Reliable Byte-Stream (TCP)

Outline
Connection Establishment/Termination
Sliding Window Revisited
Flow Control
Adaptive Timeout

Spring 2009 CSE30264

End-to-End Protocols

* Underlying best-effort network

— drop messages

— re-orders messages

— delivers duplicate copies of a given message

— limits messages to some finite size

— delivers messages after an arbitrarily long delay
» Common end-to-end services

— guarantee message delivery

— deliver messages in the same order they are sent
deliver at most one copy of each message
support arbitrarily large messages
— support synchronization
— allow the receiver to flow control the sender
— support multiple application processes on each host

Spring 2009 CSE30264

Simple Demultiplexor (UDP)

+ Unreliable and unordered datagram service
* Adds multiplexing
* No flow control
« Endpoints identified by ports
— servers have well-known ports
— see /ete/services on Unix

« Header format scror | oseon

Lengn | creckaum

POV SN
+ Optional checksum T

— pseudo header + UDP header + data

Spring 2009 CSE30264

UDP

Application| (Application| [~ Application
process process process

Queues

Packets
demultiplexed

Packets arrive

Spring 2009 CSE30264

TCP Overview

« Connection-oriented « Full duplex
* Byte-stream » Flow control: keep sender
— app writes bytes from overrunning receiver

— TCP sends segments
— app reads bytes

Application proces:

« Congestion control: keep
sender from overrunning
network

(@pplication proces:

=

Transmit segments
Spring 2009 CSE30264

Segment Format

0 4 10 16 31
SrcPort ‘ DstPort

SequenceNum

Acknowledgment

Heren‘ 0 ‘ Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

L
r*/\/\/\/\/\/\/\ﬂ

Spring 2009 CSE30264

Segment Format (cont)

» Each connection identified with 4-tuple:

- (SrcPort, SrcIPAddr, DstPort, DstIPAddr)
+ Sliding window + flow control

— ACK, SequenceNum, AdvertisedWindow

Data (SequenceNum)

Sender Receiver
~ —

Acknowledgment +
AdvertisedWindow

» Flags

- SYN, FIN, RESET, PUSH, URG, ACK
* Checksum

— pseudo header + TCP header + data

Spring 2009 CSE30264

Connection Establishment

Active participant Passive participant
(client) (server)

Spring 2009 CSE30264

Connection Termination

First participant Second participant

Fin

. Se‘7Lle
nCeNL”_n -
X
\

23

Spring 2009 CSE30264

State Transition Diagram

Active open/SYN

STNRCVD SYN/SYN + ACK
ACK

Close/FIN

Close/FIN

[Ccoswe | [[astacc |
ACK Timeout after two ACK
FIN/ACK segment lifetimes
| TMEWAT | CLOSED
Spring 2009 CSE30264 o

Sliding Window Revisited

TCP TCP
LastByteWritter \ LastByteRead

I [3 | [1T 3
O

(@ (b)

* Sending side * Receiving side

- LastByteAcked <= - LastByteRead <
LastByteSent NextByteExpected

- LastByteSent <= - NextByteExpected <=
LastByteWritten LastByteRcvd +1

— buffer bytes between — buffer bytes between
LastByteAcked and LastByteRead and
LastByteWritten LastByteRcvd

Spring 2009 CSE30264 1

Flow Control

* Send buffer size: MaxSendBuffer
* Receive buffer size: MaxRcvBuffer
« Receiving side
- LastByteRcvd - LastByteRead <=MaxRcvBuffer
- AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected -
1) - LastByteRead)
* Sending side
- LastByteSent - LastByteAcked < = AdvertisedWindow
- EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)
— LastByteWritten - LastByteAcked < =MaxSendBuffer
— block sender if (LastByteWritten - LastByteAcked) +y >
MaxSenderBuffer
« Always send ACK in response to arriving data segment
 Persist when AdvertisedWindow = 0
Spring 2009 CSE30264 12

Protection Against Wrap Around

¢ 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) | 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) | 55 seconds
STS-24 (1.2 Gbps) 28 seconds

Spring 2009 CSE30264

Silly Window Syndrome

How aggressively does sender exploit open window?

I e |
—A—
Sender

‘\—// Receiver

(I N | B
» Receiver-side solutions

— after advertising zero window, wait for space equal to a
maximum segment size (MSS)

— delayed acknowledgements

Spring 2009 CSE30264

Nagle’s Algorithm

How long does sender delay sending data?
— too long: hurts interactive applications

— too short: poor network utilization

— strategies: timer-based vs self-clocking

when application produces data to send
if both the available data and the window >= MSS
send a full segment
else
if there is unACKed data in flight
buffer the new data until an ACK arrives
else

send all the new data now

Spring 2009 CSE30264

Adaptive Retransmission

* Round-Trip Time Estimation:
— wait at least one RTT before retransmitting
— importance of accurate RTT estimators:
+ Low RTT -> unneeded retransmissions
« High RTT -> poor throughput
RTT estimator must adapt to change in RTT
+ Butnot too fast, or too slow!

problem: If the instantaneously calculated RTT is 10, 20, 5, 12,3, 5, 6;
what RTT should we use for calculations?

EstimatedRTT = o * EstimatedRTT + (1 - o) SampleRTT
— recommended value for ou: 0.8 - 0.9
retransmit timer set to RTT, where f§ =2

Spring 2009 CSE30264

Retransmission Ambiguity

Spring 2009 CSE30264

Karn/Partridge Algorithm

» Accounts for retransmission ambiguity
« If a segment has been retransmitted:

— don’t count RTT sample on ACKs for this segment

— reuse RTT estimate only after one successful
transmission

— double timeout after each retransmission

Spring 2009 CSE30264

Jacobson/Karels Algorithm

» Key observation:
— using 3 RTT for timeout doesn’t work
— at high loads round trip variance is high
* Solution:
— if D denotes mean variation
— timeout = RTT + 4D

Spring 2009 CSE30264 19

Jacobson/Karels Algorithm

* New Calculations for average RTT
* Diff = SampleRTT - EstimatedRTT
¢ EstimatedRTT = EstimatedRTT + (d * Diff)
¢ Dev = Dev +d * (Diff] - Dev)

— where d is a factor between 0 and 1
» Consider variance when setting timeout value
¢ TimeOut =m * EstimatedRTT + f * Dev

— wherem=1and f=4

Spring 2009 CSE30264 20

Record Boundaries

» Byte-stream protocol: write 8+2+20 bytes and
read 5+5+5+5+5+5 (loop).

* TCP offers two features to insert record
boundaries:
— URG flag
— push operation

Spring 2009 CSE30264 21

TCP Extensions

Implemented as header options

» Better way to measure RTT (use actual system
clock for sending time and add timestamp to
segment).

* 64-bit sequence numbers: 32-bit sequence number

in low-order 32 bits, timestamp in high-order 32

bits.

Shift (scale) advertised window.

Spring 2009 CSE30264 22

