sequence numbers: 32-bit sequence number
in low-order 32 bits, timestamp in high-order 32
bits.

•  Shift (scale) advertised window.

